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Abstract: Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical
changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-
NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium
plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation
matrices provided in-depth insights into spectral differences. Through the application of advanced
algorithms—such as PLS, VIP, iPLS-VIP, GA, RF, and CARS—the most responsive wavelengths
were discerned. PLSR models consistently achieved R2 values above 0.75, presenting noteworthy
predictions of 0.86 for DPPH and 0.89 for lignin. The red-edge and SWIR bands displayed strong asso-
ciations with pivotal plant pigments and structural molecules, thus expanding the perspectives on leaf
spectral dynamics. These findings highlight the efficacy of spectroscopy coupled with multivariate
analysis in evaluating the management of biochemical compounds. A technique was introduced
to measure the photosynthetic pigments and structural compounds via hyperspectroscopy across
UV-VIS-NIR-SWIR, underpinned by rapid multivariate PLSR. Collectively, our results underscore
the burgeoning potential of hyperspectroscopy in precision agriculture. This indicates a promising
paradigm shift in plant phenotyping and biochemical evaluation.

Keywords: algorithms; modelling; partial least square regression; plant phenotyping; reflectance
data; vegetation indices; wavelengths

1. Introduction

Over the past few years, hyperspectral spectroscopy has become prominent, revolu-
tionising botanical and agronomic research and bridging the intricacies of plant biology
with state-of-the-art technological advancements [1,2]. Revolutionary advances in remote
sensing technology, particularly in hyperspectral non-imaging and imaging, have expanded
the frontiers of precision agriculture, environmental monitoring, and plant physiology
research. Spanning the regions from ultraviolet to shortwave infrared (UV-VIS-NIR-SWIR),

Plants 2023, 12, 3424. https://doi.org/10.3390/plants12193424 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12193424
https://doi.org/10.3390/plants12193424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-2343-5045
https://orcid.org/0000-0001-7377-7070
https://orcid.org/0000-0001-5006-4887
https://orcid.org/0000-0001-8430-2791
https://orcid.org/0000-0001-8042-090X
https://orcid.org/0000-0002-7338-2666
https://orcid.org/0000-0003-1631-3709
https://orcid.org/0000-0001-5328-0323
https://orcid.org/0000-0003-4854-2661
https://doi.org/10.3390/plants12193424
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12193424?type=check_update&version=1


Plants 2023, 12, 3424 2 of 24

this technique boasts an unparalleled depth, offering comprehensive spectral analysis. This
enables researchers to delve deeper into plants’ biochemical and physiological processes,
revealing detailed snapshots of their health, structure, and function at various scales [3,4].
Hyperspectral technology provides an unparalleled opportunity to decipher plant health,
physiological state, and response to environmental stresses [5].

Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale L’Hér. Ex. Aiton (Geranium)
stands out in the floral world for its vibrant hues and ornamental appeal and its multifaceted
utility in traditional medicine and potential pharmaceutical applications [6]. The intricate
biochemistry of these plants and their ecological significance necessitate detailed and non-
invasive investigative methodologies to foster our understanding and enable informed
interventions in their cultivation and application [7].

Chemometric analysis using UV-VIS-NIR-SWIR hyperspectral data is an emerging
approach to unravel the underlying relationship between spectral reflectance patterns
and biochemical constituents of plant leaves [8,9]. By integrating spectral data with ad-
vanced statistical methods, such as principal component analysis (PCA) and selecting
wavelengths and bands most responsively, it becomes feasible to detect subtle differences
in leaf biochemistry, even before they manifest as visible symptoms [10].

Despite the evident capabilities of hyperspectral spectroscopy, these challenges persist.
One of the principal roadblocks is the sheer volume and complexity of the obtained
data. This wealth of information, although invaluable, requires advanced computational
algorithms for accurate interpretation and application [11]. The intertwining of artificial
intelligence, machine learning, and hyperspectral data holds promise for navigating this
vast data terrain, offering nuanced insights previously out of reach [1,12].

Conventional methodologies that are fundamental to our understanding often have
inherent limitations. Invasive techniques that frequently require destructive sampling
compromise the sample’s integrity and distort the resulting observations. This challenges
the reliability and reproducibility of the conclusions drawn from such methods [3,13].
The emergence of non-invasive hyperspectral techniques offers a promising solution to
these challenges. They redefined the approach to research in this domain, minimising
both the ecological and economic impacts of investigations [14,15]. Furthermore, these
advanced techniques can accurately assess plant components such as pigments, antioxidant
capacity, and structural molecules. This comprehensive insight allows for the development
of strategies for the utilisation of these plants.

The interplay between plant molecule-based reflectance hyperspectroscopy and the
ability of hyperspectral spectroscopy to provide a window into this intricate relationship,
particularly in the context of climate change and evolving environmental stressors, makes
it an indispensable tool in modern botanical research toolkits [16–18].

Our study aims to integrate advanced computational intelligence, classification al-
gorithms, and selected wavelengths and bands to extract valuable information from UV-
VIS-NIR-SWIR hyperspectral data on plant growth in greenhouses. We hypothesised that
this approach would enable the non-destructive assessment, classification, calibration, and
prediction of biochemical parameters, such as chlorophylls, carotenoids, flavonoids, radical
scavenging, lignin, and cellulose molecules, with high accuracy and precision. This study
aimed to demonstrate that reflectance hyperspectral remote sensing technology can provide
alternative and rapid methods for estimating biochemical attributes in leaves.

2. Results
2.1. Descriptive Biochemical Parameters

The biochemical parameters of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium
zonale (L.) L’Hér. Ex. Aiton (Geranium) leaves were comprehensively evaluated, with the
specifics detailed in Table 1. From the 200 samples, area-based measurements exhibited an
average Chla concentration of 1322.8 mg m−2 (CV: 29.0%), while the mass-based metric
revealed an average of 64.2 mg g−1 (CV: 27.0%). Chlb, at both the area (1012.0 mg m−2) and
mass scales (46.0 mg g−1), recorded CVs of 47.0% and 31.4%, respectively. Flavonoids (Flv)
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indicated pronounced variability, with the area-based CV at 31.8% and the mass-based
figure reaching 60.0%. Notably, the DPPH parameter remained the most consistent, with
a CV of 2.9%. The structural constituents of lignin and cellulose exhibited CVs of 19.7%
and 37.4%, respectively. These findings offer comprehensive insight into the biochemical
attributes of the evaluated plant species, considering both area- and mass-based metrics
for leaves.

Table 1. Descriptive statistics of biochemical parameters measured in leaves of Hibiscus rosa-sinensis L.
(Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium). For each parameter, the table
presents the count (n), mean, median, minimum, maximum, and coefficient of variation (CV %).
(n = 200).

Parameters Count (n) Mean Median Minimum Maximum CV (%)

Chla (mg m−2) 200 1322.8 1162.8 655.3 2089.0 29.0
Chlb (mg m−2) 200 1012.0 977.3 233.5 2222.1 47.0

Chla+b (mg m−2) 200 2334.8 2141.3 999.9 4311.1 36.7
Car (mg m−2) 200 309.6 263.8 225.8 423.1 19.9

Flv (nmol cm−2) 200 6.5 6.3 2.3 25.0 31.8
Chla/b ratio 200 1.5 1.3 0.9 3.7 29.5

Chla (mg g−1) 200 64.2 61.2 28.4 134.2 27.0
Chlb (mg g−1) 200 46.0 44.6 14.9 114.7 31.4

Chla+b (mg g−1) 200 110.2 106.6 43.3 249.0 26.2
Car (mg g−1) 200 15.6 14.8 6.3 32.9 32.4

Flv (µmol g−1) 200 3.6 3.0 0.7 12.2 60.0
Phe (mL L−1) 200 9.5 9.7 5.9 11.3 10.3

DPPH 200 92.6 93.3 86.2 99.6 2.9
Lignin (mg g−1) 200 216.7 213.5 125.4 297.3 19.7

Cellulose (nmol mg−1) 200 312.7 289.3 139.2 597.8 37.4

2.2. Pearson’s Correlation and Principal Component Analysis of Hibiscus and Geranium Leaves

A correlation matrix and principal component analysis were used to analyse the
complex interplay of biochemical parameters in Hibiscus rosa-sinensis L. and Pelargonium
zonale (L.) L’Hér. Ex. Aiton, as shown in Figure 1. Lignin concentrations exhibited strong
associations with Chla (mg m−2) r = 0.758, Chla+b (mg m−2) r = 0.742, and Chlb (mg m−2)
r = 0.723. The radical scavenging potential, depicted by DPPH, showed positive correlations
with carotenoids based on area measurements (r = 0.831) and Chla (mg m−2) (r = 0.822),
while negative correlations were observed with Flv (µmol g−1) (r = −0.605) and the Chla/b
ratio (r = −0.620). In this sense, carotenoids, in terms of both area- and mass-based
measurements, demonstrated significant correlations with other parameters. The area-
based carotenoid measurements were positively correlated with DPPH (r = 0.831) and Chla
(mg m−2) (r = 0.746). In contrast, mass-based measurements displayed strong positive
relationships with Flv (µmol g−1) (r = 0.864) and Chla (mg g−1) (r = 0.859) (p < 0.01)
(Figure 1A).

Principal component analysis (PCA) was performed to further delve into the spec-
tral data, and the results are shown in Figure 1B. The two primary dimensions, Dimen-
sion 1 (Dim 1) and Dimension 2 (Dim 2), collectively accounted for a significant 63.4%
variance—42.2% attributed to Dim 1 and 21.2% to Dim 2. The evident clustering in the
PCA plot highlights the inherent spectral differences and unique biochemical compositions
of Hibiscus and Geranium. In addition, the vectors demonstrate a higher correlation for
mass-based biochemical compounds (Car, Chla, Chla+b, Flv) for Hibiscus and area-based
biochemical compounds (Chlb, Chla+b Car, Chla) for Geranium plants. This in-depth
analysis aimed to identify specific compounds and their interactions, providing insights
into their distinctive biochemical and structural attributes (Figure 1).
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Figure 1. Pearson’s correlation and principal component analysis of the plant samples. (A) Bio-
chemical molecule measurements using Pearson’s correlation, ranging from −1 to +1. (B) Principal
Component Analysis (PCA) of samples from both the Hibiscus and Geranium groups plotted along
Dimension 1 (Dim 1) and Dimension 2 (Dim 2). The measured extracts and growth variables
included chlorophyll a-based area (Chla(area)), chlorophyll b-based area (Chlb(area)), combined
chlorophyll a+b-based area (Chla+b(area)), carotenoid-based area (Car(area)), chlorophyll a-based
mass (Chla(mass)), chlorophyll b-based mass (Chlb(mass)), combined chlorophyll a+b-based mass
(Chla+b(mass)), carotenoid-based mass (Car(mass)), chlorophyll a/b ratio (Chla/b), flavonoid-based
area (Flv(area)), flavonoid-based mass (Flv(mass)), phenolic compounds (Phe), radical scavenging
activity (DPPH), lignin, and cellulose. (n = 200).

2.3. Spectral Reflectance and Principal Component Analysis of Hibiscus and Geranium Leaves

For distinct maximum factors, based on the vectors analysed, the hyperspectral re-
flectance values for Hibiscus rosa-sinensis L. and Pelargonium zonale (L.) L’Hér. Ex. Aiton
was evaluated across the UV-VIS-NIR-SWIR bands with a spectral resolution of 1 nm
(Figure 2). Within this spectrum, clear demarcations at 700 nm and 1300 nm indicate
transitions from the visible (VIS) spectrum to the near-infrared (NIR) and from NIR to the
shortwave infrared (SWIR) bands, respectively. In addition, a t test comparison yielded
a value of 9.38 with a corresponding p value of 0.03, signifying marked differences in the
biochemical attributes of the leaves between the two species (Figure 2A).

To further elucidate these differences, principal component analysis (PCA) was em-
ployed for the hyperspectral curves (Figure 2B). The first principal component (PC1)
accounted for 83% of the total variance, while the second (PC2) represented 15%. The mean
PCA value for Hibiscus on PC1 was 0.932, in contrast to the Geranium plant’s mean of
−0.923, with an accuracy of 0.66 and Kappa coefficient of 0.64, emphasising the distinct
spectral characteristics of each species. This analysis was conducted to identify the specific
compounds in the leaves of both plants.

The observed spectral differences between the two species highlight their unique
biochemical and structural leaf optical properties.

Based on Figure 3, the subsequent components, namely, PC-3, PC-4, and PC-5, con-
tributed minimally, accounting for just over 1% of the total variance, and PC-6 and PC-10
contributed 0.05% of the data. The cumulative variability across the components was
visually depicted with red circles, confirming the dominance of PC-1 and PC-2 in capturing
the spectral differences between Hibiscus and Geranium (Figures 2 and 3). This analysis
underscored the inherent spectral variability and highlighted the significant contribution
of the initial components to variance in the data (Figure 3).
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Figure 2. Spectral reflectance and PCA of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.)
L’Hér. Ex. Aiton (Geranium) leaves range in size from 350 to 2500 nm. The dotted lines at 700 nm
and 1300 nm demarcate the transitions from VIS (visible) to NIR (near-infrared) and from NIR to
shortwave infrared (SWIR) bands, respectively. (A) Spectral reflectance graph with Hibiscus (green)
and Geranium (purple) represented. (B) PCA of the two species. Values for Accuracy (Acc) and Kappa
(K) coefficients are reported in boxes. Each data point represents the mean of measurements. The
standard deviation was omitted for clarity. Statistical significance between Hibiscus and Geranium
was assessed using a t-test (9.38), with p-values of 0.03 reported. (n = 200).
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Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium) plants.
Black bars represent individual PC variability, whereas red circles indicate cumulative variability.

2.4. Calibration, Cross-Validation, and Prediction of Biochemical Parameters in Hibiscus and
Geranium Leaves

Calibration and cross-validation were undertaken using partial least squares regres-
sion (PLSR) to establish the relationships between hyperspectral reflectance data and the
biochemical parameters in leaves of Hibiscus rosa-sinensis L. and Pelargonium zonale (L.)
L’Hér. Ex. Aiton (Table 2). During the calibration process, chlorophyll a, based on area
(Chla+b(area)) and mass (Chla+b(mass)), presented values (R2) of 0.73 and 0.14, respectively.
However, upon cross-validation, these values experienced a slight dip, measuring 0.71
and 0.08, respectively. Specifically, for chlorophyll a (Chla (mg m−2)), a value of 0.73 was
observed during calibration, which was adjusted to 0.71 in the cross-validation phase.
Chlorophyll b (Chlb (mg m−2)) recorded a value of 0.63 in calibration and 0.60 in cross-
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validation. Carotenoids considered in terms of area and mass showcased values of 0.86
and 0.49 during calibration, adjusting to 0.85 and 0.43 during cross-validation.

Table 2. Calibration and cross-validation validation statistics for biochemical parameters measured
in leaves of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium)
using PLS regression models. The table presents the maximum PLS factor, coefficients of determina-
tion (R2), offset, root mean square error (RMSE), and ratio of prediction to deviation (RPD) for each
parameter during the calibration and cross-validation. (n = 140).

Parameters Maximum
Factor PLS

Calibration Cross-Validation

R2 Offset RMSE RPD R2 Offset RMSE RPD

Chla (mg m−2) 6 0.73 355.6 207.4 1.92 0.71 370.3 216.2 1.85
Chlb (mg m−2) 5 0.63 374.1 306.7 1.64 0.60 388.1 318.5 1.58

Chla+b (mg m−2) 6 0.73 626.6 470.1 1.93 0.71 656.4 490.8 1.85
Car (mg m−2) 6 0.86 44.1 24.0 2.66 0.85 45.0 25.1 2.54

Flv (nmol cm−2) 2 0.08 6.0 1.7 1.04 0.04 6.2 1.7 1.02
Chla/b ratio 7 0.49 0.7 0.3 1.41 0.42 0.8 0.3 1.31

Chla (mg g−1) 5 0.33 43.1 13.9 1.22 0.27 44.9 14.6 1.17
Chlb (mg g−1) 1 0.12 39.2 12.6 1.07 0.01 41.8 13.4 1.00

Chla+b (mg g−1) 4 0.14 92.4 24.8 1.08 0.08 96.4 25.9 1.04
Car (mg g−1) 5 0.49 7.9 3.4 1.39 0.43 8.3 3.6 1.32

Flv (µmol g−1) 5 0.62 1.3 1.2 1.62 0.57 1.4 1.3 1.53
Phe (mL L−1) 7 0.24 7.3 0.7 1.15 0.16 7.6 0.8 1.09

DPPH 4 0.81 17.4 1.1 2.30 0.80 17.8 1.2 2.22
Lignin (mg g−1) 5 0.74 57.7 21.1 1.96 0.71 60.9 22.3 1.85

Cellulose (nmol mg−1) 3 0.43 177.7 93.1 1.33 0.39 183.7 96.3 1.28

Furthermore, this study also examined other significant biochemical parameters. For
instance, the lignin concentration displayed a calibration of 0.74, which was adjusted to 0.71
during the cross-validation phase. However, while the study examined parameters such
as the radical scavenging potential of DPPH, cellulose, and Flv, they showed significantly
higher values. Nevertheless, the comprehensive results of these metrics require further
research or data acquisition to establish the contribution of the most associated bands
(Table 2).

Such patterns, spanning chlorophyll to lignin, underscore the robustness of the PLSR
model base area and are minor for mass units. The consistent correlations between the
reflectance data and biochemical parameters indicate the success of the model in predicting
and validating these parameters in the leaves of the study plants (Table 2).

The validation and prediction phases further attested to the accuracy of the estab-
lished models, with Partial Least Squares Regression (PLSR) offering key insights into the
correlations between hyperspectral reflectance data and biochemical parameters in leaves
(Table 3 and Figure 4). The root mean square error of prediction (RMSEP) values were
notably insightful. The precision of these PLSR models was visually represented in scatter
plots, as depicted in Figure 4. The correlation, slope, offset, and other predictive statistical
parameters for various biochemical parameters in the leaves of both plants are summarised
in Table 3. This table shows the maximum PLS factor, correlation coefficient (r), slope,
offset, standard error of prediction (SEP), ratio of prediction to deviation (RPD), bias, and
the linear equation relating the prediction to the calibration model (R2P).
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Table 3. Predictive statistical parameters obtained from PLS regression models for biochemical
parameters in leaves of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton
(Geranium). The table presents the maximum PLS factor, correlation coefficient (r), slope, offset,
standard error of prediction (SEP), ratio of prediction to deviation (RPD), bias, and the linear equation
relating prediction to the calibration model (R2P). (n = 140).

Parameters
Maximum
Factor PLS

Predicted

r Slope Offset SEP RPD Bias Linear Equation Prediction to
Calibration Model (R2

P)

Chla (mg m−2) 6 0.93 0.70 303.9 144.5 2.65 97.2 Ŷ = 1.2342x − 188.323
Chlb (mg m−2) 5 0.85 0.68 204.3 212.5 1.90 124.2 Ŷ = 1.0704x + 60.939

Chla+b (mg m−2) 6 0.86 0.66 506.1 385.5 1.97 286.0 Ŷ = 1.1211x + 36.696
Car (mg m−2) 6 0.96 0.90 29.9 15.8 3.53 1.8 Ŷ = 1.0254x − 6.0335

Flv (nmol cm−2) 2 0.21 0.12 5.9 0.7 1.02 0.6 Ŷ = 0.3906x + 3.3941
Chla/b ratio 7 0.80 1.00 0.2 0.2 1.67 0.2 Ŷ = 0.6383x + 0.3496

Chla (mg g−1) 5 0.70 0.61 23.4 9.5 1.39 0.7 Ŷ = 0.7922x + 13.582
Chlb (mg g−1) 1 −0.14 −0.02 46.8 8.6 1.01 0.3 Ŷ = −0.7951x + 82.055

Chla+b (mg g−1) 4 0.47 0.27 75.0 17.4 1.13 4.3 Ŷ = 0.8172x + 23.282
Car (mg g−1) 5 0.79 0.71 4.9 2.5 1.61 0.4 Ŷ = 0.8738x + 1.5158

Flv (µmol g−1) 5 0.83 0.96 0.7 0.9 1.81 0.6 Ŷ = 0.7221x + 0.4777
Phe (mL L−1) 7 −0.11 −0.06 10.1 0.9 1.01 0.1 Ŷ = −0.1992x + 11.423

DPPH 4 0.86 0.59 37.2 1.4 1.98 0.3 Ŷ = 1.2514x − 22.908
Lignin (mg g−1) 7 0.89 0.81 33.3 17.7 2.24 8.8 Ŷ = 0.994x + 10.078

Cellulose (nmol mg−1) 3 0.77 0.67 128.9 57.4 1.56 37.3 Ŷ = 0.8635x + 6.1253

Chlorophyll a (Chla (mg m−2)) exhibited a remarkable correlation coefficient (r) of
0.93 and a robust RPD of 2.65. With a maximum PLS factor of 6, the model displayed
a slope of 0.70, an offset of 303.9, and a SEP of 144.5, underpinning its efficiency in pre-
dicting Chla concentrations with a bias of 97.2. On the other hand, chlorophyll b (Chlb
(mg m−2)) and total chlorophyll (Chla+b (mg m−2)) had correlation coefficients of 0.85
and 0.86, respectively. The PLSR models for these parameters offered insights into their
concentrations with biases of 124.2 and 286. Carotenoids (Car (mg m−2)), an essential
capacity for photoprotection in plants, stood out with an exemplary r value of 0.96 and an
RPD of 3.53, suggesting the model’s precision in predicting carotenoid concentrations. The
Car (mg m−2) model, with a PLS factor of 6, displayed a slope of 0.90 and a low bias of 1.8,
reinforcing its predictive accuracy.

In contrast, the flavonoids (Flv (nmol cm−2)) showed a lower correlation coefficient of
0.05. Even with a maximum PLS factor of 2, the prediction showed a SEP of 0.7 and a near-
neutral bias of 0.6. However, when analysed on a different scale, such as Flv (µmol g−1),
the correlation improved significantly to 0.83, with an RPD of 1.81, in agreement with the
calibration models (R2 = 0.62). Phenolic compounds (Phe (mL L−1)) registered an RMSEP
value of 1.35 but had a correlation coefficient of −0.11, indicating potential discrepancies
in the predictions. Antioxidant capacity, represented by DPPH, also exhibited a strong
correlation coefficient of 0.86, with an RPD value of 1.98, highlighting the model’s reliability
for predicting antioxidant levels in plant samples.

Lignin (mg g−1), crucial for plant structural integrity, showcased notable performance
with a correlation coefficient of 0.89 and an RPD of 2.24. The ability of this model to
predict lignin concentrations with a PLS factor of 7 underscores its significance, given
lignin’s pivotal role in plant physiology and its influence on plant reflectance spectra. For
the cellulose PLSR model, with a maximum PLS factor of 5, the correlation coefficient (r)
was 0.91, indicating a strong relationship between the predicted and observed cellulose
concentrations. The model exhibited an RPD value of 2.54, demonstrating its reliability in
predicting cellulose concentrations.
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Figure 4. Scatter plots of reference versus predicted data using partial least squares regression (PLSR)
for various biochemical parameters in leaves. The dotted yellow lines represent the regression fit,
and the solid black lines denote the 1:1 line. Model performance metrics, including the coefficient of
determination (R2) and root mean square error of prediction (RMSEP), were provided. The models
were trained using 70% of the data for calibration and validated using the remaining 30%. Bias
values were consistently below 0.01 and are not shown. (A) Chlorophyll a-based area (Chla(area)),
(B) chlorophyll b-based area (Chlb(area)), (C) combined chlorophyll a+b-based area (Chla+b(area)),
(D) carotenoid-based area (Car(area)), (E) flavonoid-based area (Flv(area)), (F) chlorophyll a/b ratio
(Chla/b), (G) chlorophyll a-based mass (Chla(mass)), (H) chlorophyll b-based mass (Chlb(mass)),
(I) combined chlorophyll a+b-based mass (Chla+b(mass)), (J) carotenoid-based mass (Car(mass)),
(K) flavonoid-based mass (Flv(mass)), (L) phenolic compounds (Phe), (M) radical scavenging activity
(DPPH), (N) lignin, and (O) cellulose. (n = 60).
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In addition, the PLSR models have proven to be an indispensable tool offering un-
paralleled precision and reliability in predicting a myriad of biochemical attributes in the
leaves of the examined plants. The consistent and robust performance across various
parameters testifies to the potential of hyperspectral non-imaging coupled with PLSR in
plant chemometric parameters, as shown in Table 3 and Figure 4.

2.5. Spectral Weighted Coefficients and Loadings from PLSR Analysis

In the PLSR model analysis, the metrics for the weight and loadings across the UV-VIS-
NIR-SWIR spectral range are in Figure 5. The analysis indicated a consistent distribution of
regions characterised by prominent peaks and valleys, underscoring the role of weights
and loadings in the formulation of the accuracy and precision of the predictive model. A
meticulous analysis of the PLSR model revealed one of the two salient wavelengths within
the 350 to 2500 nm range, each intrinsically linked to specific biochemical molecules.

For Chla (mg m−2), a pronounced peak wavelength was observed at 698 nm, com-
plemented by a significant valley at 723 nm. In a similar leaf, Chlb (mg m−2) exhibited a
peak at 515 nm and a valley at 723 nm. The wavelengths associated with Chla+b (mg m−2)
peak at 696 nm and a valley at 722 nm. Meanwhile, carotenoids (mg m−2) register a peak
at 789 nm and a valley at 725 nm. The parameter flavonoids (nmol cm−2) is characterised
by a peak at 719 nm and a valley at 1392 nm.

When transitioning to mass units, there is a discernible shift in wavelength. The
Chla/b (mg g−1) peaks at 721 nm and valleys at 516 nm. Chla (mg g−1) peaks at 1064 nm
with a valley at 1521 nm, whereas Chlb (mg g−1) peaks at 803 nm and valleys at 716 nm.
The wavelengths for Chla+b (mg g−1) peak at 698 nm and valley at 1521 nm, and those for
carotenoids (mg g−1) peak at 716 nm with a valley at 1505 nm. The flavonoids (µmol g−1)
also exhibited peaks at 715 nm and valleys at 1489 nm. Phenolics (mL L−1) were marked
by a peak at 354 nm and a valley at 1468 nm, and DPPH peaks at 363 nm with a valley at
719 nm. The wavelengths for the mg de lignin g−1 peak at 698 nm and valley at 723 nm,
and those for cellulose (nmol mg−1) peak at 713 nm and valley at 1383 nm (Figure 5).

The wavelengths identified in this study provide a profound understanding of the
interplay between spectral data and molecular composition, paving the way for advanced
insights into hyperspectroscopy and its contributions to specific modelling endeavours.

2.6. Hyperspectral Vegetation Index for Selected Most Responsive Wavelengths and Bands

Hyperspectral vegetation indices spanning the wavelength spectrum from 350 to
2500 nm and clear correlation dynamics were observed. The area based on chlorophyll a
(Chla(area)) stood out with a compelling (R2) value of 0.89, underscoring its pronounced
linear association with the examined wavelengths. Conversely, several parameters, namely,
the chlorophyll a/b ratio (Chla/b), flavonoids (Flv), area, chlorophyll a mass (Chla(mass)),
combined chlorophyll a+b mass (Chla+b(mass)), phenolic compounds (Phe), and cellulose,
revealed milder correlations. The cluster heatmap gradient, transitioning seamlessly from
deep blue to red, elegantly encapsulated these insights, presenting an intricate portrayal of
correlation magnitudes across diverse biochemical constituents (Figure 6).
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Figure 5. Weighted coefficients (green lines) and loadings (blue lines) from 350 to 2500 nm using
partial least squares regression (PLSR) for various biochemical parameters in leaves. (A) Chlorophyll
a-based area (Chla(area)), (B) chlorophyll b-based area (Chlb(area)), (C) combined chlorophyll a+b-
based area (Chla+b(area)), (D) carotenoid-based area (Car(area)), (E) flavonoid-based area (Flv(area)),
(F) chlorophyll a/b ratio (Chla/b), (G) chlorophyll a-based mass (Chla(mass)), (H) chlorophyll b-based
mass (Chlb(mass)), (I) combined chlorophyll a+b-based mass (Chla+b(mass)), (J) carotenoid-based
mass (Car(mass)), (K) flavonoid-based mass (Flv(mass)), (L) phenolic compounds (Phe), (M) radical
scavenging activity (DPPH), (N) lignin, and (O) cellulose.
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Figure 6. Counter map for correlation coefficients (R2) from HVI algorithms applied to reflectance
hyperspectroscopy data across the range of 350 to 2500 nm. The heatmap demonstrates the coef-
ficient of correlation (R2) obtained from linear regression analyses between various biochemical
compounds and the interactions between Wavelengths1 and Wavelengths2. (A) Chlorophyll a-based
area (Chla(area)), (B) chlorophyll b-based area (Chlb(area)), (C) combined chlorophyll a+b-based area
(Chla+b(area)), (D) carotenoid-based area (Car(area)), (E) flavonoid-based area (Flv(area)), (F) chloro-
phyll a/b ratio (Chla/b), (G) chlorophyll a-based mass (Chla(mass)), (H) chlorophyll b-based mass
(Chlb(mass)), (I) combined chlorophyll a+b-based mass (Chla+b(mass)), (J) carotenoid-based mass
(Car(mass)), (K) flavonoid-based mass (Flv(mass)), (L) phenolic compounds (Phe), (M) radical scav-
enging activity (DPPH), (N) lignin, and (O) cellulose. The colour gradient, transitioning from dark
blue to light red, signifies increasing correlation strength.
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2.7. Algorithms for Selected Most Responsive Wavelengths and Bands

To determine the most responsive and relative contribution wavelengths spanning
the UV-VIS-NIR-SWIR1-SWIR2 spectral regions for the Hibiscus and Geranium species,
a comprehensive suite of advanced computational algorithms was employed. Partial
least squares (PLS), variable importance in projection (VIP), interval PLS-VIP (iPLS-VIP),
genetic algorithms (GA), random forest (RF), and competitive adaptive reweighted sam-
pling (CARS), each with its distinct computational framework, provided a multifaceted
perspective on spectral data (Figures 7 and 8).

The partial least squares (PLS) technique demonstrated a notable affinity towards
the UV and VIS regions. In the UV spectrum, a select cohort of 4 wavelengths emerged
as pivotal, while in the VIS spectrum, a more expansive set of 131 wavelengths was
demarcated. The NIR domain, rich in spectral information, is marked by 66 distinct
wavelengths. Concurrently, the spectral behaviours of the SWIR1 and SWIR2 regions
are often complex, with selections of 26 and 29 wavelengths, respectively. The variable
importance in the projection (VIPs) algorithm, with its nuanced computational mechanics,
unveiled a more expansive spectral selection. Within the UV domain, 57 wavelengths are
accentuated. The VIS and NIR regions, both intricate in their spectral compositions, were
densely populated, with wavelengths of 316 and 154, respectively. The SWIR1 and SWIR2
spectra were not overshadowed, with 133 and 75 wavelengths earmarked orderly. The
integrated iPLS-VIP approach, which combines the principles of PLS and VIP, produces
a diverse and intricate selection matrix. The UV and VIS domains were punctuated at
wavelengths of 39 and 157, respectively. The NIR region, with its rich spectral intricacies,
resonates profoundly with 197 selected wavelengths. The SWIR sectors, particularly SWIR1
and SWIR2, are delineated at wavelengths of 335 and 187, respectively.

Genetic algorithms (GAs), lauded for their dynamic computational adaptability, etched
a distinct bias towards the UV and VIS domains, earmarking 15 and 50 wavelengths, respec-
tively. The subsequent spectral niches, notably NIR, SWIR1, and SWIR2, were populated
with 27, 44, and 14 wavelengths, respectively, thereby demonstrating the versatility of
the algorithm.

The random forest (RF) algorithm, renowned for its robust equitability in data han-
dling, unveiled a harmonious spectral distribution for model construction. It encompasses
an array of 75 wavelengths in the UV domain, a robust contingent of 433 in the VIS
spectrum, and a hearty 202 in the NIR bands. The SWIR spectra, with their unique spec-
tral signatures, were carefully addressed, with SWIR1 and SWIR2 contributing 134 and
71 wavelengths, respectively.

In the last analysis, the Competitive Adaptive Reweighted Sampling (CARS) algorithm,
with its intricate computational schema, presented a holistic spectral panorama. It identified
48 wavelengths in the UV bands, a substantial 320 in the VIS spectrum, 199 in the NIR bands,
and a synergistic total of 243 spanning the SWIR1 (108) and SWIR2 (135) bands. All selected
wavelengths were distributed for the evaluated biochemical parameters (Figure 7A–O).
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Figure 7. Selection of the most responsive variables across the wavelength range of 350–2500 nm (UV-
VIS, NIR, SWIR1, SWIR2) using various algorithms, including partial least squares (PLS), variable
importance in projection (VIP), interval PLS-VIP (iPLS-VIP), genetic algorithms (GA), random forest
(RF), and competitive adaptive reweighted sampling (CARS), for Hibiscus and geranium plants.
(A) Chlorophyll a-based area (Chla(area)), (B) chlorophyll b-based area (Chlb(area)), (C) combined
chlorophyll a+b-based area (Chla+b(area)), (D) carotenoid-based area (Car(area)), (E) flavonoid-
based area (Flv(area)), (F) chlorophyll a/b ratio (Chla/b), (G) chlorophyll a-based mass (Chla(mass)),
(H) chlorophyll b-based mass (Chlb(mass)), (I) combined chlorophyll a+b-based mass (Chla+b(mass)),
(J) carotenoid-based mass (Car(mass)), (K) flavonoid-based mass (Flv(mass)), (L) phenolic compounds
(Phe), (M) radical scavenging activity (DPPH), (N) lignin, and (O) cellulose.
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Figure 8. Relative contributions of the most responsive variables across the wavelength range of
350–2500 nm spanning the UV-VIS, NIR, SWIR1, and SWIR2 regions. Selection was performed using
algorithms such as partial least squares (PLS), variable importance in projection (VIP), interval PLS-
VIP (iPLS-VIP), genetic algorithms (GA), random forest (RF), and competitive adaptive reweighted
sampling (CARS) for Hibiscus and geranium plants. (A) Chlorophyll a-based area (Chla(area)),
(B) chlorophyll b-based area (Chlb(area)), (C) combined chlorophyll a+b-based area (Chla+b(area)),
(D) carotenoid-based area (Car(area)), (E) flavonoid-based area (Flv(area)), (F) chlorophyll a/b ratio
(Chla/b), (G) chlorophyll a-based mass (Chla(mass)), (H) chlorophyll b-based mass (Chlb(mass)),
(I) combined chlorophyll a+b-based mass (Chla+b(mass)), (J) carotenoid-based mass (Car(mass)),
(K) flavonoid-based mass (Flv(mass)), (L) phenolic compounds (Phe), (M) radical scavenging activity
(DPPH), (N) lignin, and (O) cellulose.
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3. Discussion
3.1. Biochemical Parameters

Understanding the biochemical parameters of plants provides insights into their
physiological status, overall health, and responses to environmental stress. In this study,
the parameters for Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex.
Aiton (Geranium) was methodically assessed to predict and select the most responsive
wavelengths and bands.

Chlorophylls, specifically chlorophyll a (Chla) and chlorophyll b (Chlb), are the key
pigments facilitating photosynthesis. For the plants studied, the average Chla concentration
(1322.8 mg m−2 and 64.2 mg g−1) was higher than that of Chlb (1012.0 mg m−2 and
46.0 mg g−1), in coherence with the known predominant presence of Chla in plants. The
higher coefficients of variation (CVs) associated with Chlb suggest greater variability, which
can be attributed to the role of Chlb in adjusting the light absorbed for mechanisms of
dissipation exceeding energy due to its broader absorption peak, as suggested by [19–22].
Along these lines, carotenoids (Cars) with higher accumulation play an integral role in
photoprotection. These pigments are essential for safely dissipation of excess energy,
particularly under intense light or stress conditions. Additionally, carotenoids assist in
maintaining the structural integrity of the photosynthetic apparatus and act as antioxidants,
protecting plant cells from potential damage caused by reactive oxygen species [4,23,24].
Their accumulation indicates a plant’s adaptive response to ensure optimal photosynthetic
efficiency and minimise photodamage under varying environmental conditions.

Flavonoids are secondary metabolites recognised to protect plants against UV radiation
and pathogens [20,25]. Their variable concentrations, as denoted by the high CV, possibly
reflect the adaptive nature of plants to varying environmental factors. The consistently
low CV for DPPH, an indicator of antioxidant potential, suggested that the radical
scavenging capacity was relatively stable across the samples studied. This aligns with
previous findings wherein plants exhibited consistent antioxidant capabilities despite
varying conditions [5,26,27].

Lignin and cellulose are vital components of the plant cell wall, imparting structural
integrity. The lower CV of lignin compared to cellulose suggests a more uniform dis-
tribution or a consistent synthesis mechanism across both species. Bloem, Gerighausen,
Chen & Schnug (2020) [28] suggested that lignin biosynthesis is intricately regulated by
mechanisms related to light interaction with the leaves, which could account for the ob-
served consistency.

The correlative matrix and principal component analysis shed light on the intricate
interactions between these biochemical parameters. The strong positive associations be-
tween lignin and chlorophyll parameters are consistent with those reported in previous
studies. For instance, Vanholme, Demedts, Morreel, Ralph & Boerjan (2010) [29] proposed
that lignin synthesis might be affected by the rate of photosynthesis and, consequently,
chlorophyll content.

Moreover, the negative correlation between DPPH and the Chla/b ratio and Flv might
suggest a compensatory mechanism wherein higher antioxidant potential is associated
with a lowered Chla/b ratio, perhaps indicating stress conditions where Chla predominance
is essential. Carotenoids, which play a crucial role in photoprotection and are precursors
for abscisic acid, show significant correlations with various parameters. Their positive
association with Chla, as noted by Steidle Neto et al. (2017) [21], is a testament to their
synergistic role in photosynthesis.

Finally, the PCA results encapsulated 63.4% of the variance. They revealed distinctive
biochemical compositions for Hibiscus and Geranium, reiterating species-specific biosyn-
thetic pathways and regulatory mechanisms that differentiate plant species in terms of
their biochemical constituents.

This exploration of the biochemical parameters of Hibiscus and Geranium leaves
offers a comprehensive overview of their physiological and biochemical characteristics and
underscores the intricate interplay of these parameters. These findings pave the way for
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further investigation into how alterations in plant biochemistry can modify the selected
wavelengths and the most responsive bands.

3.2. Advanced Data Analysis for Hyperspectroscopy UV-VIS-NIR-SWIR

Hyperspectral reflectance is an efficient and effective method to discern spectra
through imaging or non-imaging methods. It is a powerful tool that can capture and
analyse information across various electromagnetic wavelengths. Its application in plant
biochemistry, particularly in the UV-VIS-NIR-SWIR range, has grown significantly over
the past decade because of its ability to provide detailed insights into the biochemical and
structural properties of plant tissues without causing harm [1].

Spectral reflectance and its significance, for example, the spectral reflectance values for
Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium),
as captured across the UV-VIS-NIR-SWIR bands, revealed inherent biochemical differences
between the two plant species. Transitions noted at 700 and 1300 nm are crucial, marking
the shifts from the VIS spectrum to NIR and NIR to SWIR. These transitions, particularly
from VIS to NIR, are often associated with the chlorophyll absorption peak, which provides
insight into the photosynthetic efficiency of plants [30]. The marked difference in reflectance
values, as corroborated by the t test, underscores the intrinsic biochemical variance between
Hibiscus and Geranium. These differences may be attributed to variations in the chlorophyll
content, cellular structures, and moisture content [31].

For example, PCA for hyperspectral analysis is an efficient way to analyse the data
derived from curves. The utility of PCA in analysing hyperspectral data cannot be over-
stated for some of these aspects, such as CA and spectral diversity. As demonstrated
by the significant variance captured by PC1 (83%) and PC2 (15%) and the high accuracy
and precision, the technique effectively consolidates complex spectral data into digestible
formats. Impressively, only two principal components accounted for nearly 98% of the
variance, emphasising the distinct spectral characteristics of Hibiscus and Geranium plants.
These spectral differences can be attributed to variations in compounds such as flavonoids,
chlorophylls, and phenolic compounds, each with unique reflectance and absorption pro-
files in the hyperspectral range [32]. Moreover, the dominance of PC1 and PC2, as visually
emphasised by the cumulative variability circles, further emphasises the robustness of
PCA in representing the complex interplay of spectral wavelengths. Therefore, any slight
variations in the third and subsequent principal components, which account for only a
negligible portion of the total variance, are not expected to play a pivotal role in deciphering
the overall biochemical and structural attributes of the two plants.

In this sense, complemented by advanced data analysis techniques such as PCA, hyper-
spectral sensors offer a promising avenue to decipher the complex biochemical attributes of
photosynthetic pigments and other compounds in plants. As demonstrated by the distinct
reflectance profiles of Hibiscus and Geranium, this technology holds significant potential
for distinguishing plant species, understanding their unique biochemical compositions,
and gaining insights into their physiological and structural properties.

3.3. Biochemical Parameters for Calibration, Cross-Validation, and Prediction PLSR Models

Partial least squares regression (PLSR) has proven to be a robust method for es-
tablishing relationships between hyperspectral reflectance data and various biochemical
parameters in plants [18,33,34]. This study is no exception, where PLSR was employed
to calibrate and cross-validate the relationships between reflectance data and biochemical
parameters in the leaves of Hibiscus and Pelargonium geranium plants.

During the calibration phase, based on area, the chlorophyll a and carotenoid concen-
trations showed strong correlations with values of 0.93 and 0.96, respectively. Such high
calibration values typically underscore a reliable model; however, as with most models,
cross-validation often provides slightly lower correlation values. This study corroborates
this expectation with values (R2) of 0.90 and 0.89 for chlorophylls and dissipation energy
based on area and mass, respectively [35,36].
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While chlorophyll a and b and carotenoids received significant attention in the study,
less commonly studied biochemical parameters such as lignin concentrations also showed
respectable calibration values. The calibration values for lignin, a complex organic polymer
critical for structural support in vascular plants [37], were 0.74 and 0.71 for R2 to cross-
validation, indicating reasonable model reliability.

The data for parameters such as DPPH, which represents the radical scavenging poten-
tial, along with cellulose and SAE, indicate the study’s efforts to achieve a comprehensive
understanding of the biochemistry of plants. Nevertheless, the apparent need for further
research or data acquisition regarding these parameters highlights the challenges faced
when attempting to calibrate and validate models for certain biochemical compounds. This
reflects a larger issue in the scientific community, where achieving high calibration values
for certain parameters remains elusive even with advanced techniques [21,38,39].

Table 2 shows the calibration and cross-validation statistics for various biochemical
parameters. It is essential to note that the ratio of prediction to deviation (RPD) values is
invaluable because they provide insight into the quality of the calibration models. Typically,
an RPD value greater than 2 indicates that a model is suitable for predictive purposes [40].

The validation and prediction phases further demonstrated the efficacy of the PLSR
models. The high correlation coefficient (r) values, especially for photosynthetic pigments
(0.85 to 0.96), signify a strong relationship between the observed and predicted values. The
strong performance of carotenoids, essential compounds for photoprotection in plants [41],
was particularly noteworthy, with an r value of 0.96.

However, not all the parameters showed stellar results. Flavonoids, for instance,
demonstrate lower correlation values, underscoring the potential challenges in predict-
ing certain biochemical parameters using hyperspectral data [42,43]. In contrast, lignin
exhibited a reasonable r-value of 0.89.

The presented data underscore the potential and challenges of employing PLSR models
to predict plant biochemical parameters using hyperspectral sensors. The efficacy of this
technique in predicting a plethora of parameters, from chlorophyll to lignin, highlights its
importance in modern plant research and potential applications in precision agriculture,
phenotyping, and other related fields.

3.4. Selected Most Responsive Wavelengths and Bands for Algorithms and Molecular Insights

Exploration of the UV-VIS-NIR-SWIR spectral range yielded notable peaks and valleys,
which serve as critical indicators of the correlation between specific wavelengths and
unique biochemical molecules in plants. Such correlations underscore the importance of
these wavelengths in determining the concentrations of the corresponding biochemical
molecules in plant tissues. This is evident when observing the sensitivity of the red-
edge region (approximately 690–730 nm) to chlorophyll forms Chla, Chlb, and Chla+b.
These observations are well supported by the literature, including those of Gitelson and
Solovchenko (2018) [44]. Similarly, the sensitivity of specific wavelengths to pigments such
as carotenoids and flavonoids aligns with the results of Blackburn (2007) [45].

The hyperspectral vegetation index further emphasises the correlation between spec-
tral data and vegetation properties. A notable observation here is the strong linear asso-
ciation between the photosynthetic concentration, structural molecules, and antioxidant
compounds and the studied wavelengths, showing the efficacy of hyperspectral sensors as
a non-invasive method, in line with the findings of Chen et al. (2019) [46].

Diving deeper into wavelength selection, it was observed that different computa-
tional algorithms offered varied perspectives on the most responsive wavelengths for
both Hibiscus and Geranium species. For example, the partial least squares (PLS) method
demonstrated a strong affinity for the UV and VIS regions, reinforcing its significance in
determining biochemical concentrations. These data were consistent with those of Thenk-
abail et al. (2011) [33]. The variable importance in the projection (VIP) method showcased
an expansive spectral selection, highlighting especially the VIS and NIR regions, which
have been previously recognised for their role in determining water content and cellular
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structures by Kycko, Zagajewski, Lavender & Dabija (2019) [47]. Other methods, such
as genetic algorithms (GAs) and random forest (RF), provide unique interpretations of
the spectral data, with GAs leaning more towards the UV and VIS regions and RF offer-
ing a broader perspective. Finally, with its intricate mechanics, Competitive Adaptive
Reweighted Sampling (CARS) captures a comprehensive spectral view, highlighting the
value of a holistic spectral approach for deciphering vegetation biochemistry.

Understanding these correlations and the resulting insights from hyperspectroscopy
will enhance our knowledge of plant hyperspectroscopy. This foundational understanding
is crucial for developing advanced models that can predict biochemical content from hyper-
spectral data. The robust correlations between spectral data and molecular compositions
demonstrate the high potential of hyperspectroscopy in precision agriculture, ecology,
and environmental monitoring [36,48,49]. Given its ability for quick, non-invasive, and
detailed evaluations, hyperspectroscopy has emerged as a pivotal tool and a promising
timely intervention to ensure optimal plant health and productivity.

The interplay between spectral analysis and advanced computational algorithms has
opened new avenues in hyperspectroscopy, highlighting its potential for mapping plant
biochemical parameters effectively.

4. Materials and Methods
4.1. Experimental Design and Growth Conditions of Plants

Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Gera-
nium) plants were cultivated in the Botanical Garden at the State University of Maringá,
Maringá, Paraná, Brazil, under greenhouse conditions. These conditions provided nat-
ural ambient light, with temperatures between 22 ◦C and 26 ◦C, and a photoperiod of
16 h. To ensure consistent hydration, the plants were watered twice daily, at 8 a.m. and
6 p.m. Leaves of various ages were sampled from different parts of the plant. A total of
200 samples were collected for hyperspectral reflectance analysis and assessment of leaf
biochemical profiles. To guarantee uniformity in the data collection, all measurements were
conducted between 11 a.m. and 1 p.m. A schematic of the flowchart analysis is shown
in Figure 9.

Plants 2023, 12, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 9. Flowchart of the methodology for assessing biochemical molecules in Hibiscus and Gera-
nium leaves using UV-VIS-NIR-SIR hyperspectral sensors. Plants were cultivated in a greenhouse, 
and hyperspectral reflectance measurements of the leaves were taken. Biochemical extraction of 
pigments and cellular components was subsequently analysed using ELISA. Data from hyperspec-
tral reflectance and biochemical absorbance were integrated and examined using PLS regression 
models. Responsive wavelengths were selected, and the corresponding PLS models were generated. 

4.2. Acquisition of Hyperspectral Leaf Reflectance 
Leaf hyperspectral reflectance was acquired using a FieldSpec® 3 spectroradiometer 

complemented by an ASD contact PlantProbe® (Analytical Spectral Devices ASD Inc., 
Boulder, CO, USA). The spectroradiometer incorporated three sensors spanning wave-
lengths ranging from 350 to 2500 nm. By employing the PlantProbe®, we ensured that the 
data remained uncontaminated by atmospheric interference. The measurements were di-
rected at the adaxial surface of the leaves, deliberately avoiding the central vein. Periodic 
calibration of the device was conducted using a standard white reference plate (Spectra-
lon®, Labsphere Inc., Longmont, CO, USA), resulting in 2151 bands within the 350–2500 
nm spectrum. This method produced 200 distinctive hyperspectral leaf profiles aligned 
with the respective biochemical metrics. Optimal bands for chemometric evaluations were 
identified through principal component analysis and specific algorithms that discerned 
the most responsive wavelengths. 

4.3. Profiling of Biochemical Compounds 
To quantify the levels of total chlorophyll (Chl), carotenoids (Car), anthocyanins 

(AnC), and flavonoids (Flv) in the leaf extracts, we adopted a modified methodology 
based on Gitelson and Solovchenko (2018) [44]. Leaf samples, each 1 cm2, were homoge-
nised in 2 mL tubes using a chloroform and methanol mixture (2:1 v/v) supplemented with 
CaCO3. After thorough extraction, we added distilled water, equivalent to 20% of the vol-
ume of the extract, to facilitate the separation of the polar and nonpolar phases. This solution 
was centrifuged at 15,000 rpm for 9 min to ensure a distinct phase division. For quantifica-
tion, we placed a 200 μL aliquot of the extract into a quartz glass UV 96-well microplate. The 
resultant readings were acquired using the Biochrom Asys UVM-340 Microplate-Reader, 
complemented by the ScanPlus VisibleWell® software version 1.0.2 (Biochrome Ltd., Milton 

Figure 9. Flowchart of the methodology for assessing biochemical molecules in Hibiscus and Gera-
nium leaves using UV-VIS-NIR-SIR hyperspectral sensors. Plants were cultivated in a greenhouse,



Plants 2023, 12, 3424 19 of 24

and hyperspectral reflectance measurements of the leaves were taken. Biochemical extraction of
pigments and cellular components was subsequently analysed using ELISA. Data from hyperspectral
reflectance and biochemical absorbance were integrated and examined using PLS regression models.
Responsive wavelengths were selected, and the corresponding PLS models were generated.

4.2. Acquisition of Hyperspectral Leaf Reflectance

Leaf hyperspectral reflectance was acquired using a FieldSpec® 3 spectroradiometer
complemented by an ASD contact PlantProbe® (Analytical Spectral Devices ASD Inc., Boul-
der, CO, USA). The spectroradiometer incorporated three sensors spanning wavelengths
ranging from 350 to 2500 nm. By employing the PlantProbe®, we ensured that the data
remained uncontaminated by atmospheric interference. The measurements were directed
at the adaxial surface of the leaves, deliberately avoiding the central vein. Periodic cali-
bration of the device was conducted using a standard white reference plate (Spectralon®,
Labsphere Inc., Longmont, CO, USA), resulting in 2151 bands within the 350–2500 nm
spectrum. This method produced 200 distinctive hyperspectral leaf profiles aligned with
the respective biochemical metrics. Optimal bands for chemometric evaluations were
identified through principal component analysis and specific algorithms that discerned the
most responsive wavelengths.

4.3. Profiling of Biochemical Compounds

To quantify the levels of total chlorophyll (Chl), carotenoids (Car), anthocyanins (AnC),
and flavonoids (Flv) in the leaf extracts, we adopted a modified methodology based on
Gitelson and Solovchenko (2018) [44]. Leaf samples, each 1 cm2, were homogenised in
2 mL tubes using a chloroform and methanol mixture (2:1 v/v) supplemented with CaCO3.
After thorough extraction, we added distilled water, equivalent to 20% of the volume of
the extract, to facilitate the separation of the polar and nonpolar phases. This solution was
centrifuged at 15,000 rpm for 9 min to ensure a distinct phase division. For quantification,
we placed a 200 µL aliquot of the extract into a quartz glass UV 96-well microplate. The
resultant readings were acquired using the Biochrom Asys UVM-340 Microplate-Reader,
complemented by the ScanPlus VisibleWell® software version 1.0.2 (Biochrome Ltd., Milton
Road, Cambridge, UK). Furthermore, leaf segments utilised for extraction quantification
were oven-dried at 70 ◦C until they reached a constant weight. Subsequent measurements
were performed using an analytical balance to express the results per unit of mass.

4.3.1. Chlorophyll and Carotenoid Quantification

To quantify chlorophyll a, b, a+b, and carotenoids (carotenes and xanthophylls), 200 µL
of methanolic extract was added to each well. Absorbance was recorded at 470, 652, and
665 nm using a methanol extract. The formulae presented by Falcioni et al. (2023) [35] were
used to determine the chlorophyll and carotenoid concentrations expressed in mg cm−2

and mg g−1.

4.3.2. Flavonoid and Anthocyanin Quantification

The polar fraction of the methanolic extract was analysed to assess flavonoid (Flv)
concentrations. The absorbance of these extrachloroplastidic pigments was determined at
λ358 nm using a molar absorption coefficient of ε358 = 25 mM−1 cm−1, as described by
Gitelson & Solovchenko (2018) [44]. After Flv quantification, the water-methanol phase
was acidified with hydrochloric acid to a final concentration of 0.1% HCl. This adjustment
facilitated the determination of anthocyanin (AnC) levels at λ530 nm, employing a molar
absorption coefficient of ε530 = 30 mM−1 cm−1, as reported by Gitelson et al. (2020) [41].

4.3.3. Total Soluble Phenolic Compounds

Soluble phenolic compounds (PhCs) were quantified using a modified procedure of
Ragaee (2006) [50]. For this assay, a 2 mL Eppendorf tube was loaded with 150 µL of
the methanolic extract, 70 µL of 1 M Folin–Ciocalteu reagent, 140 µL of 3.56 M Na2CO3,
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and 850 µL of deionised water. Following a 50-min incubation in the dark, the mix-
ture was centrifuged at 15,000 rpm for 2 min. The absorbance of the supernatant was
measured at λ725 nm using a quartz glass microplate reader. Gallic acid served as the
standard for estimating the equivalent Phe concentration, characterised by the equation
Ŷ = 87.651x + 1.6515 with an R2 value of 0.993.

4.3.4. Antioxidant Compounds

The antioxidant potential was determined using the DPPH (2,2-diphenyl-1-picryl-
hydrazyl) free radical neutralisation method, adapted from the protocol outlined by
Llorach et al. (2008) [27]. DPPH solution (1 mM) was used in this assay. The reaction
was initiated by adding 50 µL of the methanolic extract to 200 µL of DPPH solution. After
vigorous mixing, the samples were incubated in darkness for an hour. Absorbance mea-
surements were performed using a quartz glass 96-well microplate reader at λ515 nm [34].

4.4. PLSR Analysis of UV-VIS-NIR-SWIR Reflectance in Plants

For PLSR analysis, the dataset was divided into two subsets: 140 samples for calibra-
tion and cross-validation, and an additional 60 samples were designated for the external
validation of the model. Multiple plant biochemical parameters were assessed, including
the area- and mass-based metrics of chlorophyll a, chlorophyll b, total chlorophyll a+b,
carotenoids, flavonoids, chlorophyll a/b ratio, phenolic compounds, lignin, and cellulose.
These parameters were compared with the UV-VIS-NIR-SWIR spectral curves, consider-
ing each to be an independent entity. PLSR models were developed using the NIPALS
algorithm. Outliers were identified using Leverage’s type and further examined using
Leverage and Hotelling’s T2 methods with a threshold set at 5%. The performance of
the model was evaluated using the coefficients of determination (R2) and the root mean
square error (RMSE) across the calibration, cross-validation, and prediction stages. Based
on benchmarks established by Minasny et al. (2013) [51], R2 values above 0.75 indicated
optimal model performance, those between 0.75 and 0.5 were considered adequate, and
values below 0.5 indicated suboptimal predictions. Additionally, the ratio of performance to
deviation (RPD) was derived from the R2 values across different stages, providing insights
into the precision of PLS model predictions. Calibration, cross-validation, and validation
statistics for two plant species: PLS factors, R2 values, offset, RMSE, and RPD during the
calibration and cross-validation stages for each parameter, as well as predictive statistics
such as the correlation coefficient (R2), slope, offset, SEP, RPD, and the equation linking
prediction to the calibration model [52].

4.5. Evaluating Hyperspectral Vegetation Indices Using Optimal Wavelengths

To optimise the accuracy of biochemical assessments, key hyperspectral bands were
identified using the normalised difference vegetation index formula (Equation (1)) drawn
from Crusiol et al., (2023) [53]. This approach generated distinct hyperspectral vegetation
indices (HVIs). Each HVI was correlated with cross-sections relevant to phenomenological
flows. Correlations were quantified using the Pearson correlation coefficient and coefficient
of determination (R2) using the custom IDL code. A ground-based sensor captured spectra
from 350 to 2500 nm, and the results are depicted in a contour map.

HVI =
Wavelength 1 − Wavelength 2
Wavelength 1 + Wavelength 2

(1)

4.6. Algorithmic Determination of Key Wavelengths in Plants

To accurately discern the most relevant wavelengths for our investigations of the
Hibiscus and Geranium plants, a suite of advanced algorithms was utilised. It incorporates
techniques such as partial least squares (PLS), variable importance in projection (VIP),
interval PLS-VIP (iPLS-VIP), genetic algorithms (GA), random forests (RF), and competitive
adaptive reweighted sampling (CARS). Data analysis was performed with precision using
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multiple software platforms. The R software package version 4.2.2 Corrplot R-Core Team
2021 and the Python programming language version 3.11.5 (Python Software Foundation,
Wilmington, DE, USA) formed the foundation of our analytical framework. In Python,
RF procedures were facilitated by the scikit-learn library, whereas the DEAP library un-
derpinned our GA evaluations. In the R environment, the PLS package was paramount
for the PLS-focused analyses. Additionally, for iPLS analyses, MATLAB 2022a software
version 9.12 (MathWorks, Inc., Natick, MA, USA) was used and seamlessly integrated
with PLS_Toolbox (Eigenvector Research, Inc., Manson, WA, USA). The relative contribu-
tion of each wavelength was determined by identifying the most responsive wavelengths.
This was based on the maximum and minimum values selected by the wavelength
selection algorithms.

4.7. Statistical Analyses
4.7.1. Descriptive, Univariate and Multivariate Statistical Analyses

Comprehensive descriptive statistics were used to characterise the biochemical metrics.
For each parameter, evaluations included count (n), mean, median, minimum, maximum,
and coefficient of variation (CV, %), as delineated by [4]. The categorisation of CV adhered
to the criteria proposed by Zar (2010) [54]. Pearson’s correlation coefficient was used
to determine the interrelationships between biochemical attributes. For these analytical
tasks, we used Statistica 10® (StatSoft Inc., Tulsa, OK, USA) and the R software framework.
Graphical depictions were generated using a suite of applications: SigmaPlot 10.0® (Systat
Inc., Santa Clara, Silicon Valley, CA, USA), specific R packages, Excel (Microsoft Inc., Silicon
Valley, CA, USA), and CorelDraw 2020® (Corel Corp., Ottawa, ON, Canada).

4.7.2. Principal Component Analysis (PCA)

The Unscrambler X software, version 10.4 (CAMO Software, Oslo, Norway), was
used to conduct PCA on the growth parameter data, with a statistical significance level
set at p < 0.01. To avoid underfitting and overfitting, the optimal number of principal
components was determined based on the first maximum value of overall accuracy [25].

5. Conclusions

These findings demonstrated the UV-VIS-NIR-SWIR spectral range, revealing its car-
dinal role in identifying the distinctive biochemical constituents of Hibiscus and Geranium
plants. The reliability of our models was exemplified by R2 values consistently surpass-
ing the 0.75 threshold, reinforcing the red edge in predicting vital plant molecules, such
as chlorophyll. Additionally, parameters such as DPPH and lignin yielded significant
outcomes, achieving R2 values of 0.86 for DPPH and 0.89 for lignin. Our application of
advanced algorithms, particularly PLS, VIP, CARS, and other models, indicates an intricate
relationship between the spectral data and plant biochemistry. The identification of highly
responsive wavelengths, particularly in the red-edge region, emphasises deep-seated corre-
lations with key plant pigments. Finally, the fusion of hyperspectroscopy and cutting-edge
computational methodologies holds great promise in the future. This signifies a new era in
precision agriculture and environmental oversight. Furthermore, they reduce the costs of
reagents and their environmental disposal, thereby contributing to sustainability. Finally,
chemometric methods applied to hyperspectral analysis are good predictive tools. The
extensive yet largely untapped potential of hyperspectroscopy, as presented in our study,
can be used for further exploration, fostering an environment ripe for innovation and
transformative advances in sustainable agricultural practices.
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