

Article A Large-Scale Validation of an Improved Embryo-Rescue Protocol for the Obtainment of New Table-Grape Seedless Genotypes

Emanuele Chiaromonte¹, Giovanna Bottalico^{1,*}, Pierfederico Lanotte², Antonia Campanale², Vito Montilon¹, Massimo Morano³, Antonia Saponari⁴, Costantino Silvio Pirolo⁵, Donato Gerin¹, Francesco Faretra¹, Stefania Pollastro¹, and Vito Nicola Savino^{4,5}

- ¹ Department of Soil, Plant and Food Sciences, University of Bari, Via G. Amendola 165/A, 70126 Bari, Italy; emanuele.chiaromonte@uniba.it (E.C.); vito.montilon@uniba.it (V.M.); donato.gerin@uniba.it (D.G.); francesco.faretra@uniba.it (F.F.); stefania.pollastro@uniba.it (S.P.)
- ² Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (NRC), Via G. Amendola 122/D, 70126 Bari, Italy; pierfederico.lanotte@ipsp.cnr.it (P.L.); antonia.campanale@ipsp.cnr.it (A.C.)
- ³ Italian Variety Club, Via Cisternino, 281 c/o CRSFA Basile Caramia, 70015 Locorotondo, Italy; massimomorano84@gmail.com
- ⁴ CRSFA—Centro Ricerca, Sperimentazione e Formazione in Agricoltura, "Basile Caramia", Via Cisternino 281, 70010 Locorotondo, Italy; antonellasaponari@crsfa.it (A.S.); viton.savino@gmail.com (V.N.S.)
- ⁵ Servizi Avanzati per la Sostenibilità e l'Innovazione nelle Aree Agricole e Rurali Sinagri S.r.l.,
- Via G. Amendola 165/A, 70126 Bari, Italy; costantino.pirolo@gmail.com
- Correspondence: giovanna.bottalico@uniba.it

Abstract: The new trends in the consumption of table grapes and the growing interest in the environmental impact of this crop have pushed breeders toward the development of seedless cultivars endowed with resistance, through crossbreeding programs. To obtain seedless grapes, the use of embryo-rescue techniques is fundamental. In this research, a grape embryo-culture protocol was optimized and validated by using 39 cultivars and 41 cross-combinations carried out in the framework of a large private table grape program of the private network Italian Variety Club in the period 2017–2021 evaluating several factors, such as the improvement in embryo formation, germination and growth, and plantlet development. The embryo culture attitude of crosses between different combinations of seedless parents was assessed, and the rates of embryo development from the extracted ovules mostly ranged from 3.5 to 35.5% with 5 out of 43 genotypes outliers. Experiments conducted at different sampling times, in a range of 43–62 days after pollination (DAP), did not show significant differences between the samples analyzed, while the rate of embryos developed with the applied protocol proved its employability on multiple genotypes, although the grapevine genotype significantly influenced the technique efficiency.

Keywords: embryo rescue; grapevine; crosses; culture medium; sampling time

1. Introduction

The European Union is the world's main grape producer, with an estimated production of 1.7 million tonnes of grapes for fresh consumption in 2021 [1]. The market of table grapes is the most important, with an import value of EUR 1.6 billion, after bananas and avocados, in the European scenario. With a production stabilized around 1 million tons per year of table grapes, Italy is the main producer in Europe [1]. In addition to volume, the strong point of Italy is the extensive area of cultivation of organic grapes (2177 hectares of organic table grapes in 2017) [2].

To improve production, Italian growers are slowly joining the seedless trend, mostly in the Puglia region, and at the same time, they are looking for late cultivars to extend the

Citation: Chiaromonte, E.; Bottalico, G.; Lanotte, P.; Campanale, A.; Montilon, V.; Morano, M.; Saponari, A.; Pirolo, C.S.; Gerin, D.; Faretra, F.; et al. A Large-Scale Validation of an Improved Embryo-Rescue Protocol for the Obtainment of New Table-Grape Seedless Genotypes. *Plants* **2023**, *12*, 3469. https:// tdoi.org/10.3390/plants12193469

Academic Editors: Hasan Mehraj and Monika Tuleja

Received: 29 August 2023 Revised: 27 September 2023 Accepted: 30 September 2023 Published: 3 October 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). seasonal availability of produce. In the development of new cultivars, the main sought characteristics are the general berry traits (weight, color, shape, and skin thickness), flavor (aromas and sweetness), fruit shelf life, harvesting time, and tolerance to pathogens, such as *Plasmopara viticola* and *Erysiphe necator*. However, nowadays, the seedlessness and disease resistance traits are the most desirable [3]. Over the last few years, the quality and nutritional composition and the breeding of new seedless cultivars have been the most significant efforts in research [4–6].

From a botanical point of view, seedlessness is the phenomenon whereby fruit is formed without developing seeds, and plants are sterile due to the absence of embryos. Particularly in the cultivated grapevine (Vitis vinifera subsp. sativa L.), parthenocarpy and stenospermocarpy are the two types of fruit seedlessness [7,8]. In parthenocarpic cultivars (Corinth type), berry production is not preceded by ovule fecundation, while in stenospermocarpic cultivars (Sultanina type), some of the ovules possess normal embryo sacs, fertilization occurs, and embryos may develop, but their development is often stopped, and normal seeds cannot form [9,10]. Despite this information, nowadays, the exact causes of embryo abortion in seedless grapevines are still not fully understood; the main hypothesis proposes that parental tissues alter the hormonal balance during the first steps of the ontogenetical cycle, causing the embryo's abortion [11]. It is then obvious that conventional breeding methods cannot be applied for genetic improvement, and in vitro techniques are the only available approach. The first reported vines originated via ovule culture from the seedless grape in 1983 [11], and it was followed by several other reports [12-23]; the exploited biotechnological principle consists of the cultivation of extracted ovules or immature embryos in artificial media, to admit the development of the plantlet without the abortion caused by a natural process. Nowadays, grape breeding projects using this in vitro technique can improve the efficiency, by reducing the time required to obtain seedless cultivars, usually from 6 to 8 years [20]. Moreover, by adopting seedless stenospermic instead of seeded cultivars as female parents, the frequency of seedlessness found in the progeny could be increased by up to 10-15% [24]. When the rescue is performed in "seedless \times seedless" crosses, where female and male parents are from a "seeded \times seedless" or a "seedless \times seedless" cross, a high percentage of seedless progeny with natural big berries and small seed traces is obtained [3,25]. The main steps of the embryo-rescue technique are as follows: (i) in vitro culturing of ovules, (ii) embryo collection and culturing for plant development, and (iii) managing of rooted plantlets (elongation, acclimatization, and transplanting to soil) [24]. The most crucial step is the first because an optimal culture medium is the key to a successful rescue of potentially abortive hybrid embryos. Indeed, an appropriate composition of growth regulators in the medium is crucial for embryo germination and growth and plantlet development. However, the number of obtained embryos also depends on the parent's genotype and harvesting [11,26–33]. On stenosternocarpic seedless grapes, collection time is important to block embryo abortion, considering that it determines the herbaceous or woody texture of seed tissues [11,31,33,34]. According to previous reports, the best sampling time to achieve the maximum efficiency of the embryo-rescue protocol is 40-60 days after pollination [14,33,35,36].

The technique of the rescue of immature embryos provides important genetic gains for the seedless feature, due to the size reduction of seed traces resulting from crosses between seedless parents [26]. The advantages of the technique were also evaluated in the genetic improvement of grapevine for disease resistance [37], a highly relevant issue since the 50% cut in pesticide use by 2030 is a key goal of the European Farm to Fork strategy. The aim of this work was the improvement and validation of an embryo-rescue protocol working with embryos from several crosses between seedless parents selected for features like moscato flavor and putative resistance to the most relevant pathogens, *E. necator* and *P. viticola*.

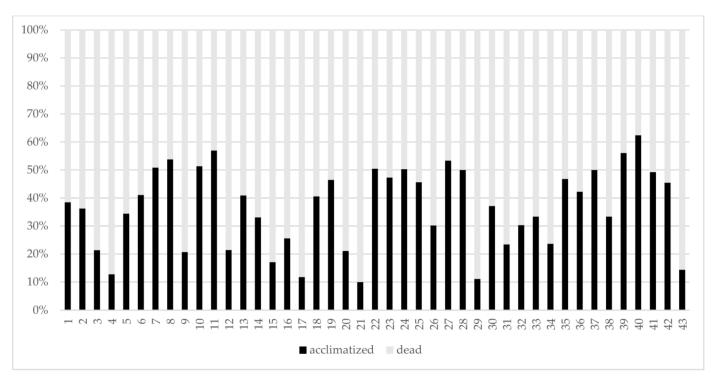
3 of 16

2. Results

2.1. Efficiency of the Embryo-Rescue Protocol

Data on the mean numbers of berries and ovules collected from each bunch, the numbers of ovules extracted and those developed from each berry, and the proportions of developed embryos on the in vitro settled ovules are reported in Table 1.

Table 1. Data on plant material used in each cross and on the obtained embryos.


Crossed Cultivars (♀× ♂)	M	ean Number per Bunc	No. of Ovules per	Developed	
	Berries	Ovules	Embryos	Berry	Embryos (%)
$TS01 \times TS04$	43.80 ± 10.58	97.40 ± 24.03	2.22 ± 0.20	3.90 ± 2.32	4.00 ± 1.40
$TS02 \times TS04$	34.1 ± 6.0	58.9 ± 11.8	9.1 ± 1.9	1.7 ± 0.1	15.5 ± 2.5
$TS04 \times TS19$	37.0 ± 4.3	88.0 ± 11.0	23.4 ± 6.7	2.4 ± 0.2	26.6 ± 6.3
$TS04 \times TS20$	50.7 ± 9.5	111.4 ± 22.0	19.0 ± 5.6	2.2 ± 0.2	17.1 ± 3.6
$TS04 \times TS24$	200.7 ± 25.4	442.3 ± 51.7	3.4 ± 0.7	2.2 ± 0.1	0.8 ± 0.2
$TS05 \times TS27$	77.4 ± 8.0	154.6 ± 20.1	28.3 ± 4.0	2.0 ± 0.1	18.3 ± 1.8
$TS06 \times TS20$	75.2 ± 15.7	140.7 ± 35.1	10.2 ± 3.2	1.9 ± 0.2	7.2 ± 2.5
$TS06 \times TS24$	71.5 ± 16.8	177.8 ± 41.0	29.8 ± 9.7	2.5 ± 0.3	16.7 ± 3.4
$TS07 \times TS08$	71.0 ± 8.5	138.8 ± 13.6	4.8 ± 1.7	2.0 ± 0.2	3.5 ± 1.4
$TS09 \times TS04$	88.6 ± 19.0	211.9 ± 49.9	13.9 ± 3.7	2.4 ± 0.1	6.6 ± 1.0
$TS09 \times TS10$	100.5 ± 16.8	240.9 ± 39.5	25.1 ± 3.5	2.4 ± 0.2	10.4 ± 1.9
$TS09 \times TS13$	87.2 ± 8.3	204.2 ± 21.3	38.5 ± 5.1	2.3 ± 0.1	18.9 ± 1.3
$TS09 \times TS34$	102.5 ± 13.9	213.0 ± 43.9	16.5 ± 5.3	2.1 ± 0.2	7.8 ± 2.0
$TS11 \times TS24$	92.8 ± 18.7	197.5 ± 39.4	21.7 ± 7.3	2.1 ± 0.3	11.0 ± 2.7
$TS12 \times TS24$	67.2 ± 10.6	111.4 ± 16.7	7.5 ± 2.8	1.7 ± 0.2	6.7 ± 2.4
$TS13 \times TS24$	67.3 ± 8.2	138.1 ± 24.2	19.1 ± 4.5	2.1 ± 0.1	13.8 ± 3.8
$TS13 \times TS24$	44.7 ± 5.5	90.4 ± 12.3	10.3 ± 1.6	2.0 ± 0.1 2.0 ± 0.1	11.4 ± 1.5
$TS13 \times TS27$	215.3 ± 22.2	389.9 ± 59.2	10.0 ± 1.0 14.8 ± 2.3	1.8 ± 0.2	3.8 ± 0.8
$TS14 \times TS21$	79.1 ± 15.5	224.8 ± 48.8	8.9 ± 3.3	1.0 ± 0.2 2.8 ± 0.2	4.0 ± 1.1
$TS15 \times TS13$	120.9 ± 11.3	309.8 ± 29.4	76.9 ± 10.5	2.6 ± 0.2 2.6 ± 0.1	1.0 ± 1.1 24.8 ± 3.0
$TS15 \times TS32$	111.8 ± 31.1	200.4 ± 61.3	30.0 ± 7.4	1.8 ± 0.2	15.0 ± 4.9
$TS17 \times TS27$	89.1 ± 9.3	172.8 ± 19.3	50.0 ± 7.4 53.6 ± 6.8	1.0 ± 0.2 1.9 ± 0.1	10.0 ± 4.9 31.0 ± 2.5
$TS22 \times TS16$	192.4 ± 20.0	342.7 ± 27.7	121.1 ± 13.8	1.9 ± 0.1 1.8 ± 0.1	35.4 ± 4.0
$TS23 \times TS24$	68.0 ± 9.3	169.5 ± 24.4	29.1 ± 6.4	1.0 ± 0.1 2.5 ± 0.1	17.2 ± 2.9
$TS23 \times TS23$	104.2 ± 12.9	109.9 ± 24.4 213.9 ± 32.4	45.8 ± 6.3	2.3 ± 0.1 2.1 ± 0.2	17.2 ± 2.9 21.4 ± 4.2
$TS24 \times TS13$	47.8 ± 21.4	107.0 ± 47.3	45.8 ± 0.3 34.8 ± 14.3	2.1 ± 0.2 2.2 ± 0.1	32.5 ± 13.6
$TS24 \times TS13$ TS25 × TS13	47.8 ± 21.4 99.7 ± 9.5	107.0 ± 47.3 158.9 ± 49.4	34.8 ± 14.3 2.4 ± 0.8	2.2 ± 0.1 1.6 ± 0.3	32.5 ± 13.0 1.5 ± 2.3
$TS25 \times TS18$ TS25 × TS18	107.3 ± 15.1	138.9 ± 49.4 228.1 ± 32.9	2.4 ± 0.8 3.0 ± 1.1	1.0 ± 0.3 2.1 ± 0.2	1.3 ± 2.3 1.3 ± 0.6
$TS25 \times TS39$ TS25 × TS39	93.2 ± 14.4	128.0 ± 40.9	3.0 ± 1.1 3.0 ± 1.4	2.1 ± 0.2 1.4 ± 0.4	1.3 ± 0.0 2.3 ± 1.6
$TS27 \times TS03$	93.2 ± 14.4 73.3 ± 4.9	128.0 ± 40.9 243.8 ± 17.0	3.0 ± 1.4 23.3 ± 2.7	1.4 ± 0.4 3.3 ± 0.1	2.3 ± 1.0 9.6 ± 1.5
$TS27 \times TS21$		170.4 ± 19.0	23.3 ± 2.7 15.8 ± 3.1	3.3 ± 0.1 2.3 ± 0.1	9.3 ± 1.3 9.3 ± 2.0
$TS27 \times TS31$ TS27 × TS31	74.6 ± 6.9			2.5 ± 0.1 2.5 ± 0.1	9.3 ± 2.0 8.2 ± 3.4
$TS27 \times TS31$ TS27 × TS32	$94.0 \pm 10.8 \ 74.4 \pm 3.7$	$236.4 \pm 22.5 \\ 239.3 \pm 15.5$	$19.4 \pm 6.1 \\ 25.0 \pm 3.0$	2.5 ± 0.1 3.2 ± 0.1	8.2 ± 3.4 10.5 ± 1.1
$TS27 \times TS32$ TS27 × TS32	74.4 ± 5.7 83.0 ± 9.4	239.3 ± 15.3 156.8 ± 20.5	25.0 ± 3.0 18.3 ± 3.8	5.2 ± 0.1 1.9 ± 0.1	10.5 ± 1.1 11.7 ± 1.9
$TS28 \times TS04$					11.7 ± 1.9 18.2 ± 3.9
$TS28 \times TS13$ TS28 × TS13	48.0 ± 8.5	56.8 ± 12.7	10.3 ± 4.0	1.2 ± 0.2	
$TS28 \times TS13$ $TS29 \times TS38$	38.8 ± 5.8	40.0 ± 8.7	5.6 ± 1.5	1.0 ± 0.1	14.1 ± 5.8
$TS30 \times TS13$	72.0 ± 7.8	143.6 ± 21.1	59.0 ± 9.4	2.0 ± 0.2	41.1 ± 4.8
	71.0 ± 13.0	182.5 ± 37.3	16.5 ± 2.9	2.6 ± 0.2	9.0 ± 0.5
$TS33 \times TS19$	113.9 ± 10.8	270.8 ± 36.7	32.9 ± 9.0	2.4 ± 0.2	12.2 ± 3.2
$TS33 \times TS28$	117.5 ± 22.8	279.8 ± 44.7	55.0 ± 15.7	2.4 ± 0.3	19.7 ± 4.6
$TS35 \times TS03$	64.1 ± 10.3	186.1 ± 34.8	56.2 ± 15.5	2.9 ± 0.7	30.2 ± 4.1
$TS36 \times TS26$	27.0 ± 3.6	55.6 ± 10.8	2.2 ± 0.6	2.1 ± 0.2	4.0 ± 0.6
$\text{TS37}\times\text{TS19}$	89.5 ± 6.9	204.1 ± 22.7	24.1 ± 4.1	2.3 ± 0.1	11.8 ± 2.5

 $^{\rm a}$ Mean values \pm Standard Error.

In five years of work, a total of 43 crosses carried out with 25 female parental tablegrape cultivars were compared. In detail, 449 bunches and 39,351 berries were manipulated to obtain 88,837 in vitro settled ovules and 11,941 germinated embryos. For each bunch, the number of berries was in the range of 27 to 215, and each berry had on average two ovules. Significant differences were recorded in the six crosses in which TS28, TS25, and TS27 were used as the female parent. The ratios of ovules:berries were below 1.5:1 in the four crosses including TS28 and TS25, while the ratio values were higher than 3.2:1 in the two crosses including TS27 as female parents.

The percentage of ovules that developed embryos was in the range of 3.5% to 35.4% for 38 crosses, with 5 out of 43 outlier genotypes. The embryogenetic efficiency was indeed less than 3.5% in the cross TS04 \times TS24 and all three crosses with TS25 as the female parent, while the cross TS29 \times TS38 yielded the highest efficiency with a value of 41.1%. Summarizing the data from all the crosses, the percentages of ovules developed in embryos were less than 5.0% for only 2 crosses and were in the range of 6.0–10.0% for 11 crosses, 11.0–20.0% for 14 crosses, and higher than 20% for the remaining 8 crosses. The protocol efficiency, relative to the number of embryos developed by settled ovules, was between 3.0 and 14.0% in more than half of the crosses and between 8.2 and 11.8% in all the crosses involving TS27 as the female parent.

As expected, not all the obtained embryos were successful in developing plantlets (Table 2 and Figure 1). Different causes, including in vitro and in vivo microbial contaminations were responsible for losses during the acclimatization steps; the percentages of embryos that originated plants were in the range between 10.0% (TS15 × TS32) and 62.4% (TS33 × TS28), but only in six crosses were below 20.0%. More than half of the crosses had a percentage of losses in the stage of acclimatization below 60.0%. Considering the ovules, the percentage of plantlets was in the range of 0.3% (TS04 × TS24; TS25 × TS39) – 20.5% (TS29 × TS38).

Figure 1. Percentages of plantlets developed from in vitro settled embryos. Cultivars employed in each cross-combination: 1: TS01 × TS04; 2: TS02 × TS04; 3: TS04 × TS19; 4: TS04 × TS20; 5: TS04 × TS24; 6: TS05 × TS27; 7: TS06 × TS20; 8: TS06 × TS24; 9: TS07 × TS08; 10: TS09 × TS04; 11: TS09 × TS10; 12: TS09 × TS13; 13: TS09 × TS34; 14: TS11 × TS24; 15: TS12 × TS24; 16: TS13 × TS24; 17: TS13 × TS24; 18: TS13 × TS27; 19: TS14 × TS21; 20: TS15 × TS13; 21: TS15 × TS32; 22: TS17 × TS27; 23: TS22 × TS16; 24: TS23 × TS24; 25: TS23 × TS28; 26: TS24 × TS13; 27: TS25 × TS13; 28: TS25 × TS18; 29: TS25 × TS39; 30: TS27 × TS03; 31: TS27 × TS21; 32: TS27 × TS31; 33: TS27 × TS32; 34: TS27 × TS32; 35: TS28 × TS04; 36: TS28 × TS13; 37: TS29 × TS38; 38: TS30 × TS13; 39: TS33 × TS19; 40: TS33 × TS28; 41: TS35 × TS03; 42: TS36 × TS26; 43: TS37 × TS19.

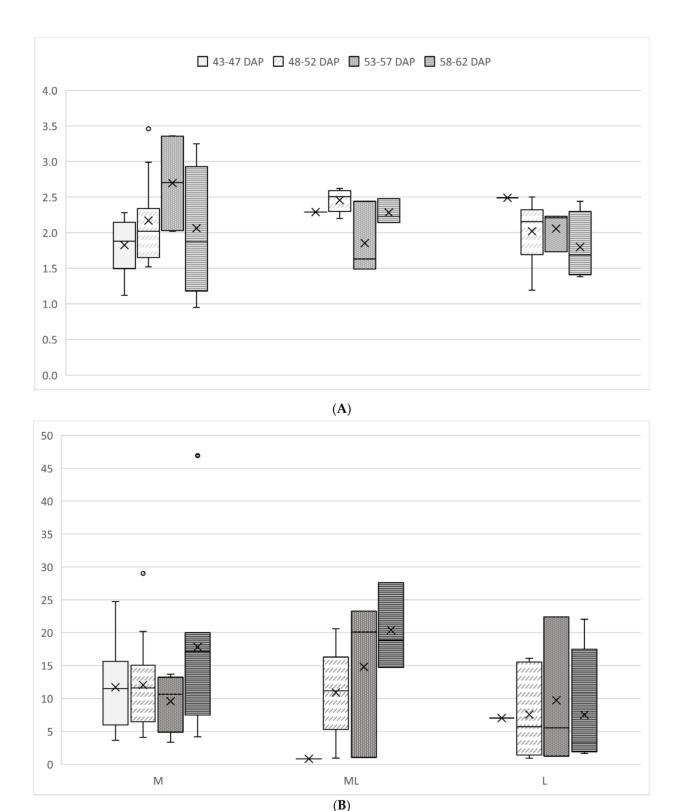

Crossed Cultivars (♀× ♂)	5		Plantlets (No.)	Embryos Acclimatized (%) *	Ovules Developed (%) **	
$TS01 \times TS04$	974	39	15	38.5	1.5	
$TS02 \times TS04$	589	91	33	36.3	5.6	
$TS04 \times TS19$	440	117	25	21.4	5.7	
$TS04 \times TS20$	780	133	17	12.8	2.2	
$TS04 \times TS24$	7961	61	21	34.4	0.3	
$TS05 \times TS27$	3092	565	232	41.1	7.5	
$TS06 \times TS20$	844	61	31	50.8	3.7	
$TS06 \times TS24$	711	119	64	53.8	9.0	
$TS07 \times TS08$	833	29	6	20.7	0.7	
$TS09 \times TS04$	1695	111	57	51.4	3.4	
$TS09 \times TS10$	2409	251	143	57.0	5.9	
$TS09 \times TS13$	4083	770	165	21.4	4.0	
$TS09 \times TS34$	852	66	27	40.9	3.2	
$TS11 \times TS24$	1185	130	43	33.1	3.6	
$TS12 \times TS24$	1225	82	14	17.1	1.1	
$TS13 \times TS24$	2485	344	88	25.6	3.5	
$TS13 \times TS24$	1266	144	17	11.8	1.3	
$TS13 \times TS27$	3509	133	54	40.6	1.5	
$TS14 \times TS21$	1798	71	33	46.5	1.8	
$TS15 \times TS13$	5577	1384	292	21.1	5.2	
$TS15 \times TS32$	1002	1501	15	10.0	1.5	
$TS17 \times TS27$	3111	965	487	50.5	15.7	
$TS22 \times TS16$	2399	848	401	47.3	16.7	
$TS23 \times TS24$	1864	320	161	50.3	8.6	
$TS23 \times TS28$	2353	504	230	45.6	9.8	
$TS24 \times TS13$	428	139	42	30.2	9.8	
$TS25 \times TS13$	1112	30	16	53.3	1.4	
$TS25 \times TS18$	1825	24	10	50.0	0.7	
$TS25 \times TS39$	768	18	2	11.1	0.3	
$TS27 \times TS03$	6095	582	216	37.1	3.5	
$TS27 \times TS21$	1704	158	37	23.4	2.2	
$TS27 \times TS31$	1891	155	47	30.3	2.2	
$TS27 \times TS31$ TS27 × TS32	7659	800	267	33.4	3.5	
$TS27 \times TS32$ TS27 × TS32	1411	165	39	23.6	2.7	
$TS28 \times TS04$	341	62	29	46.8	8.5	
$TS28 \times TS13$	320	45	19	40.8	5.9	
$TS29 \times TS38$ TS29 × TS38	1436	43 590	295	42.2 50.0	20.5	
$TS29 \times TS38$ TS30 × TS13	730		295	33.3	20.5 3.0	
$TS30 \times TS13$ TS33 × TS19	2979	66 362		56.1	5.0 6.8	
		362	203			
$TS33 \times TS28$ TS25 × TS02	1679 1675	330 506	206	62.4 40.2	12.3	
$TS35 \times TS03$	1675	506	249	49.2 45 5	14.9	
$TS36 \times TS26$ TS27 × TS10	278	11	5	45.5	1.8	
$TS37 \times TS19$	3469	410	59	14.4	1.7	

Table 2. Efficiency of the protocol in terms of acclimatized plantlets.

* % of developed embryos: the ratio was calculated by multiplying by 100 the ratio plantlets/embryos; ** % of developed ovules: the ratio was calculated by multiplying by 100 the ratio plantlets/ovules.

2.2. Sampling Time

Detailed results obtained by comparing cultivars characterized by a similar ripening time (grouped as middle, middle-late, and late ripening time) for the numbers of ovules extracted per berry and the percentages of settled ovules developed in acclimatized plants at different sampling times are reported in Supplementary Table S1 and Figure 2.

Figure 2. Comparison of ratio ovules:berries (**A**) and percentage of embryos developed from in vitro settled ovules (**B**) for each group of crosses (characterized by female's parent middle (M), middle-late (ML), and late (L) ripening time) at different sampling times (43–47 DAP, 48–52 DAP, 53–57 DAP, 58–62 DAP). For each sampling time and group of crosses, mean value (X), quartiles (-), and outstanding values (°) are reported; these data are condensed in X when there is only one sample.

Considering the crosses characterized by the middle ripening moment of the female parent, the mean ratio of ovules:berries showed a tendency to increase for the earlier three sampling times and decrease at 58–62 days after pollination (DAP), so that the highest values, over 2.5 ovules per berry, were recorded at 53–57 DAP. The cross TS27 × TS03 showed the highest outstanding value of 3.4 ovules:berries at 48–52 DAP. For the same cultivars, the embryogenic efficiency was between 10.0 and 12.0% for the earlier three sampling times, while the highest mean value (17.1%) was recorded at the last sampling. Almost all the data were in the range of 4.0–20.0%. The only exception was the cross TS17 × TS27 at 43–47 DAP (24.7%).

For the crosses with female parents with middle-late ripening time, the ratios of ovules:berries were in the range of 1.5 to 2.6. TS04 \times TS24 was the only cross sampled at the first sampling time and yielded an ovules:berry ratio of 2.3 and a percentage of embryo development of 0.8%. The ovules:berries ratios showed the highest mean value (2.5) at 48–52 DAP; after that, the value decreased and increased again at 58–62 DAP (2.3). Ovules:berries ratios for all crosses were in the range of 1.5–2.6. The best embryogenic efficiency in this group was 20.1%, recorded at 53–57 DAP, while the highest value (27.6%) and the lowest value (1.0%) were recorded at 58–62 DAP (TS33 \times TS28) and 53–57 DAP (TS04 \times TS24), respectively. The sample at 53–57 DAP was characterized by two outstanding high values, 20.1% for TS23 \times TS28 and 0.9% for TS04 \times TS24.

For the late-ripening cultivars, only the cross TS09 \times TS04 was assayed at 43–47 DAP, yielding an ovule:berry ratio of 2.5 and a percentage of embryo development of 7.0%. For the ovules:berries ratio, the highest (2.5, TS09 \times TS10) and the lowest (1.2, TS25 \times TS39) values were recorded at 48–52 DAP. As for the mean value for all the crosses, the highest value (2.2) was recorded at 53–57 DAP and the lowest value (1.7) at 58–62 DAP. In this group of cultivars, the protocol efficiency was between 0.9% (TS25 \times TS13) and 22.4% (TS05 \times TS27), respectively, at 48–52 DAP and 53–57 DAP. The mean values of embryogenic efficiency for all crosses were between 5.8% at 43–47 DAP and 3.4% at 58–62 DAP.

3. Discussion

Since the first report of the usage of in vitro ovule culture for originating recombinant seedless grape genotypes [11], the usefulness of the technique has become clear, and numerous factors have been studied to improve the efficiency of applied protocols. It was proved that the number of obtained embryos depends on the culture medium [29,33], parental genotypes [27,28], and the time of berry collection [11,13,29,30,32,38,39]. Several papers reported the use of Nitsch & Nitsch's (NN) salts [15,20,40,41], different hormones, such as IAA or GA3 [38,42], as well as activated charcoal [15,43,44], and mashed banana [33]. Most of the factors were also studied in this research, paying particular attention to grapevine genotypes and the role of hormone concentrations in the culture medium [38]. The outcome was an improved medium for the stabilization of explanted ovules and for embryo growth. The medium contained macro- and NN microelements [45], IAA (3.00 mg/L), and GA3 (2.00 mg/L) and was supplemented with activated charcoal (2 g/L) for reducing tissue browning and embryo abortion rate [41,42]. The improved medium and the related protocol were validated over five years on 43 different crosses involving 39 grapevine genotypes characterized by different ripening times. Overall, the adopted protocol yielded an efficiency of embryos developed by in vitro settled ovules ranging from 3.0 to 14.0% in more than half of the assayed crosses.

The large-scale experiments on very high numbers of berries, ovules, and embryos allowed us to ascertain the adaptability of the newly developed protocol to different grapevine genotypes. The obtained efficiencies of plantlet formation were in line with previously reported data [27,33,34,38,41,46].

The results of this research evidenced a high variability of the ratios between embryo growth and ovules, in the range from 0.8% (TS04 \times TS24) to 41.1% (TS29 \times TS38), depending on the crossed grapevine genotypes. The influence of the genotype was also confirmed by the similar results obtained in different years using TS27 and TS25 as the female parent

in crosses, with ratios around 10.0 and 2.0%, respectively. Our results align with the ones reported by Puglisi et al. [27] reporting great variability among parents, also when the same cultivar was used as the male or female parent.

The efficiency of the new protocol in terms of percentages of acclimatized ready-to-use plants from grown embryos was in the range of 10.0–62.0%, fitting well with the results obtained by Jiao et al. [28] reporting a plantlet development rate between 17 and 58%, using 15 different genotypes and 11 cross combinations [28].

An overall protocol efficiency over 20.0% was obtained by the cross between TS29 (female, seedless, early ripening) and TS38 (male, seedless, early ripening), confirming the influence of grapevine genotypes on the embryogenic ability of ovules, on the ability of plantlet development in vitro and, consequently, on their aptitude to breeding [18,27,28,31,36].

Li et al. [47] observed different abilities of embryo growth depending on the sampling time of berries in the cultivars "Thompson seedless", "Flame seedless" (TS11), and "Ruby seedless". They concluded that the length of time elapsing between pollination and berry collection was significantly and negatively correlated with the proportions of grown embryos in seedless grapes. Similar findings, but under a significant influence of grapevine genotypes, were also reported by others [30,31,33,48]. We applied the new protocol to berries collected at four five-day intervals in the period from 43 to 62 DAP. Overall, data showed a tendency for a higher protocol embryogenetic efficiency with sampling at 58– 62 DAP. These results agree with findings reported by Guo et al. [48] based on observations carried out on crosses in which the seedless cultivars "Jumegui", "Kyoho", and "Red globe" were used as the female parent. Nevertheless, the embryogenetic efficiency did not show significant differences at different sampling times for crosses involving grapevine genotypes with medium, medium-late, or late ripening as also reported by Kebeli et al. [29]. These findings can be relevant for the application of the embryo-rescue protocol in largescale breeding projects in which a very high number of berries need to be processed. The slight, if any, influence of sampling time on the results in terms of final plant production, indeed, could reduce the laboratory workload in the earlier and time-consuming steps of the protocol.

4. Materials and Methods

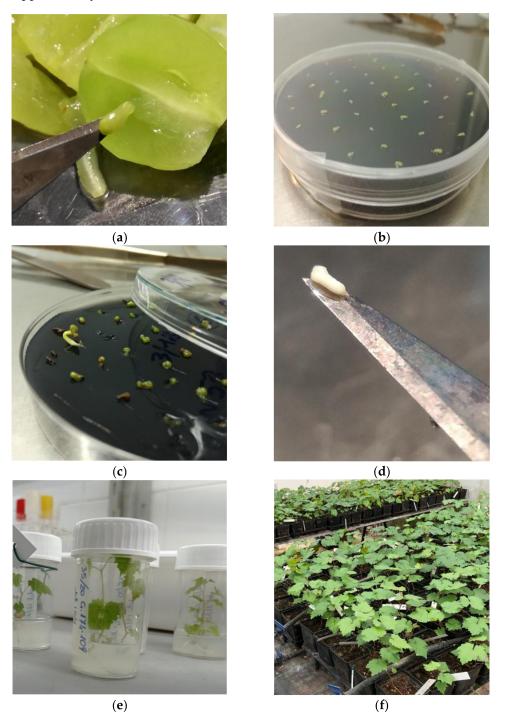
4.1. Embryo-Rescue Protocol

All the grape seeds used from the embryo rescue activities originated from crosses between different *V. vinifera* cultivars. The vines were grown in commercial vineyards located in Puglia (Southern Italy). Thirty-nine cross-combinations were set up during a period of five years (2017–2021). The parental genotypes herein used (Table 3) were selected by the Scientific Committee of the Rete Italian Variety Club, a network joining 23 private companies (www.reteivc.it (accessed on 30 March 2023)) [49], in the frame of a multi-year and extensive table large breeding program launched in 2014. Selection was mainly for the following characteristics: seedlessness, berry size, color, pulp firmness, ripening time, and putative resistance to *E. necator* and/or *P. viticola*. The cultivars used as parents are almost all patented so the lab code TS01–TS39 was used instead of the cultivar name, according to the confidentiality agreement between researchers and breeders. If known, their pedigree is reported. For the same reason, no details on the crosses are herein supplied.

Unlike a previous breeding work in which seedless cultivars were only used as pollen parents [50], the development of the ovule-culture protocol made it possible to use seedless vines as both parents [11–13] increasing the number of progenies marked by the seedless characteristic [51]. A traditional grapevine breeding technique based on the emasculation of flowers, as proposed by Eibach [48], was used. Briefly, the inflorescences of already fertilized flowers characterized by raised calipers were removed. At a different time during May, before blooming, flowers of the female parent of the cross were emasculated and closed in paper bags containing pollen from the male parent. Details on crosses are in Table 4.

Immature bunches were sampled 43–62 days after bloom. After harvesting, bunches were placed in a container and maintained at about 4 $^{\circ}$ C during the delivery to the laboratory where they were processed. Berries from each bunch were gently washed with soap under running water, and each berry was decontaminated in a solution of 1.4% sodium hypochlorite for 20 min under a laminar flow hood. To remove sodium hypochlorite residues, berries were washed twice with sterile distilled water.

Table 3. Seedless cultivars used in the breeding program and their main features.


Cross Code	Parents of Crossed Cultivar	Ripening Time	Main Features
TS01	hybrid Early gold $ imes$ Sophia seedless	Middle	White
TS02	hybrid Pink muskat \times Midnight beauty	Middle	Rose
TS03	Ribier \times Black monuka	Early	Black
TS04	Sun world seedling $ imes$ Sugarthirtone	Middle late	White
TS05	Fresno imes Fresno	Late	White
TS06	Vitis interspecific crossing	Late	Black
TS07	Gold \times Q 25-6 F2	Middle	White
TS08	Vitis interspecific crossing	Middle	White, aromatic
TS09	Eperor \times Fresno	Late	Red
TS10	Emperor \times Dawn seedless	Middle	Red
1010	$Gargiulo \times ((Red malaga \times Tifafihi$	1011ddile	100
TS11	Ahmer) \times (Muscat of	Middle	Red
1011	Alexandria \times Sultanina))	Wildule	neu
TS12	Local variety	Middle	Hybrid White, aromatic (foxy)
	Local variety		Hybrid Black, aromatic (foxy),
TS13	Local variety	Middle	resistance to <i>E. necator</i> and <i>P. viticola</i>
TS14	Red Globe \times Princess	Forly	White
		Early	
TS15	Emperor $ imes$ Sultana moscata	Middle late	Red
TS16	Local variety	Late	Hybrid, White, resistance to
TC1 7		N (* 1 1)	E. necator and P. viticola
TS17	Emperor \times Dawn seedless-	Middle	White, muscat flavor
TS18	Red Globe \times Princess	Middle	Red
TS19	Unknown	Middle late	White
TS20	Sun World seedling \times Fantasie seedless	Middle late	Black
TS21	Chasselas $ imes$ Ahmeur Bou Ahmeur	Early	White, muscat flavor
TS22	Unknown	Middle	Red, muscat flavor
TS23	Datal $ imes$ Centennial seedless	Middle late	White
TS24	Black Monukka $ imes$ Sugarfive	Middle	Red, muscat flavor
TS25	Sun World seedling $ imes$ Sun World seedling	Late	Red
TS26	Unknown	Early	White
TS27	Red Globe $ imes$ Sun World seedling	Middle	White, muscat flavor
TS28	$IFG \times IFG$	Middle	White
TS29	Fresno imes Fresno	Early	Red
TS30	Princess $ imes$ Regal seedless	Middle	White
TS31	Cardinal × unknown	Late	White
TS32	Cardinal \times Kishmish Rozovyi	Late	Rose
TS33	Red Globe × Princess	Middle late	Red
TS34	USDA Selection \times Princess	Middle late	White
TS35	Autum Royal seedless \times unknown	Early	Red
TS36	$IFG \times IFG$	Early	Red
TS37	Red Globe \times Princess	Middle late	Red
TS38	Red Globe \times Princess	Early	White, muscat flavor
TS39	Unknown	Late	Black
1339	UIIKIIOWII	Late	DIACK

Crossed Cultivars		Pollination	No.	No.	No.
ę	o [™]	Day	Bunches	Berries	Ovules
TS01	TS04	21 May 2021	10	438	974
TS02	TS04	24 May 2021	10	341	589
TS04	TS19	5 June 2019	5	185	440
TS04	TS20	5 June 2019	7	355	780
TS04	TS24	22 May 2018	18	3612	7961
TS05	TS27	21 May 2020	20	1547	3092
TS06	TS20	22 May 2017	6	451	844
TS06	TS24	22 May 2017	4	286	711
TS07	TS08	11 June 2019	6	426	833
TS09	TS04	25 May 2021	8	709	1695
TS09	TS10	15 May 2017	10	1005	2409
TS09	TS13	20 May 2020	20	1743	4083
TS09	TS34	25 May 2021	$\frac{10}{4}$	410	852
TS11	TS24	25 May 2018	6	557	1185
TS12	TS24	1 June 2019	11	739	1225
TS13	TS24	22 May 2018	18	1212	2485
TS13	TS24	3 June 2019	10	626	1266
TS13	TS27	11 May 2017	9	1938	3509
TS14	TS21	12 May 2021	8	633	1798
TS15	TS13	8 June 2020	18	2176	5577
TS15	TS32	11 June 2019	5	559	1002
TS17	TS27	15 May 2018	18	1603	3111
TS22	TS16	29 May 2017	7	1347	2399
TS23	TS24	23 May 2017	11	748	1864
TS23	TS28	23 May 2017	11	1146	2353
TS24	TS13	5 June 2019	4	191	428
TS25	TS13	31 May 2021	4 7	698	1112
TS25	TS18	24 May 2017	8	858	1825
TS25	TS39	31 May 2021	6	559	768
TS27	TS03	11 May 2018	25	1832	6095
TS27	TS31		8	752	1891
TS27	TS21	23 May 2019 25 May 2019	10	746	1704
TS27	TS32	25 May 2019	32	2382	7659
TS27	TS32	11 May 2018 23 May 2019	9	747	1411
TS28	TS04	27 May 2019	6	288	341
TS28	TS13	5	8	310	320
TS28 TS29	TS38	27 May 2021 20 May 2020	8 10	720	320 1436
TS30	TS13	20 May 2020 28 May 2021	4	284	730
TS33	TS13 TS19	28 May 2021 26 May 2017	4 11	1253	2979
TS33	TS28	26 May 2017	6	705	2979 1679
TS35	TS03	26 May 2017 10 May 2021	6 9	703 577	1679
TS36	TS26	5	5	135	278
TS37	TS19	11 May 2021 5 June 2019	17	1522	3469
1557	1317	5 June 2019	1/	1022	JH07

Table 4. Numbers of sampled bunches and berries and in vitro settled ovules per cross.

Air-dried berries were dissected longitudinally with a sterile scalpel (Figure 3a) with the help of a stereo microscope under a laminar flow hood, and ovules, well cleaned by all berry tissue residues, were gently and accurately clamp-collected. The ovules were placed in Petri dishes (diameter 90 mm, height 16.2 mm) containing about 20 mL of the culture medium. Based on previous works [15,40,43–45], the composition of the medium, containing active charcoal, used in this study was optimized as reported in Supplementary Table S2. In each Petri dish, 30–40 explants from the same bunch were placed (Figure 3b). Plates, sealed with Parafilm, were maintained at 24 ± 3 °C under lighting from white light LED with a luminous intensity of \simeq 3000 lux, with a photoperiod of 16/8 h. From 8 to 30 weeks, the spontaneous growth of embryos (Figure 3c) was checked by the naked eye. After \simeq 10 weeks, the embryos were manually collected from ovules showing externally brown tissues (Figure 3d). Due to the long-time growth required, ovules

were individually transferred onto a fresh growth medium, especially when dehydration or microbial contamination occurred. The grown sprouts were transferred into new sterile, transparent, and airtight 60 mL-sized containers (Figure 3e), containing \simeq 15 mL of a culture medium with no hormones for settling. Details on the used media are available in Supplementary Tables S2 and S3 [52,53].

Figure 3. (a) Berry dissection for ovule extraction; (b) settling of ovules in Petri dishes on embryo growing medium; (c) spontaneous growth from ovules settled on embryo growth medium; (d) embryo extracted manually with a scalpel from mature ovule; (e) grown embryos, settled on S.O.R. medium; (f) acclimatized plants in pots located in screenhouses.

The sprouts, properly oriented according to the embryo orientation, were inserted approximately 1 mm into the medium and maintained under the same above-described

growing conditions until the complete plantlet development (Figure 3e). Once the plants within the substrate developed their first two true leaves and reached a height of at least 3–4 cm, they were ready for transplanting. Plantlets were individually collected from in vitro containers and transferred to previously rehydrated disks of dehydrated peat (Jiffy-7 of 44 mm, Jiffy Products International AS, Norway). Properly carded plants were placed in trays to facilitate their watering. Trays, covered with a transparent plastic film to ensure a gradual transition to the external conditions, were maintained at 24 ± 3 °C in a climatic chamber equipped with LED lights (AGRO light of 22 W) and a photoperiod of 16/8 h. About 10 days later, the plastic film was gradually removed. Well-developed plants were finally transferred into pots (9 cm × 9 cm × 10 cm) containing peat and maintained in the growth chamber until reaching a height of about 12 cm, at which point, they were transferred to the screenhouse (Figure 3f).

4.2. Influence of Sampling Time

For some crosses, bunches were sampled at two to three time points in the range 43–62 DAP to evaluate the possible influence of the female parent genotype on the best collection time [13,30,31]. The sampling times were classified into four groups each of 5 days: 43–47, 48–52, 53–57, and 58–62 DAP (Table 5). Ovules were processed as described above.

Ripening Time *	Crossed Cultivar (♀× ♂)	Samples	Sampling Time (Days after Pollination)			
		(No.)	43–47	48–52	53–57	58-62
		Bunches	4	4	n.a.**	2
М	$TS01 \times TS04$	Berries	285	104	n.a.	49
		Ovules	649	205	n.a.	120
		Bunches	2	4	n.a.	4
М	$TS02 \times TS04$	Berries	62	146	n.a.	133
		Ovules	115	233	n.a.	241
		Bunches	n.a.	3	3	n.a.
М	$TS11 \times TS24$	Berries	n.a.	232	325	n.a.
		Ovules	n.a.	527	658	n.a.
		Bunches	4	7	n.a.	n.a.
М	$TS12 \times TS24$	Berries	349	390	n.a.	n.a.
		Ovules	633	592	n.a.	n.a.
		Bunches	7	11	n.a.	n.a.
М	$TS13 \times TS24$	Berries	425	787	n.a.	n.a.
		Ovules	860	1625	n.a.	n.a.
		Bunches	6	8	n.a.	n.a.
М	$TS13 \times TS24$	Berries	315	311	n.a.	n.a.
		Ovules	644	622	n.a.	n.a.
		Bunches	n.a.	5	4	n.a.
М	$TS13 \times TS27$	Berries	n.a.	1157	781	n.a.
		Ovules	n.a.	1904	1605	n.a.
		Bunches	6	8	n.a.	3
М	$TS17 \times TS27$	Berries	558	724	n.a.	321
		Ovules	1048	1462	n.a.	601
		Bunches	n.a.	10	10	5
М	$TS27 \times TS03$	Berries	n.a.	754	751	327
		Ovules	n.a.	2610	2527	958
		Bunches	6	4	n.a.	n.a.
М	$TS27 \times TS21$	Berries	1095	266	n.a.	n.a.
		Ovules	2337	622	n.a.	n.a.

Table 5. Numbers of bunches, berries, and ovules analyzed per cross at different sampling time points.

Table	5.	Cont.	
-------	----	-------	--

Ripening Time *	Crossed Cultivar (♀× ♂)	Samples _	Sampling Time (Days after Pollination)			
		(No.)	43-47	48-52	53–57	58-62
		Bunches	n.a.	11	12	9
М	$TS27 \times TS32$	Berries	n.a.	674	930	778
		Ovules	n.a.	2015	3113	2531
		Bunches	3	n.a.	n.a.	3
М	$TS28 \times TS04$	Berries	119	n.a.	n.a.	169
		Ovules	141	n.a.	n.a.	200
		Bunches	3	n.a.	n.a.	5
М	$TS28 \times TS13$	Berries	156	n.a.	n.a.	154
		Ovules	174	n.a.	n.a.	146
		Bunches	6	7	5	n.a.
ML	$TS04 \times TS24$	Berries	1004	1490	1118	n.a.
		Ovules	2295	3845	1821	n.a.
		Bunches	n.a.	7	4	n.a.
ML	$TS23 \times TS24$	Berries	n.a.	407	341	n.a.
		Ovules	n.a.	1032	832	n.a.
		Bunches	n.a.	7	4	n.a.
ML	$TS23 \times TS28$	Berries	n.a.	659	487	n.a.
		Ovules	n.a.	1626	727	n.a.
		Bunches	n.a.	6	n.a.	5
ML	$TS33 \times TS19$	Berries	n.a.	629	n.a.	624
		Ovules	n.a.	1646	n.a.	1333
		Bunches	n.a.	4	n.a.	2
ML	$TS33 \times TS28$	Berries	n.a.	403	n.a.	302
		Ovules	n.a.	929	n.a.	750
		Bunches	n.a.	8	n.a.	9
ML	$TS37 \times TS19$	Berries	n.a.	746	n.a.	776
		Ovules	n.a.	1741	n.a.	1728
		Bunches	n.a.	8	12	n.a.
L	$TS05 \times TS27$	Berries	n.a.	808	739	n.a.
		Ovules	n.a.	1810	1282	n.a.
		Bunches	5	n.a.	3	n.a.
L	$TS09 \times TS04$	Berries	464	n.a.	245	n.a.
		Ovules	1154	n.a.	541	n.a.
		Bunches	n.a.	8	n.a.	2
L	$TS09 \times TS10$	Berries	n.a.	842	n.a.	163
		Ovules	n.a.	2105	n.a.	304
		Bunches	n.a.	10	n.a.	10
L	$TS09 \times TS13$	Berries	n.a.	963	n.a.	780
		Ovules	n.a.	2176	n.a.	1907
		Bunches	n.a.	2	n.a.	5
L	$TS25 \times TS13$	Berries	n.a.	214	n.a.	484
		Ovules	n.a.	442	n.a.	670
		Bunches	n.a.	3	5	n.a.
L	$TS25 \times TS18$	Berries	n.a.	237	621	n.a.
		Ovules	n.a.	442	1383	n.a.
		Bunches	n.a.	2	n.a.	4
L	$TS25 \times TS39$	Berries	n.a.	224	n.a.	335
-		Ovules	n.a.	266	n.a.	502

* Ripening time: M: middle; ML: middle-late; L: late; **: n.a.: not analyzed.

4.3. Statistical Analysis

For each experiment, numbers of ovules extracted from each berry, embryo growth rates, and percentages of ovules yielding acclimatized plants were determined as follows:

- Number of ovules extracted from each berry = total number of ovules extracted and settled in vitro/total number of sampled berries.
- Embryo germination rate (%) = number of embryos grown from in vitro settled ovules ×100/number of in vitro settled ovules.
- Acclimatized plant rate (%) = number of plants acclimatized from in vitro settled embryos ×100/number of in vitro settled ovules.

Single bunches were considered biological replicates when appropriate, and standard error was calculated per each cross.

For the statistical analysis of the data, Microsoft Excel of Microsoft 365 was used.

5. Conclusions

A new improved embryo-rescue protocol for the obtainment of new seedless grapevine genotypes was validated in a large-scale experiment on a set of 43 crosses involving 39 parental seedless genotypes over 5 years. The feasibility of the new protocol was proved for all parental genotypes although these influenced the development rates of in vitro settled ovules. The sampling time of grapes in vineyards was evaluated in the range from 43 to 62 days after pollination, and it had little influence on the protocol efficiency, although better results were generally obtained when it was carried out from 53 to 62 days after pollination. The little influence of sampling time could be due to the main usage of crosses involving middle- to late-ripening cultivars. Research on this hypothesis is in progress. The obtained results highlight the relevance of a careful selection of parental genotypes in crosses by breeders due to their influence on the success of the economic investment required for the genetic improvement of the grapevine.

Supplementary Materials: The following supporting information can be downloaded at https: //www.mdpi.com/article/10.3390/plants12193469/s1, Table S1: Numbers of ovules per berry and percentage of developed embryos in crosses between different grapevine genotypes at different sampling times, Table S2: Composition of medium used for ovule establishment, Table S3: Composition of the medium used for embryo growth.

Author Contributions: Conceptualization, G.B., C.S.P., P.L., V.N.S. and S.P.; methodology, G.B., C.S.P., A.C., E.C., M.M. and A.S.; formal analysis, G.B., C.S.P., A.C., E.C. and V.M.; investigation and resources, G.B., A.C., C.S.P., M.M., V.M. and A.S.; data curation and analysis, G.B., A.C., E.C., D.G. and S.P.; writing—original draft preparation, G.B., E.C., S.P. and F.F.; writing—review and editing, E.C., G.B., C.S.P., F.F., P.L., S.P. and V.N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was entirely funded for the whole breeding program's activities by the network Rete Italian Variety Club through its 23 private members and partially for the research activity by the Agritech National Research Center and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4—D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors' views and opinions; neither the European Union nor the European Commission can be considered responsible for them.

Data Availability Statement: All data concerning the identity of parental varieties are property of the Rete Italian Variety and therefore unavailable for commercial rights reasons.

Acknowledgments: The authors thank the 23 funding companies' members and the Scientific Committee of the Rete IVC for having accepted and allowed the use of original data of the breeding programs for scientific purposes. Additional thanks to A. Fortunato for the breeder activity in-field and to M. Groicher for English revision.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. CBIMinistry of Foreign Affairs. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/table-grapes/ market-potential (accessed on 30 March 2023).
- ISPRA Istituto TS31e per la Protezione e la Ricerca Ambientale. Available online: https://indicatori-pan-fitosanitari.isprambiente. it/sys_ind/23 (accessed on 30 March 2023).
- Akkurt, M.; Tahmaz, H.; Veziroğlu, S. Recent developments in seedless grapevine breeding. S. Afr. J. Enol. Vitic. 2019, 40, 1. [CrossRef]
- 4. Alleweldt, G.; Possingham, J.V. Progress in grapevine breeding. Theor. Appl. Genet. 1988, 75, 669–673. [CrossRef]
- 5. Ebadi, A.; Erfani, M.J.; Fatahi, R. Evaluation of 22 populations achieved from controlled crossing between some seeded × seedless grapevine cultivars. *Sci. Hortic.* **2009**, *119*, 371–376. [CrossRef]
- 6. Wang, A.; Wang, Y.; Tang, D.; Zhang, J.; Zhang, C. Research on improvement of seedling rate in embryo rescue of seedless grapes. *Sci. Agric. Sin.* **2010**, *43*, 4238–4245.
- 7. Stout, A.B. Seedlessness in Grapes; New York State Agricultural Experiment Station: Geneva, NY, USA, 1936; Volume 238.
- 8. Negruly, A.U. Genetic Bases of Grapevine Selection. *Res. Appl. Bot. Genet. Breed.* **1936**.
- 9. Pearson, H.M. Parthenocarpy and seed abortion in Vitis vinifera. Proc. Amer. Soc. Hort. Sci. 1933, 29, 169–175.
- 10. Barrith, B.H. Ovule development in seeded and seedless grapes. Vitis 1970, 9, 7–14.
- 11. Cain, D.W.; Emershad, R.L.; Tarailo, R.L. In-ovulo embryo culture and seedling development of seeded and seedless grapes (*Vitis vinifera* L.). *Vitis* **1983**, *22*, 9–14.
- 12. Emershad, R.L.; Ramming, D.W. In-ovulo embryo culture of *Vitis vinifera* LCV 'Thompson seedless'. *Am. J. Bot.* **1984**, *71*, 873–877. [CrossRef]
- 13. Spiegel-Roy, P.; Sahar, N.; Baron, J.; Lavi, U. In vitro culture and plant formation from grape cultivars with abortive ovules and seeds. *J. Am. Soc. Hortic. Sci.* **1985**, *110*, 109–112. [CrossRef]
- 14. Gray, D.J.; Mortensen, J.A.; Benton, C.M.; Durham, R.E.; Moore, G.A. Ovule culture to obtain progeny from hybrid seedless bunch grapes. *J. Am. Soc. Hortic. Sci.* **1990**, *115*, 1019–1024. [CrossRef]
- 15. Gribaudo, I.; Zanetti, R.; Botta, R.; Vallania, R.; Eynard, I. In ovulo embryo culture of stenospermocarpic grapes. *Vitis* **1993**, *32*, 9–14.
- 16. Ponce, M.T.; Agüero, C.B.; Gregori, M.T.; Tizio, R. Factors affecting the development of stenospermic grape (*Vitis vinifera* L.) embryos cultured in vitro. *Acta Hortic.* 2000, 528, 667–671. [CrossRef]
- 17. Bharathy, P.V.; Karibasappa, U.S.; Patil, S.G.; Agrawal, D.C. In ovulo rescue of hybrid embryos in TS11 Seedless grapes—Influence of pre-bloom sprays of benzyladenine. *Sci. Hortic.* 2005, *106*, 353–359. [CrossRef]
- 18. Tian, L.L.; Wang, Y.J.; Niu, L.; Tang, D.M. Breeding of disease-resistant seedless grapes using Chinese wild *Vitis* spp. I. In vitro embryo rescue and plant development. *Sci. Hortic* **2008**, *117*, 136–141. [CrossRef]
- 19. Tang, D.M.; Wang, Y.J.; Cai, J.S.; Zhao, R.H. Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (*Vitis vinifera* L.). *Sci. Hortic* **2009**, *120*, 51–57. [CrossRef]
- 20. Singh, N.V.; Singh, S.K.; Singh, A.K. Standardization of embryo rescue technique and bio-hardening of grape hybrids (*Vitis vinifera* L.) using Arbuscular mycorrhizal fungi (AMF) under sub-tropical conditions. *Vitis* **2011**, *50*, 115–118.
- 21. Tian, L.; Wang, Y. Seedless grape breeding for disease resistance by using embryo rescue. *Vitis* 2008, 47, 15–19.
- 22. Li, Z.; Li, T.; Wang, Y.; Xu, Y. Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. *In Vitro Cell. Dev.-Pl.* **2015**, *51*, 241–248. [CrossRef]
- 23. Li, S.; Li, Z.; Zhao, Y.; Zhao, J.; Luo, Q.; Wang, Y. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. *3 Biotech* **2020**, *10*, 1–12. [CrossRef]
- 24. Loomis, N.H.; Weinberger, J.H. Inheritance studies of seedlessness in grapes 1. J. Am. Soc. Hortic. Sci. 1979, 104, 181–184. [CrossRef]
- 25. Perl, A.; Sahar, N.; Spiegel-Roy, P.; Gavish, S.; Elyasi, R.; Orr, E.; Bazak, H. Conventional and biotechnological approaches in breeding seedless table grapes. *Acta Hortic.* 2000, *528*, 613–618. [CrossRef]
- 26. Li, R.G.R.; Ji, W.; Wang, G.; Zhang, J.X.; Wang, Y.J. An improved embryo-rescue protocol for hybrid progeny from seedless *Vitis vinifera* Grapes × Wild Chinese *Vitis* Species. *Vitr. Cell. Dev. Biol.* **2013**, *50*, 110–120. [CrossRef] [PubMed]
- Puglisi, D.; Las Casas, G.; Ferlito, F.; Nicolosi, E.; Di Guardo, M.; Scollo, F.; Saitta, G.; La Malfa, S.; Gentile, A.; Distefano, G. Parents' selection affects embryo rescue, seed regeneration and the heredity of seedless trait in table grape breeding programs. *Agriculture* 2022, 12, 1096. [CrossRef]
- 28. Jiao, Y.; Li, Z.; Xu, K.; Guo, Y.; Zhang, C.; Li, T.; Jiang, Y.; Liu, G.; Xu, Y. Study on improving plantlet development and embryo germination rates in in vitro embryo rescue of seedless grapevine. *N. Z. J. Crop. Hort. Sci.* **2017**, *46*, 39–53. [CrossRef]
- 29. Kebeli, N.; Boz, Y.; Özer, C. Studies on the applying of embryo culture in breeding new hybrids by crossing seedless grape cultivars. *Acta Hortic.* **2003**, *625*, 279–281. [CrossRef]
- 30. Bouquet, A.; Davis, H.P. Culture in vitro d'ovules et d'embryons de vigne (*Vitis vinifera* L.) appliquée à la sélection de variétés de raisins de table sans pépins. *Agronomie* **1989**, *9*, 565–574. [CrossRef]
- 31. Liu, S.M.; Sykes, S.R.; Clingeleffer, P.R. Improved in ovulo embryo culture for stenospermocarpic grapes (*Vitis vinifera* L.). *Aust. J. Agr. Res.* **2003**, *54*, 869–876. [CrossRef]

- 32. Emershad, R.L.; Ramming, D.W.; Serpe, M.D. In ovulo embryo development and plant formation from stenospermic genotypes of *Vitis vinifera*. *Am. J. Bot.* **1989**, *76*, 397–402. [CrossRef]
- Ji, W.; Li, Z.Q.; Zhou, Q.; Yao, W.K.; Wang, Y.J. Breeding new seedless grape by means of in vitro embryo rescue. *Genet. Mol. Res.* 2013, 12, 859–869. [CrossRef]
- 34. Giancaspro, A.; Mazzeo, A.; Carlomagno, A.; Gadaleta, A.; Somma, S.; Ferrara, G. Optimization of an in vitro embryo rescue protocol for breeding seedless table grapes (*Vitis vinifera* L.) in Italy. *Horticulturae* **2022**, *8*, 121. [CrossRef]
- 35. Hanfeng, D.; Guimei, Q. Ovules culture and plant formation of hybrid progeny of seedless grape. *J. Agric. Trop. Subtrop.* **2001**, 102, 147–152.
- 36. Pommer, C.V.; Ramming, D.W.; Emershad, R.L. Influence of grape genotype, ripening season, seed trace size, and culture date on in ovule embryo development and plant formation. *Bragantia* **1995**, *54*, 237–249. [CrossRef]
- Gonçalves, N.P.S.; Borges, R.M.E.; Gomes, A.P.O.; Alves, E.O.S.; Leão, P.C.S. Evaluation of grape hybrids obtained by controlled pollination. In *Anais da 2^a Jornada de Iniciação Científica*; Embrapa Semiárido: Petrolina, Brazil, 2007; pp. 135–140.
- Li, J.; Wang, X.; Wang, X.; Wang, Y. Embryo rescue technique and its applications for seedless breeding in grape. *Plant Cell Tiss.* Org. 2015, 120, 861–880. [CrossRef]
- 39. Spiegel-Roy, P.; Sahar, N.; Baron, I. Seedless × seedless grape progeny: Technique, results and perspectives. *Vitis* **1990**, *29*, 432–438.
- 40. Nitsch, J.P. Experimental androgenesis in Nicotiana. Phytomorphology 1969, 19, 389-404.
- 41. Valdez, J.G. Immature embryo rescue of grapevine (*Vitis vinifera* L.) after an extended period of seed trace culture. *Vitis* **2015**, 44, 17–23.
- 42. Zhu, P.; Gu, B.; Li, P.; Shu, X.; Zhang, X.; Zhang, J. New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. *Plant Cell Tiss. Org.* **2020**, *140*, 551–562. [CrossRef]
- 43. Weatherhead, M.A.; Burdon, J.; Henshaw, G.G. Some effects of activated charcoal as an additive to plant tissue culture media. *Z. Pflanzenphysiol.* **1968**, *89*, 141–147. [CrossRef]
- Weatherhead, M.A.; Burdon, J.; Henshaw, G.G. Effects of activated charcoal as an additive plant tissue culture media: Part 2. Z. Pflanzenphysiol. 1969, 94, 399–405. [CrossRef]
- 45. Nitsch, J.P.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [CrossRef] [PubMed]
- 46. Garcia, E.; Martinez, A.; Garcia de la Calera, E.; Perez, L.J.; Cenis, J.L.; Carreño, J. In vitro culture of ovules and embryos of grape for the obtention of new seedless table grape cultivars. *Acta Hortic* **1998**, *528*, *663–666*. [CrossRef]
- 47. Guo, Y.; Zhao, Y.; Li, K.; Liu, Z.; Lin, H.; Guo, X.; Li, C. Embryo rescue of crosses between diploid and tetraploid grape cultivars and production of triploid plants. *Afr. J. Biotechnol.* **2011**, *10*, 19005–19010.
- 48. Eibach, R.; Töpfer, R. Traditional grapevine breeding techniques. In *Grapevine Breeding Programs for the Wine Industry*; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–22.
- Pirolo, C.S.; Sabetta, W.; Roseti, V.; Fortunato, A.; Montemurro, C.; Bottalico, G.; Catalano, C.; La Notte, P.; Savino, V.; Fideghelli, C. Italian Variety Club, a research and innovation network for the genetic improvement of table grapes. In Proceedings of the XII International Conference on Grapevine Breeding and Genetics, Bordeaux, France, 15–20 July 2018.
- 50. Olmo, H.P. Choice of parent as influencing seed germination in fruits. Proc. Amer. Soc. Hort. Sci. 1936, 41, 171–175.
- 51. Ramming, D.W. The use of embryo culture in fruit breeding. *Hort. Sci.* **1990**, *25*, 393–398. [CrossRef]
- 52. Quoirin, M.; Lepoivre, P. Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Hortic. 1977, 78, 437–442. [CrossRef]
- 53. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiol. Plant.* **1962**, *15*, 473–497. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.