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Abstract: The timing of floral transition is determined by both endogenous molecular pathways and
external environmental conditions. Among these environmental conditions, photoperiod acts as a cue
to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear
that various environmental factors also control the timing of floral transition. Environmental factor
acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing
the optimal flowering time to maximize the reproductive success of plants. This review aims to
summarize the effects of environmental factors such as photoperiod, light intensity, temperature
changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as
to further explain the molecular mechanisms that link environmental factors to the internal flowering
time regulation pathway.
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1. Introduction

Flowering time stands as one of the most crucial traits in plants, as it plays a pivotal
role in determining reproductive success within a given habitat. To optimize reproductive
outcomes, plants must trigger flowering amidst favorable environmental conditions. To
accomplish this, plants have evolved sophisticated molecular sensing systems capable of
recognizing the dynamic changes occurring in their habitats. Therefore, the identification
and characterization of the molecular components responsible for perceiving alterations
in environmental conditions are crucial to gaining insights into the precise physiological
responses of plants under varying circumstances [1,2]. Flowering time in plants is primarily
controlled by the accumulation of florigen [3,4]. Florigen, a systemic signal synthesized in
leaves, is transported to the shoot apical meristem, thereby initiating flowering in plants [3].
In Arabidopsis plants, FLOWERING LOCUS T (FT) acts as a major florigen. Therefore, the
biosynthesis of FT and its accumulation in the shoot apical meristem must be precisely reg-
ulated according to internal developmental and external environmental cues. Among the
various environmental signals relevant to plants, photoperiod has garnered significance as
a pivotal input that reflects the flow of seasonal changes [5,6]. The alteration in photoperiod
predominantly shapes the degree of FT expression, mainly through the transcriptional and
posttranslational regulation of CONSTANS (CO). Thus, the photoperiod-dependent regu-
lation of CO accumulation is important to accelerate flowering under specific seasons [5].
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Additionally, Arabidopsis plants harbor an alternative pathway to induce flowering, which
determines the timing of floral transition independently of photoperiod. This autonomous
pathway is closely related to the regulation of the FLOWERING LOCUS C (FLC) floral
repressor at various levels, including transcription, RNA processing, and epigenetic con-
trols [7,8]. In addition to photoperiod, various environmental factors jointly influence
the pathways that regulate flowering time. Here, we summarize the recent discoveries
mainly obtained from Arabidopsis plants explaining the molecular mechanisms that link
environmental factors such as photoperiod, light intensity, temperature change, drought,
and salinity to flowering time regulation pathways.

2. Induction of Flowering by Florigen in Plants

The molecular mechanisms governing flowering time have undergone extensive
investigation in Arabidopsis plants. The timing of floral transition primarily hinges on the
accumulation of the florigen FT within the shoot apical meristem (SAM). This accumulation
prompts the conversion of the shoot apical meristem into a floral meristem (FM). FT belongs
to the phosphatidylethanolamine binding protein (PEBP) family, alongside TWIN SISTER
OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) [9]. Florigen is ubiquitously present
in flowering plants. For instance, rice possesses 13 FT homologous genes, including the
well-defined florigen-encoding genes HEADING DATE 3a (Hd3a) and RICE FLOWERING
LOCUS T1 (RFT1) [10,11]. Maize encodes 15 FT homologs, including CENTRORADIALIS
8 (ZCN8) [12]. These findings suggest that the timing of flowering is determined by the
spatiotemporal accumulation of florigen in plants.

FT is expressed in phloem companion cells in leaves, after which it is transported
to the SAM [3,13]. Although the FT protein is small enough to move passively through
plasmodesmata, its movement is under the regulation of specific transporters. Particularly,
FT-INTERACTING PROTEIN 1 (FTIP1), which is localized in the endoplasmic reticulum,
is required for the transport of FT from phloem companion cells to sieve elements [14].
In addition to FTIP1, SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1)/NUCLEAR-
ENRICHED PHLOEM COMPANION CELL 6 (NPCC6) is also involved in the movement
of FT into the phloem stream. The loss of function of NaKR1/NPCC6 significantly reduced
FT transport to the shoot apical meristem [15]. In addition to its role as FT transporter,
NaKR1/NPCC6 also controls the transcription of FT through the miR156-SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) module [16]. Unlike FTIP1, whose ex-
pression is not affected by photoperiod [14], NaKR1/NPCC6 is highly expressed under
inductive long-day conditions [15]. The daylength-dependent activation of NaKR1/NPCC6
expression is governed by CO [15]. Additionally, it has been reported that MYB tran-
scription factor FE/ALTERED PHLOEM DEVELOPMENT (FE/APL) is required for the
upregulation of both FTIP1 and NaKR1/NPCC6 expression as well as FT expression [17,18].
These results suggest that, at least at the transcriptional level, the production and transport
of FT coordinate with each other.

Measuring the movement kinetics of FT provided concrete insights into the speed
at which FT travels from companion cells to the shoot apical meristem [13]. The authors
used the promoter of the heat shock-induced gene HEAT SHOCK PROTEIN 18.2 (HSP18.2)
to control the expression of FT. After transient heat treatment in a single leaf blade, the
accumulation of the FT protein in the shoot apex was measured via 2D-PAGE. Through
this approach, it was determined that 8 h was required for sufficient FT transport from
leaves to phloem, with the FT protein becoming detectable in the SAM 12 h after heat
shock treatment. These findings support the notion that FT transport is actively controlled.
Additionally, it was discovered that at least three amino acid residues, V70, S75, and R83,
are responsible for the active transport of FT from the leaves to the SAM [13]. Interestingly,
alanine substitution of all three amino acid residues did not affect the interaction of the FT
variant with FTIP1. Moreover, the aforementioned FT variant with the three amino acid
mutations has been detected in phloem sap [19]. These findings suggest that the reduced
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transport of the FT variant to the SAM is not a result of phloem loading but rather could be
attributed to unloading FT around the SAM.

Once FT reaches the shoot apical meristem, it forms a florigen activation complex
with bZIP proteins and 14-3-3 proteins. The structure of this florigen activation complex
was elucidated in rice plants [20]. The rice florigen activation complex is a heterohexamer
composed of two rice florigens, Hd3a, two OsFD1s, and two 14-3-3 proteins. Based on
their subcellular localization patterns, it has been proposed that FT transported from
leaves is initially received by 14-3-3 proteins in the cytoplasm. Afterward, the complex is
translocated into the nucleus to form a complex with FD [21]. Additionally, phosphorylation
of OsFD1 by rice CALCINEURIN B-LIKE PROTEIN INTERACTING PROTEIN KINASE
23 (OsCIPK3) promotes the formation of the florigen activation complex with RFT1 [22].
Aside from florigen, certain PEBP proteins, such as TFL1 and RICE CENTRORADIALIS
(RCN), function as anti-florigens [4]. These anti-florigens repress the activity of florigen
by competing for interaction with 14-3-3 proteins [23]. Ultimately, the florigen activation
complex governs the expression of multiple floral meristem identity genes, leading to the
transformation of the SAM into an FM, finally culminating in flowering.

3. Regulation of FT Expression in Plants by Environmental Factors

In addition to the transport of FT from leaves to the SAM, the sufficient expression of
FT transcripts in leaves is another important determinant of floral transition. To induce
flowering under favorable environmental conditions, the expression of FT is tightly con-
trolled by multiple transcriptional activators and repressors. Recent reviews provide a
comprehensive understanding of the transcriptional control of FT across various external
circumstances [5,24–26]. Particularly, the present review focuses on the recent achievements
explaining molecular mechanisms that control FT expression in response to photoperiod,
light intensity, temperature, drought, and salinity.

3.1. Photoperiod

Due to the Earth’s rotation on its tilted axis and its orbit around the sun, organisms
inhabiting the planet undergo annual seasonal changes. In order to maximize their chances
of survival, plants have evolved molecular mechanisms that anticipate upcoming seasonal
variations by monitoring changes in photoperiod. Plants gauge photoperiodic alterations
through the perception of external light conditions by multiple photoreceptors, which
subsequently integrate these signals with internal circadian regulation (Song et al., 2015;
Wang et al., 2021 [5,25]).

Photoperiodic flowering responses are classified into three major types: long-day,
short-day, and day-neutral, based on their responses to photoperiod. The phenomenon
of photoperiodic flowering has been extensively explored in Arabidopsis plants. Ara-
bidopsis thaliana, classified as a facultative long-day plant, accelerates flowering under
long-day conditions. This acceleration of flowering in response to long days stems from
the day-length-specific regulation of FT expression (Figure 1). While FT is not substantially
expressed throughout the day under non-inductive short-day conditions, its expression
is markedly induced, particularly during the late afternoon, under inductive long-day
conditions [27]. This day-length-dependent induction of FT is primarily controlled by the
zinc finger-type transcription factor CO [28,29]. CO is a transcriptional activator that binds
to the CONSTANS-responsive element (CORE) on the FT promoter through its C-terminal
CCT domain [30]. The binding of CO to the FT promoter is further regulated by its physical
interaction with other proteins. For example, ASYMMETRIC LEAVES 1 (AS1) and nuclear
factor Y (NF-Y) interact with CO to recruit it to the FT promoter [31–33]. B-box transcription
factors also regulate CO protein activity via physical interaction [34]. B-box transcription
factor 28 (BBX28) forms a complex with CO and inhibits the association of CO with the
FT promoter [35]. BBX30 and BBX31 recruit CO into a TOPLESS repressor protein. The
trimeric complex represses the expression of FT, thus delaying the flowering process [36].
Similarly, BBX19 deactivates the CO protein through physical interaction. The expression
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pattern of BBX19 is opposite to that of CO, suggesting that BBX19-mediated deactivation is
important for the time-specific induction of FT expression [37].
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PHYB, Phytochrome B; HOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1;
COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; SPA1, SUPPRESSOR OF PHYA-105 1; PHYA,
Phytochrome A; PRRs, PSEUDO-RESPONSIVE REGULATORs; FKF1, FLAVIN-BINDING, KELCH
REPEAT, F-BOX1; GI, GIGANTEA; CRY2, Cryptochrome 2; BBX, B-BOX TRANSCRIPTION FACTOR;
AS1, ASYMMETRIC LEAVES 1; NF-Y, NUCLEAR FACTOR-Y; FT, FLOWERING LOCUS T.

To ensure that FT induction takes place during the late afternoon, CO activity must
be restricted to the long afternoon. Achieving the long-day-specific accumulation of
CO involves a dual mechanism: circadian clock-mediated transcriptional regulation and
external light conditions. The daily oscillation of CO expression is predominantly orches-
trated by the repressor CYCLING DOF FACTORs (CDFs) [38–40]. CDFs act as direct
repressors of CO expression. Mutations in CDFs (cdf1, cdf2, cdf3, and cdf5) stimulate CO
expression under both long- and short-day conditions. The repression of CO expression
by CDFs can be attributed to their interaction with the TOPLESS transcriptional core-
pressor [41]. Moreover, the circadian clock governs CDF-mediated CO transcriptional
repression [42–44]. In the morning, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and
LATE ELONGATED HYPOCOTYL (LHY) activate CDF expression, whereas in the after-
noon, PSEUDO-RESPONSIVE REGULATORs (PRRs) repress CDF expression, thus creating
a diurnal rhythmic CDF expression pattern.

Beyond transcriptional regulation, CDF protein stability is further regulated by
FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1), and GIGANTEA (GI) [40]. Un-
der inductive long-day conditions, FKF1 and GI are highly expressed in the afternoon.
When exposed to light, FKF1 is activated through its LOV domain in response to blue
light. The activated FKF1 forms a complex with GI. This FKF1-GI complex facilitates the
ubiquitin-dependent degradation of CDFs. Under short-day conditions, FKF1 is predom-
inantly expressed during the night, and the expression of GI is out of sync with FKF1,
diminishing the likelihood of FKF1-GI complex formation. Therefore, the FKF1-GI com-
plex contributes to the long-day-specific degradation of CDFs in the afternoon, ultimately
inducing CO expression in the afternoon. Once CDFs are eliminated by the FKF1-GI com-
plex, several transcriptional activators such as FLOWERING BHLHs (FBHs) and class II
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TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN
FACTORs (TCPs) directly enhance CO expression [45,46].

In addition to the transcriptional regulation of CO, the stability of CO protein is intri-
cately regulated in response to external light conditions. CO protein stability is enhanced
by far-red and blue light conditions but diminished by red light and darkness [47], in-
dicating the involvement of multiple light signaling components in CO protein stability
control. Phytochrome B (PHYB) orchestrates the red light-dependent destabilization of
CO [47]. This PHYB-mediated destabilization is partially explained by the physical inter-
action with the E3 ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES
1 (HOS1) [48,49]. HOS1 interacts with CO, leading to its degradation in the morning.
Consequently, the red light-dependent destabilization of CO by PHYB and HOS1 reduces
CO accumulation in the afternoon. During the night, the CONSTITUTIVE PHOTOMOR-
PHOGENIC 1 (COP1)-SUPPRESSOR OF PHYA-105 1 (SPA1) complex participates in CO
protein degradation [50–52]. Moreover, the COP1-dependent degradation of CO relies on
CO phosphorylation [53]. A recent study reported that SHAGGY-like kinase 12 (SK12) me-
diates CO phosphorylation [54]. Specifically, SK12 phosphorylates T119 of CO, leading to
its destabilization. Conversely, the FK506-binding protein FKIP12 prevents the degradation
of phosphorylated CO [55]. Under far-red light, Phytochrome A (PHYA) stabilizes CO [47].
An analysis conducted under natural sunlight conditions emphasized the significance of
PHYA’s role in CO stabilization and FT expression [56]. In contrast to laboratory condi-
tions (R/FR > 2.0), FT expression is considerably induced in the morning under natural
conditions (R/FR = 1.0). This morning-specific FT expression is mediated by both CO
stabilization and PHYA [56]. Further investigation is warranted to elucidate the manner in
which PHYA mediates CO stabilization. Blue light-dependent CO stabilization is controlled
by Cryptochrome (CRY) and FKF1. Upon activation by blue light, CRY2 forms a complex
with COP1 and SPA1, thereby decreasing COP1-SPA1-mediated CO degradation [52]. Par-
ticularly, FKF1 is crucial for the afternoon accumulation of CO under inductive long-day
conditions. FKF1′s diurnal expression pattern allows it to accumulate in the afternoon.
FKF1 forms a complex with CO to stabilize it, and this interaction is potentiated by blue
light [29]. Additionally, PRR is involved in CO stabilization. Genetic analysis has indicated
that PRRs are essential for both morning and afternoon CO accumulation [57]. The sta-
bilization of CO by FKF1 and PRR is also interconnected with COP1. For example, FKF1
hampers COP1-mediated CO degradation and COP1 homo-dimerization [58]. Similarly,
CO accumulation is enhanced by the introduction of a cop1 mutation into a toc1 prr5 prr7
prr9 quadruple mutant [57], highlighting the role of PRRs in stabilizing CO by inhibiting
COP1 activity. These intricate and interconnected light signaling pathways collectively
shape the photoperiod-specific accumulation of CO during the day, thereby triggering the
activation of FT transcription in plants.

3.2. Light Intensity

Light intensity also affects the timing of floral transition in plants. For example, Ara-
bidopsis plants grown under high light intensity (800 µmolm−2s−1) flowered earlier than
under normal light intensity (100 µmolm−2s−1). However, Arabidopsis accessions that
contain nonfunctional alleles of FLC did not flower earlier under high light. Moreover,
vernalization is required to accelerate flowering in Arabidopsis plants harboring a func-
tional FRI allele [59]. These results suggest that FLC is involved in high light-induced
flowering in Arabidopsis plants. As expected, high light treatment significantly reduced
the expression level of FLC. High light-induced suppression of FLC is controlled by chloro-
plast retrograde signals. A PLANT HOMEODOMAIN-TYPE TRANSCRIPTION FACTOR
WITH TRANSMEMBRANE DOMAINS (PTM) mediates chloroplast retrograde signals
generated by high light intensity. PTM undergoes proteolysis under high light conditions,
resulting in the accumulation of its N-terminal fragment in the nucleus [60]. The PTM
N-terminal fragment physically interacts with FVE/MULTICOPY SUPPRESSOR OF IRA1
4 (MSI4). Moreover, PTM is required for high light-induced binding of FVE on FLC chro-
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matin [59]. FVE/MSI4 is an Arabidopsis homolog of the retinoblastoma-associated protein
that mediates suppression of FLC expression through histone deacetylation [61]. Low
light intensity generally retards the growth of plants. In Arabidopsis, low light intensity
delays vegetative phase change and floral transition [62,63]. The growth retardation is
associated with an increase in miR156 and miR157, and a decrease in their SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE (SPL) targets. miR156 and miR157 target SPLs
for post-transcriptional degradation, which in turn delays floral transition by prolong-
ing vegetative growth [64]. Exogenous application of sucrose partially rescued growth
retardation and MIR156/MIR157 expression, suggesting that a decrease in carbohydrate
production under low light conditions in part causes growth retardation [62]. It has been
reported that sugar content affects the timing of flowering in plants [65,66]. In Arabidopsis,
exogenous sugar (sucrose, glucose, fructose, and maltose) treatments decreased the expres-
sion of MIR156, a repressor of floral transition. Similarly, trehalose-6-phosphate, which
functions as a proxy for internal carbohydrate status in plants, also promotes flowering by
repressing the expression of MIR156 [67]. These findings suggest that chloroplastic sugar
production and retrograde signals participate in the control of floral transition in response
to light intensity.

3.3. Temperature Changes

Changes in temperature occurring during the plant lifecycle constitute another envi-
ronmental cue that triggers significant alterations in flowering time in plants. Generally,
high temperatures accelerate flowering, whereas low temperatures delay it [68,69]. To adapt
the timing of flowering according to ambient temperature, plants have developed multiple
temperature-sensing pathways that integrate temperature signals into the flowering time
pathway (Figure 2).
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Figure 2. Regulation of flowering time by temperature. Description near arrow indicates detailed
regulatory mechanism. Dotted line, weak contribution; solid line, strong contribution. BZR1,
BRASSINAZOLE RESISTANCE 1, TCP5, TEOSINTE BRANCHED 1/CYCLOIDEA/PCF 5; PIF4,
PHYTOCHROME INTERACTING PROTEIN 4; ELF3, EARLY FLOWERING 3; LUX, LUX AR-
RHYTHMO; PWR, POWERDRESS; FT, FLOWERING LOCUS T; SVP, SHORT VEGETATIVE PHASE;
FLM, FLOWERING LOCUS M; GRP7, GLYCINE-RICH RNA-BINDING PROTEIN 7; CDKG2,
CYCLIN-DEPENDENT KINASES G2.

The transcription factor PHYTOCHROME INTERACTING PROTEIN 4 (PIF4)
plays a key role in the acceleration of flowering under high-temperature (27 ◦C)
conditions [70,71]. PIF4 directly binds to the promoter of FT to enhance FT expression [71].
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Elevated temperatures induce the expression of PIF4. The transcription of PIF4 is activated
by the BRASSINAZOLE RESISTANCE (BZR1) and TCP5 transcription factors [72–74].
BZR1 is known to mediate brassinosteroid signals [75]. High temperatures promote the
nuclear localization of BZR1. Within the nucleus, BZR1 binds to the PIF4 promoter, thus ac-
tivating its expression [72]. TCP5 positively regulates both the transcription and activity of
PIF4 under high temperatures [73]. Other class II TCPs also participate in the regulation of
flowering time. For instance, TCP13 and TCP17 directly activate the expression of the floral
meristem identity gene APETALA1 (AP1) [76]. TCP3 and TCP4 act as positive regulators
of CO transcription [45]. Recent reports have also demonstrated the involvement of PIF4
and TCP4 in the high temperature-mediated restriction of cell division [77]. PIF4 forms a
complex with TCP4 to regulate the expression of the cell cycle inhibitor KIP-RELATED PRO-
TEIN1 (KRP1). Similarly, TCP13 negatively regulates leaf cell expansion by suppressing the
expression of ARABIDOPSIS THALIANA HOMEOBOX 12 (ATHB12) [78]. Exploring the
roles of other TCP members in high-temperature flowering could yield intriguing insights.

The evening complex (EC), consisting of EARLY FLOWERING 3 (ELF3), ELF4, and
LUX ARRHYTHMO (LUX), not only regulates temperature-dependent transcription but
also impacts the activity of PIF4 [79–81]. Operating as an oscillator of the circadian clock,
the EC generates diurnal rhythmic PIF4 expression by repressing PIF4 expression [79].
Higher temperatures diminish the DNA binding activity of LUX4, leading to the de-
repression of EC-dependent PIF4 repression [80,81]. In addition to transcriptional control,
ELF3 attenuates the DNA binding activity of PIF4 through physical interaction [82]. ELF3
forms a speckle within the nucleus at high temperatures, whereas it is diffused under low
temperatures. This temperature-dependent phase transition, possibly mediated by a prion-
like domain, suggests that ELF3 acts as a temperature sensor [83]. These three mechanisms,
governed by the EC, work in coordination to regulate the temperature-dependent role
of PIF4.

In addition to the alteration of transcriptional regulation, histone modification plays a
crucial role in the temperature-dependent regulation of flowering. H2A.Z, a histone H2
variant, exhibits a stronger DNA binding affinity than H2 and can impede the access of
transcription factors to their target sites [84]. In Arabidopsis, three genes encode H2A.Z:
HISTONE H2A PROTEIN 8 (HTA8), HTA9, and HTA11 [85]. Mutations in both HTA9 and
HTA11 lead to early flowering, accompanied by upregulation of FT expression [86], under-
scoring the role of H2A.Z integration as a negative regulator of floral transition. H2A.Z
incorporation into nucleosomes undergoes alterations based on ambient temperatures.
For instance, H2A.Z occupancy near the transcription start site of FT is diminished un-
der high temperatures [87], increasing the accessibility of transcriptional activators to the
FT promoter. Beyond H2A.Z incorporation, histone deacetylation is equally pivotal for
temperature-dependent flowering. POWERDRESS (PWR), a SANT-domain-containing
protein, interacts with HISTONE DEACETYLASE 9 (HDA9). A mutation in PWR attenuates
high temperature-induced hypocotyl elongation and flowering [88]. PWR is required for
deacetylation of H3K9 at the +1 nucleosome of PIF4 and its target YUCCA8 (YUC8). Fur-
thermore, increased deacetylation of FT chromatin is observed under inductive long-day
conditions [89]. A deeper exploration of how temperature influences FT chromatin status
would provide more comprehensive insights into the molecular regulatory mechanisms of
these phenomena.

Apart from PIF, MADS-box-containing transcription factors in Arabidopsis, namely
SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS M (FLM), assume pivotal
roles in temperature-dependent flowering. SVP functions as a negative regulator of FT
expression [90]. Moreover, temperature influences both the stability and activity of SVP.
Higher temperatures induce 26S proteasome-mediated degradation of SVP, thereby releas-
ing the repression on FT transcription [91]. Temperature-dependent regulation of SVP
activity is further modulated by the alternative splicing of FLM [92,93]. In Arabidopsis,
alternative splicing of FLM yields two isoforms: FLM-β and FLM-δ [92]. These variants
exert opposing functions in regulating flowering time. Specifically, FLM-β acts as a neg-
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ative regulator, whereas FLM-δ functions as a positive regulator of flowering [92]. Low
temperatures elevate the FLM-β/FLM-δ ratio, while high temperatures diminish it [91,94].
The temperature-dependent alternative splicing of FLM is mediated by RNA-binding pro-
teins GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7) and GRP8 [95]. Additionally,
CYCLIN-DEPENDENT KINASE G2 (CDKG2), in conjunction with CYCLIN L1 (CYCL1),
modulates the alternative splicing of FLM. In the cdkg2 cycl1 double mutant, FLM-β tran-
script levels decrease, while FLM-δ transcript levels rise significantly across the range of am-
bient temperatures [96]. Histone H2 lysine 36 trimethylation (H3K36me3) is also implicated
in temperature-dependent alternative splicing and flowering time regulation [97]. Pajoro
et al. (2017) identified a link between H3K36me3 and ambient temperature-dependent
flowering. Genes that undergo temperature-dependent alternative splicing exhibit an
enrichment of H3K36me3. The absence of the SDG8 and SDG26 methyltransferases causes
changes in the alternative splicing of FLM under high temperatures.

3.4. Vernalization

Vernalization is the process by which the flowering of plants is promoted by prolonged
exposure to the cold of winter [98]. In plants, vernalization suppresses the expression of
a gene that encodes the repressor of flowering. Differently than with cold acclimation,
vernalization is not triggered by short-term cold exposure. Rather, long-term cold exposure
triggers epigenetic changes during the winter season to establish stable changes that
remain until the following spring, resulting in the acceleration of flowering the following
year [98,99]. Arabidopsis plants can be divided into summer-annual or winter-annual
plants based on their requirement of vernalization [100]. Genetic analysis found FLC and
FRIGIDA (FRI) as major components involved in flowering time regulation by vernalization.
Both FLC and FRI are repressors of flowering. FRI negatively regulates flowering time
by upregulating the expression of FLC [101]. Winter-annual Arabidopsis plants have
functional FRI, whereas summer-annual Arabidopsis plants have a genomic deletion of
FRI [102], leading to early flowering in summer-annual plants. Prior to vernalization,
FLC is highly expressed in plants to prevent flowering. A prolonged exposure to the cold
of winter represses the expression of FLC, which in turn releases the repression of FT
and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) [103,104]. Therefore, stable
suppression of FLC by vernalization is important for floral transition in the following
spring. Vernalization induces the silencing of FLC expression by epigenetic regulation.
Epigenetic suppression of FLC by vernalization is mediated by epigenetic changes governed
by Polycomb group proteins (PcG). PcGs are multi-protein complexes that control the
epigenetic status of genes [105]. During vernalization, the POLYCOMB REPRESSIVE
COMPLEX 2 (PRC2) complex is enriched at FLC chromatin to induce histone H3 lysine
27 trimethylation (H3K27me3) [104,106]. Two PLANT HOMEODOMAIN (PHD) proteins
VERNALIZATION INSENSITIVE 3 (VIN3) and VIN3-LIKE 1 (VIL1)/VERNALIZATION
5 (VRN5) [107] join the core PRC2 complex (PHD-PRC2) to increase histone methylation
of FLC during the cold. PHD-PRC2-mediated H3K27me3 is limited to the junction of the
first exon with the first intron of FLC [108,109]. This selective histone methylation can be
explained by the existence of a cis-regulatory DNA element on FLC and two trans-acting
epigenetic readers. The cis-regulatory DNA element, also called cold memory element,
is recognized by two epigenetic readers: VP1/ABI3-LIKE 1 (VAL1) and VAL2 [110,111].
VAL1 and VAL2 directly interact with the PRC2 complex to recruit PHD-PRC2 to FLC,
leading to an accumulation of H3K27me3 at this region. In addition to the PHD2-PRC2
complex, noncoding RNAs produced from the FLC locus participate in FLC silencing.
COLD ASSISTED INTRONIC NONCODING RNA (COLDAIR) and COLD OF WINTER-
INDUCED NONCODING RNA FROM THE PROMOTER (COLDWRAP) transcribed from
between the 5′ proximal promoter and the first exon, mediate FLC silencing by forming a
repressive intragenic chromatin loop at the FLC locus during vernalization [112,113].
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3.5. Drought

In response to drought conditions, plants have evolved a range of physiological,
morphological, and biochemical adaptation mechanisms, which can be broadly catego-
rized into drought avoidance, drought tolerance, and drought escape strategies [114,115].
Drought avoidance involves regulating water loss through stomatal closure and accumu-
lating water-preserving metabolites to enhance water storage capacity. Drought tolerance
mechanisms aim to maintain physiological activity under drought conditions. Drought
escape is a strategy wherein plants accelerate their developmental processes to complete
their life cycle before the onset of drought. If drought occurs at the early stage of vegetative
growth, it can cause a strong negative effect on plant growth. Under these conditions,
plants are unable to survive unless they successfully induce a drought tolerance mechanism.
Once plants successfully acclimate to drought, they accelerate drought escape responses
to minimize their exposure to the stress conditions [116]. Therefore, the consequences of
drought in plants can be different based on the severity and duration of drought. Moreover,
the impacts of drought on flowering time are different depending on the plant species,
growing season, and developmental stages [117]. For these reasons, drought can act both
as a positive and negative signal to induce flowering in plants. However, many plant
species can promote flowering or post-anthesis development in conditions of terminal
drought, indicating that drought escape is a universal characteristic of plant acclimation. In
Arabidopsis, mild drought triggers the acceleration of flowering under inductive long-day
conditions through the activation of FT expression. However, under non-inductive short-
day conditions, drought leads to a delay in floral transition coupled with an increase in
FLC expression [118]. Genetic analysis has revealed that drought-induced early flowering
under inductive long-day conditions is mediated by GI [118]. Interestingly, unlike the gi
and ft tsf double mutant plants, co mutant plants exhibit early flowering under drought
conditions. Different from the flowering phenotype of the co mutant, CO is also required
for the activation of FT expression under drought conditions [119]. This discrepancy can
be explained by the role of TSF. Similar to FT, TSF expression is also induced by drought
treatments [119]. However, the drought-induced expression of TSF is disrupted in the
gi mutant but not in the co mutant. This suggests that drought triggers early flowering
through the upregulation of FT via the GI-CO pathway and the activation of TSF through a
GI-dependent pathway (Figure 3).
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Figure 3. Regulation of flowering time under drought conditions. Drought acts as a positive signal
to induce flowering in plants. Drought signal is incorporated into multiple layers of the flowering
time regulatory pathway. GI, GIGANTEA; CO, CONSTANS; TSF1, TWIN SISTER OF FT 1; FT,
FLOWERING LOCUS T; ABF, ABA-RESPONSIVE ELEMENT (ABRE)-BINDING FACTOR; NF-
YC, NUCLEAR FACTOR Y SUBUNIT C; FBH3, FLOWERING BHLH 3; SOC1, SUPPRESSOR OF
OVEREXPRESSION OF CO 1; FLC, FLOWERING LOCUS C; OST1, OPEN STOMATA 1; VOZ1,
VASCULAR PLANT ONE-ZINC FINGER 1.
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Drought induces various physiological responses in plants through both
ABA-dependent and ABA-independent pathways [120]. Notably, the drought-induced
early flowering appears to be connected to the ABA signaling pathway. While the role of
ABA in flowering time regulation has been contentious due to its varying effects across plant
species [121], it acts as a positive regulator at least in the context of drought-induced early
flowering. Exogenous ABA treatment accelerates flowering [122], and ABA biosynthesis
mutants (aba1 and aba2) exhibit delayed flowering under both normal and drought condi-
tions. Furthermore, aba1 mutant plants display reduced sensitivity to drought treatment in
terms of flowering time compared to wild-type plants [118]. This is supported by gene ex-
pression analyses, which demonstrate that drought fails to induce the expression of FT and
TSF in aba1 mutant plants. Additionally, ABI5-BINDING PROTEINs (AFPs) modulate the
transcriptional activity of CO. By attenuating ABI5 activity, AFPs negatively regulate ABA
signaling [123]. Interestingly, AFPs also act as negative regulators of flowering. Among
them, AFP2 physically interacts with CO to diminish its transcriptional activity. This inter-
action involves recruiting the transcriptional corepressor TPR2 through the EAR domain of
AFP2 [124]. These findings collectively suggest that the drought-mediated accumulation of
ABA accelerates flowering, particularly under inductive long-day conditions.

The transduction of drought signals to flowering involves several transcription factors.
For instance, ABA-responsive element (ABRE)-binding factors (ABFs) play a pivotal role in
regulating flowering under drought conditions. The abf3 abf4 double mutant fails to dis-
play ABA-mediated early flowering. Moreover, the abf2 abf3 abf4 mutant exhibits delayed
flowering along with reduced expression of CO and FLOWERING BHLH 3 (FBH3) [125].
Further exploration through gene expression analysis has revealed that ABF3 and ABF4
induce flowering by activating the expression of SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS (SOC1), rather than FT. Interestingly, ABF3 and ABF4 do not directly bind to
the SOC1 promoter. Instead, their physical interaction with NF-YC subunits is essential for
the upregulation of SOC1 expression [122]. Additionally, ABA-dependent phosphorylation
enhances the activities of ABFs. RXXS/T sites within ABFs are phosphorylated by the
ABA-dependent SNF1-related kinase 2 (SnRK2), leading to ABF stabilization [125,126]. This
phosphorylation aids in the increased stability of ABFs [127]. Similar to Arabidopsis, mild
drought also accelerates flowering in rice by activating the expression of its two florigens
(Hd3a and RFT1) [128]. This drought-induced promotion of flowering can be attributed
to bZIP transcription factors [128–130]. For example, OsbZIP23 upregulates Early heading
date 1(Ehd1) expression and downregulates Grain number, plant height, and heading date 7
(Ghd7) expression to facilitate flowering under drought conditions [128]. Ehd1 promotes
flowering by upregulating the expression of Hd3a and RFT1. By contrast, Ghd7 negatively
regulates Ehd1 expression [131,132]. Furthermore, OsFD1/OsbZIP77, the product of which
forms a flowering activation complex with Hd3a and RFT1, is upregulated by ABA treat-
ment [129]. In addition to bZIP transcription factors, previous studies have reported that
the NAM, ATAF1/2, and CUC2 (NAC) domain transcription factors VASCULAR PLANT
ONE-ZINC FINGERs (VOZs) also play an important role in drought-mediated regulation
of flowering time in tomato. The function of VOZs in flowering time regulation has been
extensively studied in Arabidopsis [133,134]. VOZ1 and VOZ2 were originally identified as
phytochrome-interacting proteins through yeast two-hybrid screening [133,134]. Notably,
the voz1 voz2 double mutant in Arabidopsis displays delayed flowering under long-day
conditions. The delayed flowering phenotype of phyb mutants is suppressed by the voz1
voz2 mutation, indicating that VOZ1 and VOZ2 specifically participate in PHYB-mediated
flowering time regulation [133]. The mutation of voz1 and voz2 reduces FT expression while
increasing FLC expression [134]. Interestingly, genetic analyses have shown that the late
flowering of the voz1 voz2 mutant is unaffected by the flc mutation, suggesting that VOZs
primarily regulate FT expression and flowering time independently of FLC [134]. Despite
the absence of a VOZ binding element in the FT promoter, genetic studies reveal that CO
is necessary for VOZs-mediated regulation of FT expression, and biochemical analysis
shows that VOZ1 and VOZ2 physically interact with CO [134]. This interaction suggests
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that VOZ-CO binding stabilizes CO, leading to the upregulation of FT. This mechanism
aligns with other instances of phytochrome-interacting proteins in plants. For example,
PHYTOCHROME DEPENDENT LATE FLOWERING (PHL) stabilizes CO by counteracting
PHYB’s inhibitory effect [135]. PHL forms a complex with both PHYB and CO, which
mitigates PHYB-mediated CO destabilization. Furthermore, the involvement of VOZs in
drought-induced flowering is suggested through ABA-dependent phosphorylation regu-
lation [136]. In tomatoes, the signaling pathway involving OPEN STOMATA 1 (SlOST1)
–SlVOZ1 is crucial for the regulation of flowering time under drought conditions [136].
Phosphoproteomic analyses identified SlVOZ1 as a phosphorylation substrate of SlOST1,
and further in vitro analysis confirmed that SlOST1 interacts with SlVOZ1 and phospho-
rylates it. VOZ proteins are primarily localized in the cytoplasm but function within the
nucleus. Phosphorylation of SlVOZ1 enhances its stability and nuclear accumulation. Sub-
sequent DNA affinity purification sequencing and ChIP analysis demonstrated that SlVOZ1
is physically associated with the promoter of the tomato FT ortholog SINGLE FLOWER
TRUSS (SFT) [136]. These results suggest that the SlOST1–SlVOZ1 interaction is involved
in ABA-mediated drought escape responses (early flowering under drought conditions)
(Figure 3). Interestingly, OST1/SnRK2.6 also phosphorylates FBH3, reducing its DNA
binding activity by promoting monomer formation [137]. Furthermore, OST1/SnRK2.6
phosphorylates PHYB, negatively regulating red light responses [138]. These findings
indicate that OST1/SnRK2.6 is a major component in modulating flowering time under
drought conditions. In addition to phosphorylation, the stability of VOZ1 is controlled by
the 26S proteasome. Previous reports indicate that the BRUTUS (BTS) E3 ligase degrades
VOZ1 and VOZ2 in the nucleus [139]. BTS accumulates under drought and low tempera-
tures, with its level being negatively correlated with that of VOZ2. Therefore, exploring the
function of BTS in drought-mediated regulation of flowering time in plants represents an
intriguing avenue for research.

Splicing of FLC is also implicated in drought-induced flowering [140–142]. In Ara-
bidopsis, a mutation in the splicing factor AtU2AF65b led to early flowering under both
long- and short-day conditions. The acceleration of flowering in the mutant can be at-
tributed to reduced expression of FLC due to increased intron retention and decreased
transcription. Besides FLC, AtU2AF65b also affects the expression of four FLC paralogs
(MADS AFFECTING FLOWERING 1 (MAF1), MAF2, MAF3, MAF4) [140]. ABA did not
accelerate flowering in the atu2af65b mutant plants [140], suggesting the potential involve-
ment of AtU2AF65b in ABA-mediated flowering time regulation (Figure 3).

PHYTOCHROME AND FLOWERING TIME 1/MEDIATOR 25 (PFT1/MED25) also
regulates flowering time under drought conditions [143]. PFT1/MED25 is a subunit of the
mediator complex [144], which is required for transcription by RNA polymerase II, and a
subunit of the complex relays information from cellular signals and transcription factors to
the RNA polymerase II [145]. As its name implies, PFT1/MED25 was initially identified as a
regulator of flowering time downstream of PHYB [146]. PFT1/MED25 promotes flowering
through both CO-dependent and independent pathways [147]. PFT1/MED25 activates
CO and FT transcription, in addition to activating FT expression independently of CO.
Interestingly, the activity of PFT1/MED25 is controlled by activation by destruction [148].
Activation by destruction is a counterintuitive explanation for the phenomenon where
the degradation of transcriptional activators increases their functions [149]. The turnover
of PFT1/MED25 by MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 induces
the expression of FT [148]. A yeast two-hybrid screening revealed that PFT1/MED25
physically interacts with DROUGHT RESPONSIVE ELEMENT BINDING PROTEIN 2A
(DREB2A), a regulator of stress response and flowering [143]. Therefore, drought acts as a
potent environmental signal that integrates across multiple layers of the central flowering
time pathway.



Plants 2023, 12, 3680 12 of 19

3.6. Salinity

High salinity significantly affects plant growth and development [150,151]. Regarding
flowering time, salt stress serves as a negative factor. Inhibition of growth and development
of plants by high salinity may indirectly cause a delay in floral transition in plants. On
the other hand, the expression of flowering genes is also controlled by salinity in plants.
Here, we discuss the impacts of high salinity on the flowering time pathway in Arabidop-
sis. High salinity delays flowering time in Arabidopsis in a dose-dependent manner by
suppressing the expression of CO and FT [152]. The delayed transition to flowering due to
high salinity can be attributed to the regulation of the photoperiodic flowering pathway
comprising the GI-CO-FT module [152–154]. Loss of function mutation of GI or CO did
not induce significant differences in the flowering time between normal and high salinity
conditions [152,153]. Furthermore, the flowering delay under high salinity conditions was
mitigated by overexpressing GI in Arabidopsis [153]. These results suggest that GI is an
important molecular player integrating high salinity into the photoperiodic flowering path-
way. The decrease in CO and FT expression is explained by the destabilization of GI under
saline conditions [153]. MG132 treatment reduced the degradation of GI under high salinity
conditions, indicating that salt-induced GI degradation is mediated by the 26S proteasome.
Additionally, GI negatively regulates salt tolerance in plants by modulating the salt overly
sensitive (SOS) pathway [153,154]. The SOS pathway is a master regulatory system that
maintains ion homeostasis under high salinity conditions, comprising SOS1 Na+/H+ an-
tiporter, SOS2 kinase, and Ca2+-activated SOS3 [155]. Under normal conditions, GI interacts
with SOS2 to inhibit SOS2-mediated phosphorylation of SOS1 [153]. Unphosphorylation
of SOS1 reduces its stability and transport activity, thus diminishing the regulation of ion
homeostasis in saline conditions [153,156]. High salinity triggers the destabilization of GI,
leading to the liberation of SOS2. This freed SOS2 then interacts with SOS3 to activate
SOS1 [155]. Moreover, the GI-SOS pathway is also involved in the regulation of flowering
time. While high salinity prompts the degradation of cytoplasmic GI, nuclear GI remains
stable under saline conditions [154]. The stabilization of nuclear GI is achieved through
its physical interaction with SOS3. Within the nucleus, SOS3 interacts with and stabilizes
GI and FKF1, thus promoting the expression of CO and FT. These regulatory mechanisms
establish molecular connections between high salinity acclimation and the photoperiodic
flowering pathway in plants (Figure 4).
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Figure 4. Regulation of flowering time through GIGANTEA under salinity conditions. SOS1, SALT
OVERLAY SENSITIVE 1; GI, GIGANTEA; FKF1, FLAVIN-BINDING, KELCH REPEAT, F-BOX1; CO,
CONSTANS, FT, FLOWERING LOCUS T.

Arabidopsis CYCLIN-DEPENDENT KINASE G2 (CDKG2) acts as a negative regulator
of salinity responses in plants. A mutation in CDKG2 led to increased salt tolerance and
upregulation of several salt stress-responsive genes including SOS1, SOS2, SOS3, ABI2,
and ABI3. Furthermore, the expression of FT is upregulated in cdkg2 mutant plants, leading
to early flowering [157]. Further investigation is necessary to elucidate the involvement of
mRNA splicing in the SOS pathway and the regulation of flowering time.
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4. Perspectives

Over the past 30 years, a combination of genetic and biochemical approaches has
provided insights into how environmental factors influence flowering time regulation.
Through these studies, it has become evident that several environmental cues are inte-
grated into the central flowering pathway. Despite these advancements, numerous pivotal
questions remain unresolved regarding the regulation of flowering time by environmental
factors. For instance, drought, depending on its severity and duration, can act both as
a positive and negative signal to induce flowering in plants. Similar paradoxical effects
on flowering time have also been observed with ABA [26]. To decipher these perplexing
phenomena, it becomes crucial to understand the origins of these contradictory effects
of drought and ABA, as well as the mechanisms that underlie these effects. Does the
plant possess the ability to discern the source of the increase in ABA, or is there an ad-
ditional sensing system that gauges the severity of drought? Precise elucidation of the
alterations in flowering time due to drought necessitates further investigation. Unlike
drought, salinity usually serves as a negative factor influencing floral transition. However,
the stabilization of GI in the nucleus under salinity conditions suggests that plants possess
intricate and interconnected pathways to sustain their capacity to induce flowering under
severe salinity conditions. Additional studies are thus needed to determine whether there
might be additional components that uphold the flowering time pathway under salinity
conditions. Ambient temperature is a potent environmental cue that determines the timing
of flowering. While previous studies predominantly concentrated on identifying molec-
ular components regulating FT expression in response to ambient temperature, recent
discoveries have indicated that the movement of FT protein is also regulated by its lipid
binding ability. The interaction of FT with phosphatidylglycerol results in the sequestration
of FT within phloem companion cells [158]. Particularly, this sequestration of FT holds
significance for temperature-dependent flowering. The mutation of PHOSPHATIDYLGLYC-
EROLPHOSPHATATE SYNTHASE 1 notably increases the soluble form of FT only under
low temperatures (16 ◦C) [158]. These reports suggest that the FT movement is also gov-
erned by ambient temperature. Furthermore, the phase transition of regulatory components
might represent an additional mechanism for regulating temperature-dependent flowering
time [83]. Further research into alterations in florigen movement or the contributions of
known regulators in response to ambient temperature would provide key insights into the
regulatory mechanisms governing temperature-dependent flowering.
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