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Abstract: Recently, the evolutionary history of the Caribbean mangroves has been reconsidered using
partial palynological databases organized by the time intervals of interest, namely Late Cretaceous to
Eocene for the origin, the Eocene–Oligocene transition for major turnover and Neogene to Quaternary
for diversification. These discussions have been published in a set of sequential papers, but the
raw information remains unknown. This paper reviews all the information available and provides
the first comprehensive and updated compilation of the abovementioned partial databases. This
compilation is called CARMA-F (CARibbean MAngroves-Fossil) and includes nearly 90 localities
from the present and past Caribbean coasts, ranging from the Late Cretaceous to the Pliocene. Details
on the Quaternary localities (CARMA-Q) will be published later. CARMA-F lists and illustrates the
fossil pollen from past mangrove taxa and their extant representatives, and includes a map of the
studied localities and a conventional spreadsheet with the raw data. The compilation is the most
complete available for the study of the origin, evolution and diversification of Caribbean mangroves,
and is open to modifications for adapting it to the particular interests of each researcher.

Keywords: Caribbean mangroves; origin; evolution; turnover; diversification; fossil pollen; Eocene;
Oligocene; Miocene; Pliocene

1. Introduction

Mangroves are intertidal ecosystems that develop a worldwide forested fringe along
tropical/subtropical coasts between approximately 25◦ N and 25◦ S (Figure 1). Structurally,
these ecosystems are organized around a number of tree species from varied orders and
families that confer mangrove formations, their characteristic physiognomy, which has been
considered an example of evolutionary convergence among taxonomically distant clades [1].
In addition to their intrinsic value as natural systems, mangroves are important for the
following reasons: (i) they protect coasts and coastal ecosystems, such as corals, seagrasses
and salt marshes, from erosion, thus favoring seaward progradation; (ii) they play a key role
in the maintenance of biodiversity and ecological dynamics across the marine/terrestrial
ecotone; (iii) they provide relevant ecological and cultural services (fisheries, cultivation,
aquaculture, timber, fuel, aesthetics, ecotourism, etc.); and (iv) they are among the most
efficient blue-carbon ecosystems that contribute to alleviating atmospheric CO2 increases
by sequestering carbon in their organic-rich sediments [2–9].

However, mangroves are among the world’s most threatened ecosystems [11]. Ac-
cording to the latest estimates, the global mangrove extent was reduced by 3.4% in less
than 25 years (1996–2020) due to natural and anthropogenic deforestation [12]. If these
rates are maintained, these ecosystems will be severely reduced during this century, and
their long-term survival is at great risk [13], which would imply increasing coastal erosion
rates and biodiversity depletion, as well as losses in ecological and cultural services and
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in the global warming mitigation capacity. This has fostered the launching of numer-
ous worldwide initiatives for mangrove conservation and restoration, which need sound
ecological knowledge [14–17]. Most of these initiatives have been based on present-day
ecological studies, but paleoecological research may also be useful, as it provides first-
hand empirical evidence on the actual response of mangrove ecosystems to environmental
(notably climatic, eustatic and anthropogenic) drivers of ecological change. This allows
for the characterization of the main threats and helps define the corresponding response
thresholds, thus providing information useful for mangrove conservation and management.
Evolutionary studies are also valuable, as they furnish straightforward evidence on the
evolutionary potential of mangrove species and their capacity to undergo genetic changes
in response to environmental shifts [18].
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The Caribbean region (Figure 2) has been considered the cradle of Neotropical man-
groves and a biodiversity hotspot for these ecosystems [19–21]. Current estimates for
mangrove loss in the region are similar to global figures, and several conservation actions
have been proposed specifically for the region [15]. In this context, the Caribbean man-
groves were considered direct descendants of former pantropical Cretaceous mangroves
that experienced regional differentiation after the closure of the Tethys Sea. However, a
detailed quantitative analysis of the evidence strongly suggested that the first Caribbean
mangroves did not appear until the Middle Eocene and were ecological and evolutionary in-
novations that emerged de novo, rather than as a consequence of the regional differentiation
of former hypothetical Late Cretaceous pantropical mangroves [22].

The Eocene Caribbean mangroves were dominated by the ancestor of the extant
Pelliciera, which was replaced by the ancestor of the modern Rhizophora after the Eocene–
Oligocene transition (EOT), likely due to the global and intense cooling and sea-level fall
that characterized this geological boundary [1]. The Pelliciera mangroves never returned,
and their modern representatives remain as subordinate mangrove elements restricted
to a small equatorial patch in Central America/NW South America [23]. The Rhizophora
mangroves diversified during the Neogene and attained their present-like taxonomical
composition in the Late Miocene–Pliocene after the emergence of Avicennia and Lagun-
cularia, the other important mangrove-forming trees of extant Caribbean mangroves [24].
The Quaternary was a time of spatial and ecological reorganization due to the recurrent
Pleistocene climatic/sea-level shifts, and the Holocene was characterized by the conse-
quences of human disturbance, especially during the last 6000 years [25]. The last centuries
have been characterized by a significant reduction in Caribbean mangrove cover due to
natural and anthropogenic deforestation, which calls for urgent conservation/restoration
actions [18]. A graphical summary of these events is provided in Figure 3.
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Figure 3. Summary of the main evolutionary trends of Caribbean mangroves, from their Eocene origin
to their Neogene diversification, as analyzed and discussed in Refs. [1,18,22–25]. Paleogeographic
reconstruction according to Ref. [26] and paleoclimatic/paleoesutatic curves according to Refs. [27,28].
Chronology: Quat, Quaternary; Pli, Pliocene; E, Early; M. Middle; L, Late. Paleogeography: PI,
Panama Isthmus. Paleoclimates: EECO, Early Eocene Climatic Optimum; MECO, Middle Eocene
Climatic Optimum; EOT, Eocene—Oligocene Transition; OMT, Oligocene/Miocene Transition; MCO,
Miocene Climatic Optimum; Iceh, Icehouse; NQ, Neogene–Quaternary. Polar Ice Caps (IC): NH,
Northern Hemisphere. Richness: NQ, Neogene–Quaternary.

These conclusions were based on partial datasets organized chronologically according
to the time lapse of interest (i.e., Late Cretaceous to Eocene, EOT, and Neogene and
Quaternary), which are available in the corresponding papers. A first attempt to synthesize
all this information led to the development of a compilation called CARMA (CARibbean
MAngroves), but only the main features of the existing fossil records were available, and
the specific data remain unpublished [18]. The CARMA compilation has been further
updated and subdivided into two conceptually different parts: a pre-Quaternary fossil
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section (CARMA-F) and a section containing Quaternary and modern records (CARMA-Q).
This paper presents the most updated version of CARMA-F, which constitutes the basis for
the study of Eocene origin, EOT evolutionary turnover and the Neogene diversification of
Caribbean mangroves. The CARMA-Q update, useful for the study of modern mangroves
in the face of Quaternary environmental shifts and their anthropization, is in progress and
will be published later. In addition to providing a comprehensive view of the published
information to unravel the origin and evolution of Caribbean mangroves, CARMA-F
may be used as a guide for the interested researchers to locate the required data aimed
at addressing their own particular interests. The present version of CARMA-F is fairly
complete, considering the published data, and its content is consistent with the above
evolutionary insights. However, the compilation remains open to new updates from future
research, and further improvements, modifications and alternative hypotheses regarding
the origin and evolution of Caribbean mangroves cannot be disregarded.

The paper is subdivided into three main sections. The first section briefly characterizes
the extant Caribbean mangroves in terms of their taxonomic composition, whereas the
second section illustrates the pollen of the main taxa, with emphasis on those with fossil
representatives. The third section describes the CARMA-F compilation, which is provided
as a spreadsheet in the Supplementary Material, the main geographical and chronological
features of the localities studied, and the types of data provided in the original references,
with illustrative examples of all of them.

2. Extant Caribbean Mangroves

According to the latest estimates using remote sensing methods [12], Caribbean man-
groves occupy a total extent of approximately 14,700 km2, which represents ~10% of the
world’s total (Figure 4; Table 1). The countries with more extensive mangrove cover are
Cuba, Venezuela, Colombia and Panama (1500–3600 km2); all other countries are below
750 km2, and 15 of them have less than 100 km2 of mangroves, with 9 below 10 km2

(Table 1).
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Figure 4. NASA Landsat 5-TM image of the Caribbean mangrove areas (green patches) using
the data of Ref. [12]. Country/island abbreviations as in Table 1. Base map downloaded from
https://earthobservatory.nasa.gov/images/47427/mapping-mangroves-by-satellite (accessed on
8 August 2023).

Floristically, there are two main types of mangrove constituents: true (or strict) man-
grove elements and mangrove associates (Table 2). The conditions for being considered a

https://earthobservatory.nasa.gov/images/47427/mapping-mangroves-by-satellite
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true mangrove element are the following [29]: (i) present only in mangroves, not extending
into terrestrial communities; (ii) playing a major role in the structure of the community and
able to form pure stands; (iii) having specific morphological adaptations to intertidal envi-
ronments, typically pneumatophores and viviparous embryos; (iv) bearing physiological
mechanisms for salt exclusion, as an adaptation to grow in saline waters; and (v) being
systematically isolated from their terrestrial relatives, usually at the generic level, but often
at the family/subfamily level.

Table 1. Mangrove cover by country/island in the Caribbean region. Raw data from Ref. [12],
rounded to integers.

Country/Island Map Mangroves (km2)

Cuba Cu 3597

Venezuela Ve 2847

Colombia Co 2808

Panama Pa 1536

Nicaragua Ni 747

Honduras Ho 606

Belize Bz 529

El Salvador ES 373

Costa Rica CR 371

Guyana Gy 289

Guatemala Gu 250

Dominican Republic DR 192

Haiti Ht 154

Jamaica Ja 99

Puerto Rico PR 83

Trinidad and Tobago TT 82

Cayman Islands (UK) Cy 45

Guadeloupe (France) Gp 34

Martinique (France) Mr 19

Antigua and Barbuda AB 9

Virgin Islands (UK/USA) VI 4

Grenada Gr 2

Saint Lucia SL 2

Anguilla (UK) An <1

Aruba Ar <1

Barbados Bd <1

Saint Kitts and Nevis SK <1

Saint Vincent and The
Grenadines VG <1

Total 14,677

True mangrove elements are further subdivided into major and minor elements. Ma-
jor true mangrove elements are mostly trees that are also known as mangrove-forming
trees. In the Caribbean, the major true mangrove elements are of the genera Rhizophora
(Rhizophoraceae), Avicennia (Acanthaceae) and Laguncularia (Combretaceae) (Figure 5).
Minor true mangrove elements have similar traits but are not structurally important for
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the community (condition ii) and are unable to develop pure stands (iii), usually living in
peripheral intertidal habitats. This is the case for Pelliciera (Tetrameristaceae) and Acros-
tichum (Pteridaceae) species, although the first can locally develop small pure stands under
perhumid and shading conditions [31]). Mangrove associates are typical of mangrove
environments but are not restricted to them (i), are not structurally important (ii) and
lack morphological and physiological adaptations to intertidal habitats (iii, iv). These
elements also occur in other habitats, such as coastal swamps, back-mangrove wetlands,
salt marshes, riverbanks, beach communities and inland rainforests [29]. The herb Crenea
maritima (Lythraceae) is exclusive to mangrove environments (i) and might be treated
as a true mangrove element but it fails to meet conditions (ii) and (iii) and is therefore
considered a mangrove associate. Conocarpus erectus is able to develop pure stands (ii) and
is sometimes considered a true mangrove element, but it lacks morphological adaptations
(iii) and does not tolerate flooding and high salinities (iv), thus living in marginal man-
grove environments [32]. Some reviews on taxonomic, biogeographical, environmental
and ecological features of some of the most important Caribbean true-mangrove elements
have recently been published [32–35].

Table 2. True (major and minor) and associate mangrove plant elements of the Caribbean region.
Based on Refs. [19,29,30]. Nomenclature according to the International Plant Names Index (IPNI)
(https://www.ipni.org/ (accessed on 12 July 2023)).

Type Species Family Plant Type

True

Major

Avicennia bicolor Standl. * Acanthaceae Tree

Avicennia germinans (L.) Stearn * Acanthaceae Tree

Avicennia schaueriana Stapf & Leechm. ex
Moldenke * Acanthaceae Tree

Laguncularia racemosa C.F.Gaertn. * Combretaceae Tree

Rhizophora mangle L. * Rhizophoraceae Tree

Rhizophora racemosa (G.Mey.) Engl. * Rhizophoraceae Tree

Minor

Acrostichum aureum L. Pteridaceae Fern

Acrostichum daneaeifolium Langsd. & Fisch. * Pteridaceae Fern

Pelliciera benthamii (Planch. & Triana) N.C.Duke Tetrameristaceae Tree

Pelliciera rhizophorae Planch. & Triana * Tetrameristaceae Tree

Associate

Amphitecna latifolia (Mill.) A.H.Gentry Bignoniaceae Tree

Anemopaegma chrysoleucum (Kunth) Sandwith Bignoniaceae Vine

Batis maritima L. Batidaceae Shrub

Caesalpinia bonduc (L.) Roxb. Fabaceae Tree

Conocarpus erectus L. * Combretaceae Tree

Crenea patentinervis (Koehne) Standl. * Lythraceae Herb

Dalbergia ecastaphyllum Taub. Fabaceae Tree/Shrub

Dalbergia amerimnum Benth. Fabaceae Tree/Shrub

Hibiscus tiliaceus L. Malvaceae Tree

Hippomane mancinella L. Euphorbiaceae Tree

Mora oleifera Duke * Fabaceae Tree

Muellera moniliformis L.f. * Fabaceae Tree

Pachira aquatica Aubl. Bombacaceae Tree

Pavonia rhizophorae Killip * Malvaceae Shrub

Pavonia spicata Cav. Malvaceae Shrub

https://www.ipni.org/
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Table 2. Cont.

Type Species Family Plant Type

Associate

Phryganocydia phellosperma (Hemsl.) Sandwith Bignoniaceae Vine

Pluchea odorata (L.) Cass. Asteraceae Herb

Rhabdadenia biflora Müll.Arg. Apocynaceae Vine

Rustia occidentalis (Benth.) Hemsl. Rubiaceae Tree/Shrub

Scaevola plumieri (L.) Vahl Goodeniaceae Shrub

Tabebuia palustris Hemsl. * Bignoniaceae Tree

Thespesia populnea (L.) Sol. ex Corrêa Malvaceae Tree

Thespesia populneoides (Roxb.) Kostel. Malvaceae Tree

Tuberostylis axilaris S.F.Blake Asteraceae Shrub

Tuberostylis rhizophorae Steetz Asteraceae Epiphyte

* Species used by Duke [19] to characterize the Atlantic–East Pacific (AEP) mangroves.
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Figure 5. The main mangrove-forming tree species from the Caribbean region: (A) Rhizophora
mangle (red mangrove); (B) Avicennia germinans (black mangrove); (C) Laguncularia racemosa (white
mangrove); and (D) Pelliciera rhizophorae (tea mangrove). Modified from Ref. [25].

In addition to the above true and associate mangrove species, ~120 other accompany-
ing species have been identified in the Neotropical mangroves, defining 30 phytosociologi-
cal associations, all of which are present in the Caribbean region [36].
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3. Modern and Fossil Pollen Types

Fossil pollen/spores are, by large, the main evidence utilized in the evolutionary
study of Caribbean mangroves. The pollen morphology of the main Caribbean mangrove
components is illustrated in Figure 6, which is based on material from living plants and
sedimentary pollen from modern sediments. It should be stressed that pollen morphology
is rather homogeneous within each genus, and identification at the species level is not
possible in most genera, with a few exceptions. This is why when dealing with pollen, we
will refer to genera, except when some degree of morphological differentiation at the species
level is possible. The generic names of extant mangrove components are usually extended
to the whole Quaternary, assuming that they have been present during the last 2.6 Ma,
which is a common procedure in Quaternary paleoecology [37]. In older sediments, where
the occurrence of extant taxa is not guaranteed, artificial (as opposed to natural or living)
species have been defined based on pollen morphology (morphospecies) and associated
with extant genera, also on the basis of morphological identity. Since pollen morphology is a
highly conservative character, from an evolutionary point of view [38,39], it has traditionally
been assumed that these morphospecies represent the ancestors (likely at the generic level)
of extant species, having similar ecological requirements. Indeed, paleoecological studies
using fossils commonly rely on a reasonable degree of niche constancy over time (niche
conservatism), especially at the genus level, in long-lasting communities [40–43], which is
the case for mangroves.

This procedure, which has long been used in plant evolution, in general, and the
Neotropics, in particular [46–48], has been validated by recent molecular phylogenetic stud-
ies, demonstrating that the main extant Caribbean mangrove genera were already present
in the Paleogene, and that their modern species emerged mostly in the Neogene [19,49,50].
The fossil representatives of the main extant mangrove genera are listed in Table 3; the
remaining true and associate mangrove genera (Table 2) do not have known Cretaceous,
Paleogene or Neogene fossil equivalents and occur only in Quaternary and modern sed-
iments. The palm Nypa fruticans Wurmb, now restricted to the IWP region, is included
because it was present in the Caribbean region until the Eocene [44,45]. In this review, the
names of extant genera are used as representatives of the corresponding lineages, according
to the fossil representatives listed in Table 3.

Table 3. Paleogene and Neogene fossil pollen representatives of extant mangrove genera from the
Caribbean region. Based on Refs. [45,51–58].

Genus Fossil Representative (Morphospecies) Range

Acacia * Polyadopollenites mariae Dueñas Paleogene–Neogene

Acrostichum Deltoidospora adriennis (Potonié & Gelletich) Frederiksen Cretaceous–Neogene

Avicennia Avicennia
Retitricolporites sp. Lorente Neogene

Crenea Verrutricoporites rotundiporus Van der Hammen & Wijsmtra Neogene

Hibiscus Echiperiporites estelae Germeraad, Hopping & Muller Neogene

Laguncularia Laguncularia Neogene

Nypa
Spinizocolpites echinatus Muller,
S. baculatus Muller
S. prominatus (McIntyre) Stover & Evans

Cretaceous–Paleogene

Pachira Bombacacidites baculatus Muller, Di Giacomo & Van Erve Neogene

Pelliciera Psilatricolporites crassus Van der Hammen & Wijsmtra
Lanagiopollis crassa (Van der Hammen & Wijmstra) Frederiksen Paleogene–Neogene

Rhizophora Zonocostites ramonae Germeraad, Hopping & Muller
Zonocostites spp. Paleogene–Neogene

* Not included in Table 2 but considered to be a past mangrove associate by some authors [45].
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This procedure, which has long been used in plant evolution, in general, and the Ne-
otropics, in particular [46–48], has been validated by recent molecular phylogenetic stud-
ies, demonstrating that the main extant Caribbean mangrove genera were already present 
in the Paleogene, and that their modern species emerged mostly in the Neogene [19,49,50]. 

Figure 6. Pollen/spores from the main extant Caribbean mangrove species with fossil representatives
(Table 3). (A,B), Acrostichum aureum; (C,D), Nypa fruticans; (E–G), Rhizophora mangle; (H,I), Conocarpus
erectus; (J,K), Laguncularia racemosa; (L,M), Avicennia germinans; (N–P), Pelliciera rhizophorae; (Q),
Hibiscus tiliaceous; (R,S), Crenea patentinervis; (T), Pachira aquatica. The palm Nypa, now restricted
to the IWP region (Figure 1), is included because it was part of Caribbean mangroves until the
Eocene [44,45]. Vertical bars are measurement scales in µm.

4. The CARMA-F Compilation

The most updated CARMA version contains almost 160 entries/localities, of which
86 correspond to CARMA-F (Figure 7). The details on these localities and their fossil pollen
data are provided in the Supplementary Material and are summarized as follows. Geo-
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graphically, most fossil pollen sites (86%) are in the southern Caribbean coasts, especially in
Colombia and Venezuela. This is due to the intensive and extensive exploration/production
activities developed in these countries by the oil industry since the early 20th century.
In these activities, fossil pollen played a key biostratigraphic role, especially in coastal
and shallow-marine environments [51,57,59–61]. Many of the northern South American
sites are located far from the present Caribbean coasts, but they were on near-mangrove
coastal/shelf environments in the Paleogene and the Neogene. This is due to the highly
dynamic paleogeography of the region driven mainly by the migration of the Caribbean
plate and the occurrence of extensive marine incursions in NW South America [62–65]. The
remaining CARMA-F localities lie in Central America (12%) and the Greater Antilles (2%),
while the Lesser Antilles are devoid of fossil pollen records involving mangrove elements.
The location of fossil records is approximate in many cases, especially in wells, due to the
lack of coordinates, mostly for industrial confidentiality reasons. In these cases, the location
of the records in Figure 7 has been placed according to maps and descriptions with the aid
of Google Earth.

Plants 2023, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 7. Localities with pollen records included in the CARMA compilation. Green areas represent 
the present extent of Caribbean mangroves [10]. Red dots mark the sites included in the CARMA-F 
section reviewed in this paper. Yellow dots (Quaternary records) and blue boxes (modern sedi-
ments) correspond to the CARMA-Q section, whose update is in progress. See the Supplementary 
Materials for locality names and original references. 

Chronologically, 6 localities bear Late Cretaceous sediments, 37 include Paleogene 
rocks, and 59 contain Neogene formations (this makes more than 86 items—actually 102—
because a number of sections include combinations of these ages). The majority of records 
(61; 71%) provide quantitative data, usually pollen percentages but also raw counts in a 
few cases (5), whereas 19 (22%) report only presence, and 6 (7%) yield a semiquantitative 
parameter called re-observation probability (ROP), using the formula ROP = 1 − (1 − 
(a/N))M, where a = number of grains of a species counted in a sample, N = total number of 
grains of all species in the same sample, and M = total number of grains of all species in a 
new sample [51]. These data are displayed in several formats in the original references, 
namely, in-text taxa lists, tables and range charts for qualitative (presence/absence) data 
and diagrams or tables for percentages. ROP values are provided as range charts using 
symbols for probability classes. Illustrative examples of range charts, percentage tables/di-
agrams and ROP charts are provided in Figures 8–11. 

Figure 7. Localities with pollen records included in the CARMA compilation. Green areas represent
the present extent of Caribbean mangroves [10]. Red dots mark the sites included in the CARMA-F
section reviewed in this paper. Yellow dots (Quaternary records) and blue boxes (modern sediments)
correspond to the CARMA-Q section, whose update is in progress. See the Supplementary Materials
for locality names and original references.

Chronologically, 6 localities bear Late Cretaceous sediments, 37 include Paleogene rocks,
and 59 contain Neogene formations (this makes more than 86 items—actually 102—because a
number of sections include combinations of these ages). The majority of records (61; 71%)
provide quantitative data, usually pollen percentages but also raw counts in a few cases
(5), whereas 19 (22%) report only presence, and 6 (7%) yield a semiquantitative parameter
called re-observation probability (ROP), using the formula ROP = 1 − (1 − (a/N))M, where
a = number of grains of a species counted in a sample, N = total number of grains of
all species in the same sample, and M = total number of grains of all species in a new
sample [51]. These data are displayed in several formats in the original references, namely,
in-text taxa lists, tables and range charts for qualitative (presence/absence) data and
diagrams or tables for percentages. ROP values are provided as range charts using symbols
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for probability classes. Illustrative examples of range charts, percentage tables/diagrams
and ROP charts are provided in Figures 8–11.
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Figure 8. Range chart indicating the present/absence patterns in the Late Eocene–Early Miocene
interval of well COT-1X from Venezuela (see Figure 7 for location and the Supplementary Materials
for details). Mangrove representatives included in CARMA-F are highlighted in pink (see Table 3 for
equivalences with extant taxa). Modified from Ref. [66].
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Figure 9. Percentage diagram of the Early Middle Miocene section of well Panchita-1X from Venezuela
(Figure 7 and Supplementary Material), indicating the mangrove fossil pollen species highlighted in
pink (Table 3). Values at the base of the diagram (in red) are the approximate percentage ranges used
in the dataset. Modified from Ref. [57].
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Miocene interval of the Quebrada Jarana in the Yopal site (Colombia) (Figure 7; Supplementary
Material). Modified from Ref. [67].
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Figure 11. (A) Semiquantitative range chart of the Middle Eocene section of well Icotea-1 (Venezuela)
using the re-observation probability (ROP). Modified from Ref. [51]. (B) Percentage table of the Early
Miocene Cucaracha Formation (Panama). Modified from Ref. [68]. Mangrove taxa are highlighted
in pink (see Figure 7, Table 3 and the Supplementary Material for location, botanical affinities and
more details).
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5. Final Remarks

The CARMA-F version presented here replaces the unpublished partial compila-
tions used in previous papers [1,22–25], but the main conclusions in relation to the origin,
evolution and diversification of Caribbean mangroves, as summarized in Rull [18] and
synthesized in Figure 3, do not change. The refinements introduced by the updated dataset
are addressed in detail in a book that will be issued next year [69]. The available version
of CARMA-F is open to further additions and improvements and constitutes the most
complete available compilation for studying any aspect of the origin and evolution of
Caribbean mangroves. The format chosen for making the compilation public is a conven-
tional spreadsheet so that interested researchers can freely use and modify this information
according to their particular interests. As a former industry-based biostratigrapher, the au-
thor is aware that many palynological datasets potentially useful for the study of mangrove
evolution remain unknown in confidential databases from oil companies. Some classical
and highly cited papers, such as those by Germeraad et al. [51] or Lorente [57], among
others, have demonstrated that it is possible to bring these data to light maintaining rea-
sonable confidentiality rules. Continued efforts in this sense for the benefit of evolutionary
knowledge would be acknowledged. Further improvements of CARMA-F would include
the expansion of the compilation to the Caribbean/Gulf of Mexico region and eventually to
the entire Neotropical region.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12223852/s1. Refs. [70–110] are cited in the Supplementary Materials.
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Data Availability Statement: Data are provided as Supplementary Material. The data are also
publicly available at Mendeley Data (https://data.mendeley.com/datasets/zx8zvk3pw2/2; accessed
on 12 November 2023).
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