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Abstract: The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated
by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects
of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido
synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest.
Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional
elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on
(i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3
function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and
stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino
acid conjugates.
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1. Introduction

Auxins, a group of phytohormones, are integral to the regulation of plant development
and stress responses [1,2]. Previous research has identified three naturally occurring
auxins: indole-3-acetic acid (IAA), phenylacetic acid (PAA), and 4-chloro-indole-3-acetic
acid (4-Cl-IAA), with IAA being the most prevalent and significant in plants [1]. The
meticulous modulation of IAA levels, governed by biosynthesis, transport, and inactivation,
is essential for normal plant growth, development, and adaptation to both biotic and abiotic
environmental stresses [1,3,4].

Four primary pathways have been documented for IAA inactivation in plants:
(i) IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) converts IAA to methyl IAA;
(ii) UDP-glucosyltransferase (UGTs) generate ester-linked IAA conjugates; (iii) GRETCHEN
HAGEN 3 (GH3) acyl amido synthetases facilitate the formation of amide-linked IAA con-
jugates; and (iv) IAA oxidation carried out by DIOXYGENASE FOR AUXIN OXIDATION
(DAO) [5–10]. Methyl IAA and ester-linked IAA, both subject to reconversion into IAA by
specific hydrolases, are predominantly regarded as forms of IAA storage [11]. Contrastingly,
the reversibility of amide-linked conjugates varies based on the amino acid involved. Most,
such as IAA-alanine (IAA-Ala), IAA-phenylalanine (IAA-Phe), and IAA-leucine (IAA-
Leu), revert to free IAA, while others like IAA-glutamate (IAA-Glu) and IAA-aspartate
(IAA-Asp) are directly degraded [5,11–13]. However, recent findings suggest that IAA-Glu
and IAA-Asp are also hydrolyzed to free IAA by IAA-LEU-RESISTANT1 (ILR1), and that
DAO-dependent oxidation also occurs by oxidizing IAA-Asp and IAA-Glu to oxIAA-Asp
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and oxIAA-Glu, which in turn are hydrolyzed to oxIAA in the presence of the hydrolase
ILR1, rather than by direct IAA oxidation to oxIAA. This suggests that GH3-dependent
IAA conjugation may be a key node in IAA storage and IAA oxidative degradation [6,14].

The first GH3 gene was identified from Glycine max as a rapid early auxin-responsive
gene. Subsequent research has established the widespread distribution of the GH3 gene
family across the plant kingdom, encompassing species from Arabidopsis thaliana to Oryza
sativa, Zea mays, Triticum aestivum, and even non-vascular plants like Physcomitrella patens
and Marchantia polymorpha [8,11,15–19]. Based on sequence homology and substrate speci-
ficity, the GH3 family in Arabidopsis is categorized into three distinct groups: Group I, II,
and III. Group I GH3 genes are known to encode enzymes that synthesize amides from
jasmonic acid (JA) or salicylic acid (SA). Group II GH3 enzymes function as IAA-amido
synthetases, and Group III has been shown to catalyze the conjugation between amino
acids and 4-substituted benzoates or indole-3-butyric acid (IBA) [8,20]. Emerging evidence
underscores the role of GH3-mediated IAA conjugation not only in modulating free IAA
availability but also in its potential as a signaling molecule or inhibitor, impacting plant
growth and development [21–24]. This review will delve into the biochemical mechanisms
of GH3-mediated IAA conjugation and its transcriptional regulation.

2. The Catalytic Mechanisms and Substrate Specificity of GH3 Acyl Acid Amido
Synthetase Enzyme

Chen et al. firstly utilized a combination of initial velocity and product inhibition
analyses, alongside mass spectrometry, to delineate the kinetic and chemical mechanisms
governing OsGH3.8 activity [25]. They discovered that the conjugation of IAA with Asp
operates via a ‘Bi Uni Uni Bi Ping Pong’ mechanism, as depicted in Figure 1A. The process
initiates with the binding of IAA and ATP, in the presence of Mg2+, to the unoccupied
enzyme. This interaction results in the formation of an adenylated IAA intermediate (IAA-
AMP) and the concurrent release of pyrophosphate (PPi). Following this, Asp attaches to the
enzyme•IAA•AMP complex, leading to the displacement of AMP and the establishment
of an amide linkage between IAA and Asp. The final reaction products, IAA-Asp and AMP,
are then released from the OsGH3.8 enzyme’s active site [25].
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Figure 1. Catalytic reaction and inhibitor structures of Group II GH3 amido synthetase. (A) Schematic
representation of the total reaction mediated by Group II GH3 amido synthetases. (B) Chemical
structures of inhibitors targeting Group II GH3 amido synthetases: AIEP (adenosine-59-[2-(1H-indol-
3-yl) ethyl] phosphate), KKI (kakeimide), and nalacin (N-[4-[[6-(1H-pyrazol-1-yl)-3-pyridazinyl]
amino] phenyl]-3-(trifluoromethyl)benzamide).

Structural analyses of the GH3 enzyme in Arabidopsis, grape, and rice have illumi-
nated that both monocotyledons and dicotyledons employ a similar mechanism for AMP
and IAA binding [26]. The GH3 enzyme exhibits distinct acyl acid binding preferences, with
specific residues within its active site conferring selectivity for particular substrates [26]. In
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OsGH3.8, the amino acids Arg130 and Leu137 play a crucial role in substrate specificity.
The mutation of Arg130 to Leu (Arg130-Leu) shifts the enzyme’s substrate preference from
IAA to benzoate/SA, while an Arg130-Thr substitution favors JA over IAA. Similarly,
Leu137-Ser mutation leads to a benzoate/SA preference, and the replacement of Leu137
with Arg/Ile induces a preference for JA [25,26]. GH3 proteins also exhibit amino acid
specificity; for instance, the carboxylate group of Asp is a determinant for the active site’s
specificity in OsGH3.8 [25,26]. Ser341 participates in adenylate formation by forming
hydrogen bonds with phosphate groups [26]. Moreover, Mg2+ is essential for the enzyme’s
maximum activity, aiding in AMP orientation, with Glu342 being critical for Mg2+ coordi-
nation [25–27]. Additionally, seven residues identified through the sequence comparison of
acyl-substrate binding sites (Arg130, Leu137, Valine 174 (Val174), Leu175, Methionine 337
(Met337), Alanine 339 (Ala339), and Tyrosine 344 (Tyr344)) are thought to be involved in
the substrate-specific selection of IAA [26].

It has been observed that the residues involved in the AMP binding site of acyl adeny-
late cleavage enzymes exhibit a high degree of conservation across the GH3 protein family.
In contrast, the residues that interact with acyl substrates show variability, accommodating
the binding of diverse substrates [25,26,28,29]. This variation in amino acid residues leads
to the formation of different binding pockets, each tailored for specific substrates [29]. This
may account for the fact that auxin function at all stages of plant growth and development,
a process that offers great flexibility in regulating auxin action is necessary. The existence
of a complex auxin conjugation system, as evidenced by these variations in GH3 proteins,
is likely a strategic evolutionary development to facilitate this flexibility [28].

3. The Modulation of IAA Homeostasis by Small Chemical Molecules via the Inhibition
of GH3 Enzyme Activity

The functional redundancy of class II GH3 enzymes in plants presents a challenge
to traditional genetic approaches when exploring their biological roles [30]. To overcome
this obstacle, small molecule inhibitors have emerged as a powerful alternative. These
inhibitors can be applied to any plant tissue at any developmental stage, given in ap-
propriate concentrations. Their utility lies in the ability to bypass gene redundancy and
the potential detrimental effects of lethal mutations often associated with simultaneous
multi-gene mutations [31]. To date, three potent inhibitors have been identified that modu-
late GH3-dependent IAA conjugation: adenosine-59-[2-(1H-indol-3-yl) ethyl] phosphate
(AIEP), kakeimide (KKI), and N-[4-[[6-(1H-pyrazol-1-yl)-3-pyridazinyl]amino] phenyl]-3-
(trifluoromethyl) benzamide (nalacin), as represented in Figure 1B [30–32].

3.1. AIEP, the First Chemical Inhibitor of Auxin Conjugation

The GH3-dependent IAA conjugation initiates when the unbound GH3 enzyme inter-
acts with ATP and IAA, leading to the formation of IAA•AMP. Böttcher et al. engineered
and synthesized a stable analogue of IAA•AMP, named AIEP. This molecule competes
with ATP and IAA for the binding sites on the GH3 enzyme at the onset of catalysis [30].
The competitive inhibitory effect of AIEP on ATP and IAA binding was validated through
substrate velocity experiments involving VvGH3.1 and VvGH3.6 from grape. However, the
study did not extend to phenotypic examinations to assess the broader biological impacts
of this inhibition (Figure 1).

3.2. KKI, a Specific Inhibitor of IAA-Conjugating GH3 Enzymes

In the quest to identify inhibitors of IAA-conjugating GH3 enzymes, researchers
leveraged Arabidopsis AtGH3.6 overexpression plants as a biological assay system. They
screened a synthetic chemical library comprising 10,000 compounds for agents capable of
reverting the altered root hair growth phenotype of AtGH3.6-overexpressed lines. This led
to the initial identification of compound ‘1’, followed by the synthesis of 25 derivatives of
‘1’. Among these, kakeimide (KKI) emerged as a highly potent inhibitor. (Figure 1B). KKI
functions by directly interacting with the IAA binding site within the GH3•ATP complex,
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forming a stable GH3•ATP•KKI ternary complex that impedes the synthesis of IAA-amino
acid conjugates [32]. Validation experiments demonstrated KKI’s effectiveness in targeting
the IAA binding sites of various GH3 enzymes, notably VvGH3.1, AtGH3.5, and OsGH3.8,
while sparing the IBA binding site of AtGH3.15. This specificity, coupled with KKI’s lack of
interference in jasmonic acid (JA) homeostasis, underscores its role as a specific inhibitor of
IAA-conjugating GH3 enzymes [32].

3.3. Nalacin, a Potent Inhibitor Targeting Group II GH3 Enzymes

Nalacin was identified from a chemical screen by observing the auxin-related root
phenotypes in the Arabidopsis wild-type Col-0 (Figure 1B). Subsequent studies have
shown that nalacin competitively inhibits substrate acceptance by AtGH3.6 and AtGH3.11
through trifluoromethyl phenyl occupancy of the IAA binding site of AtGH3s, suggesting
that nalacin also functions in the first step of the ‘Bi Uni Uni Bi Ping Pong’ reaction
of GH3 enzymes. Unlike KKI, which selectively inhibits only class II GH3 enzymes,
nalacin also impedes the formation of JA amino acid conjugates mediated by AtGH3.11,
albeit through a distinct binding mode [31]. Consequently, there is potential for further
chemical modifications of nalacin to enhance its selective inhibition of different GH3
enzyme members.

4. The Transcriptional Control of GH3 Enzymes in Plant Growth, Development, and
Stress Adaptation

Research into GH3-dependent IAA conjugation has revealed its critical role in the
modulation of plant growth, development, and stress responses across a variety of species,
with extensive studies conducted particularly in maize, wheat, rice, and Arabidopsis. The
forthcoming sections will focus on the advances in understanding GH3-dependent IAA
conjugation in Arabidopsis and rice. Additionally, progress in other species, reflecting the
broader impact and relevance of GH3 enzymes in plant biology, has been systematically
compiled in Table 1.

Table 1. Compilation of Group II GH3 genes across various species and their identified biological
roles.

Species Members TFs Biological Process Ref.

Physcomitrella patens PpGH3.1 High temperature and salt tolerance [33,34]PpGH3.2
Stylosanthes guianensis SgGH3.1 Chilling and cold tolerance [35]
Dianthus caryophyllus DcGH3.1 Adventitious root development [36]

Brassica oleracea BoGH3.12 Cadmium tolerance [37]
Pisum sativum PsGH3.5 Seedlings development [38]

Cucumis sativus CsGH3.5 Adventitious root formation [39]
Capsicum chinense CcGH3 Fruit ripening [40]

Solanum lycopersicum
SlGH3.8 YABBY2b Plant height [41]
SlGH3.2 Fruit ripening [42]
SlGH3.15 Lateral root development; gravitropism [43]

Coffea canephora
CcGH3.1

Somatic embryogenesis [44,45]CcGH3.6
CcGH3.17

Zea mays ZmGH3.2 DREB2A Seed aging tolerance [46]

Vitis vinifera
VvGH3.1 Berry ripening [30]
VvGH3.2 [21]
VvGH3.6 Tissue auxin homeostasis [28,30]

Citrus sinensis
CsGH3.1 Susceptibility to pathogen [47]CsGH3.1L

Malus sieversii MsGH3.5 RR1a Shoot and root development [48]
Malus domestica MdGH3-2 bHLH3 Leaf shape [49]
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Table 1. Cont.

Species Members TFs Biological Process Ref.

Castanea sativa CsGH3.1 Adventitious root development [50]
Carya cathayensis CcGH3 Grafting [51]

Picea abies
PaGH3.gII.8

Tissue auxin homeostasis [52]PaGH3.gII.9
PaGH3.17

Betula platyphylla

BpGH3.3

Tissue auxin homeostasis [53]
BpGH3.5a
BpGH3.5b
BpGH3.9

4.1. GH3-Dependent IAA Conjugation Is Involved in Regulating Multiple
Developmental Processes

In Arabidopsis, eight Group II GH3 genes are involved in catalyzing IAA conjuga-
tion to amino acids. Due to redundant gene functions, mutations in single genes result
in only subtle phenotypic changes and modified sensitivity to exogenous IAA [54]. In
contrast, mutants with overexpressed GH3 genes, obtained through activation tag inser-
tion, provide a more discernible phenotype for study. For instance, AtGH3.2 and AtGH3.6
were identified through the screening of their overexpressed mutants, ydk1-D and dfl1-D,
respectively [54,55]. Interestingly, however, despite all overexpressing genes being closely
related to GH3 Group II family members, they still showed inconsistent phenotypes. Under
various light conditions, the dfl1-D mutant displayed shortened hypocotyls exclusively
in light, while the ydk1-D mutant showed this phenotype under both light and dark con-
ditions. Additionally, the ydk1-D mutant had a shorter primary root but did not exhibit
significant difference in susceptibility to auxin-mediated root growth inhibition. In contrast,
the dfl1-D mutant was resistant to IAA-mediated root growth inhibition and did not present
a short-root phenotype compared with the wild type [54,55]. Furthermore, several Group II
GH3 genes are transcriptionally induced by IAA, whereas AtGH3.9 is repressed in response
to exogenous IAA application [56]. Altogether, these data indicate that, while Group II
GH3 members share some commonalities and function in a similar pathway by regulating
free IAA conjugation, they each play distinct roles in plant development, which may be
due to differences in their tissue specificity and/or hormonal regulation (e.g., IAA, JA, etc.).

As early auxin response genes, Group II GH3 genes play a significant role down-
stream of auxin response factors (ARFs), which are key elements in the auxin signaling
pathway [57]. Research has elucidated the involvement of ARF6, AtARF7, AtARF8, and
AtARF17 in the transcriptional regulation of several AtGH3 genes. AtARF7 and AtARF8
are known to positively regulate the transcription of AtGH3.2, AtGH3.5, and AtGH3.6, influ-
encing hypocotyl elongation under different light conditions [54,58]. In contrast, AtARF17
has a negative regulatory role on AtGH3.5 and AtGH3.6 transcription, which is essential
for proper plant development. The microRNA AtmiR160 directly targets AtARF17 mRNA,
which is crucial for normal leaf and root growth [59]. In terms of adventitious root devel-
opment, AtARF6 and AtARF8 act as positive regulators, while AtARF17 functions as a
negative regulator. They co-regulate the transcription of AtGH3.3, AtGH3.5, and AtGH3.6,
impacting JA conjugation with amino acids, but not IAA conjugation [60]. Additionally,
AtARF7 actives another auxin-induced transcription factor (TF), AtMYB77, which subse-
quently upregulates AtGH3.2 and AtGH3.3 to control root development [61]. AtMYB30,
another MYB TF, directly binds to the promoters of AtGH3.2 and AtGH3.3, repressing
their transcription to foster root elongation [62]. WRINKLED1 (WRI1), yet another TF,
binds to the AtGH3.3 promoter. Although AtGH3.3 transcription increases in the Atwri1-1
mutant, AtWRI1 does not appear to repress AtGH3.3 directly, suggesting it may function as
a transcriptional co-factor [63,64]. Subsequent research identified that AtTCP20, a TF that
interacts with AtWRI1, binds to the AtGH3.3 promoter, and activates its transcription [63].
Electrophoretic mobility shift assays have shown that the addition of AtWRI1 decreases
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the binding activity of AtTCP20 to the AtGH3.3 promoter in a dose-dependent manner,
indicating that AtWRI1 regulates AtGH3.3 transcription by antagonizing AtTCP20’s bind-
ing [63]. Several basic leucine zipper (bZIP) transcription factors, including AtbZIP2, 11, 44,
53, and 63, also directly bind to the AtGH3.3 promoter and enhance its transcription [65].
Furthermore, cytokinin influences the root meristem by maintaining IAA concentration,
with AtARR1 directly activating AtGH3.17 transcription [66]. There are also indications
of TFs AtHLS1, AtURO, and AtSTY1 being involved in modulating GH3-dependent IAA
conjugation in plant developmental processes, although direct regulatory evidence is yet to
be established (Figure 2) [67–69].
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In rice, the Group II GH3 family, which includes OsGH3.1, OsGH3.2, OsGH3.5,
OsGH3.8, and OsGH3.13, plays a significant role in various developmental aspects such as
shoot height, leaf angle, floret fertility, and tiller number. These effects are primarily medi-
ated through the modulation of IAA conjugation [70–74]. Recent findings highlight several
TFs that directly activate the transcription of OsGH3 genes, leading to decreased levels of
free IAA and consequent impacts on rice morphology. For example, OsbZIP49 has been
shown to upregulate OsGH3.2 and OsGH3.13 by binding to TGACG motifs in their promot-
ers. This upregulation results in reduced free IAA concentrations, affecting cell elongation
mediated by expansins and thus impacting shoot gravitropism [75]. Furthermore, OsGH3.2
is regulated by OsARF8, a downstream target of OsmiR167, indicating a critical role for
the OsmiR167-OsARF8-OsGH3.2 pathway in cellular auxin homeostasis, particularly in
response to exogenous auxin [76]. Another ARF, OsARF19, has been found to reduce free
IAA levels by activating OsGH3.5, thereby influencing leaf angulation. Intriguingly, the
transcription of OsARF19 itself is induced by IAA and brassinolide (BR), suggesting the
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OsARF19-OsGH3.5 module’s involvement in integrating IAA-BR signals [73]. Additionally,
OsSPL7, a target of OsmiR156f, directly activates OsGH3.8, affecting tiller number and
shoot height [70]. The involvement of OsMADS1 and OsMADS6 in binding to the OsGH3.8
promoter and regulating floret fertility has also been documented [77]. Collectively, these
findings demonstrate that Group II GH3 genes, together with their upstream TFs, form a
complex regulatory network that integrates light, miRNA, and hormonal signals to control
plant growth and development (Figure 3) [78].
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4.2. The Integration of Hormonal Signals in GH3-Dependent IAA Conjugation’s Responses to
Abiotic Stresses
4.2.1. Drought Stress

In Arabidopsis, AtGH3.5 has been observed to respond rapidly to drought conditions,
with the wes1-D mutant, which overexpresses AtGH3.5, exhibiting enhanced drought resis-
tance [79]. A subsequent study revealed that AtMYB96 modulates the expression of several
AtGH3 genes, including AtGH3.3, AtGH3.5, and AtGH3.6, under drought stress through an
abscisic acid (ABA)-dependent pathway [80]. This finding underscores the importance of
ABA signaling in modulating GH3 gene expression during drought response. Additionally,
the gh3oct mutant, with knockouts of all Group II GH3 genes (GH3.1,2,3,4,5,6,9,17), exhibits
increased drought tolerance, further highlighting the role of these genes in drought response
mechanisms [81]. In rice, the activation of OsGH3.13 has been linked to a reduction in free
IAA levels, leading to a structural adaptation in the leaves, such as thicker blades, which en-
hance drought tolerance by minimizing water loss [74]. However, the response to drought
stress in rice is complex, as evidenced by the contrasting effects observed with OsGH3.2.
While OsGH3.2 is also upregulated in response to drought, its overexpression leads to
decreased drought tolerance. This discrepancy is attributed to the inhibition of carotenoid
biosynthesis by overexpressed OsGH3.2, which consequently reduces ABA synthesis. This
is in stark contrast to the increased ABA levels seen in lines overexpressing OsGH3.13 [72].
These findings collectively indicate that, while GH3 genes are integral to stress responses
through IAA homeostasis regulation, the distinct spatial–temporal expression patterns and
secondary growth effects can result in varying stress sensitivities [72,74].

4.2.2. Temperature (Heat/Cold/Freezing) Stress

In Arabidopsis, the transcription of AtGH3.5 is notably responsive to temperature
extremes, showing increased levels under both low (4 ◦C) and high (37 ◦C) temperature
conditions. The wes1-D mutant, characterized by the overexpression of AtGH3.5, shows
increased survival after exposure to freezing temperatures (−7 ◦C). This suggests a broad
regulatory role for AtGH3.5 across a spectrum of temperature stresses [82]. In rice, the
overexpression of OsGH3.2 leads to a reduction in free IAA levels, thereby activating cold-
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responsive genes and enhancing the plant’s ability to scavenge reactive oxygen species
(ROS). Consequently, this confers increased resistance to cold stress [72].

4.2.3. Salt and Osmotic Stress

All root-expressed Group II GH3 genes in Arabidopsis are upregulated following
treatment with NaCl at concentrations of 75 mM and 150 mM. The Atgh3oct mutant,
with combined knockouts of all Group II GH3 genes, exhibits greater resilience to NaCl
stress compared to the wild type [81]. This enhanced tolerance also extends to sorbitol
and mannitol exposure, suggesting that Group II GH3s may confer broad osmotic stress
resistance, inclusive of salinity stress. Further investigation reveals that NaCl treatment
increases AtACS2 transcription, leading to the accumulation of the ethylene precursor ACC,
which in turn downregulates AtGH3.5 and AtGH3.9 transcription, maintaining free IAA
levels and primary root growth [83]. Additionally, both osmotic and salt stresses are known
to stimulate the accumulation of ABA, which reduces free IAA content, inhibiting lateral
root (LR) development. At the same time, these stresses activate AtWRKY46, a transcription
factor that suppresses AtGH3.1 transcription, thus maintaining free IAA levels and LR
development. Additionally, ABA inhibits AtWRKY46 transcription. This antagonistic
interaction between ABA and AtWRKY46 fine-tunes free IAA levels and LR development,
allowing for improved adaptation to osmotic and salt stresses [84].

4.2.4. Ammonium (NH4
+) Stress

NH4
+ serves as a vital nitrogen source for plants, but when available in excess, it

can be detrimental to growth [85,86]. Prior research indicates that high NH4
+ levels lead

to a reduction in free IAA [87–89]. In Arabidopsis, elevated NH4
+ conditions trigger the

induction of nearly all Group II GH3 genes, which in turn accelerates the conjugation
of free IAA to amino acids [87]. Concurrently, high NH4

+ levels also enhance the tran-
scription of AtWRKY46, a transcription factor that binds to the promoters of AtGH3.1 and
AtGH3.6, repressing their transcription. This response serves to maintain free IAA levels
and support primary root growth under high NH4

+stress conditions. The overexpression
of AtWRKY46 improves NH4

+ tolerance, suggesting its critical role in modulating primary
root development during NH4

+ stress [90].

4.2.5. Pathogen Stress

In response to pathogen attacks, plants activate a comprehensive defense strategy:
(1) they initiate a hypersensitive response leading to rapid programmed cell death at the
infection site alongside other defense responses; (2) they activate systemic-acquired re-
sistance (SAR) in distal tissues; and (3) they activate basal immunity to limit pathogen
growth [91]. GH3-dependent IAA conjugation is intricately involved in these plant defense
mechanisms. In Arabidopsis, the pathogens B. cinerea and P. syringae pv tomato (Pst) DC3000
significantly upregulate AtGH3.2 and AtGH3.3 transcription. Loss-of-function mutations
in AtGH3.2 or AtGH3.4 enhance resistance to both pathogens, suggesting that AtGH3.2,
AtGH3.3, and AtGH3.4 may negatively influence the plant’s response to B. cinerea and Pst
DC3000 [92]. The overexpression of mutant gh3.5-1D shows a compromised hypersensitive
response but retains normal SAR and basal immunity, whereas the Atgh3.5 mutant exhibits
a defective SAR response yet maintains a typical hypersensitive response and basal im-
munity. In contrast, the dfl1-D mutant displays altered hypersensitive and basal immune
responses [91].

In rice, IAA has been linked to increased susceptibility to various pathogens, partly
due to IAA-induced expansins that relax the cell wall, a plant’s primary defense barrier [93].
Overexpressing certain Group II GH3 genes, such as OsGH3.1, OsGH3.2, and OsGH3.8,
bolsters resistance against bacterial and fungal pathogens. This resistance is attributed to
the suppression of pathogen-induced IAA accumulation, leading to the downregulation of
expansin expression and subsequent stabilization of the cell wall [71,93,94].
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The varied effects of Group II GH3 genes on pathogen stress between rice and Ara-
bidopsis could be attributed to multiple factors. In rice, OsGH3s appear to primarily
contribute to forming a robust cell wall barrier, which acts as the first line of defense against
pathogen entry, without further invoking a hypersensitive response or SAR [39,94]. In
contrast, the expression of AtGH3 in Arabidopsis is highly specific to tissue type and de-
velopmental stage, and unspecific overexpression could lead to unintended consequences,
such as disruptions in the levels of IAA and salicylic acid (SA), which are critical for the
plant’s defense response [91,92]. Additionally, the GH3-catalyzed IAA-Asp conjugate is
hypothesized to act as a susceptibility signal [23]. While GH3 activity reduces free IAA
levels, it simultaneously results in the accumulation of IAA-Asp. The specific distribution
and balance of IAA and IAA-Asp within the plant may significantly influence the outcome
of GH3’s role in pathogen response [92].

5. Atypical Roles of Group II GH3 and IAA-Amino Acids

The exploration of Group II GH3 enzymes as IAA-acyl acid amino synthetases in 2002
marked a significant advancement in our understanding of these enzymes [11]. In addition
to the determination of their three-dimensional structures and the key amino acid sites for
enzyme activity, research has expanded their known functions to include the conjugation
of other auxins like PAA and IBA with amino acids, IAA conjugation with proteins, and the
metabolism of auxinic herbicides [95]. Furthermore, AtGH3.15, previously an undefined
member of Group III, is now recognized as an IBA-conjugating acyl acid amido synthetase.
IBA serves as a precursor to IAA, which is converted through the peroxisomal β-oxidation
pathway [96]. Intriguingly, AtGH3.13, AtGH3.14, and AtGH3.16—other members of
Group III—possess acyl acid binding sites similar to AtGH3.15, suggesting their possible
involvement in IAA homeostasis [20,95]. Here, we will discuss the atypical roles of Group
II GH3 and IAA-amino acids.

5.1. The Roles of Group II GH3 beyond the Catalyzation of IAA-Amino Acid Conjugate Formation

The capacity of Group II GH3 enzymes extends beyond the synthesis of IAA-amino
acid conjugates. Research using recombinant GH3 IAA-amino acid synthetase from pea has
revealed the enzyme’s ability to conjugate IAA not only to aspartate but also to proteins in
immature seeds. The proposition that IAA conjugation to proteins may serve a regulatory
function acting as a prosthetic group and influencing protein activity via posttranslational
modifications is a compelling avenue for further exploration [97,98]. Besides proteins,
Group II GH3 enzymes also facilitate the conjugation of PAA to amino acids. PAA, another
natural but less active auxin than IAA, exhibits unique distribution and transport charac-
teristics, implying a role in sustaining the auxin equilibrium necessary for plant cellular
processes [99–101]. Notably, PAA can stimulate GH3-dependent IAA conjugation, while
high IAA levels can suppress PAA biosynthesis, underscoring the importance of Group
II GH3 enzymes in balancing IAA/PAA ratios [99]. Moreover, this enzyme group, along
with AtGH3.17, has been implicated in the detoxification of the auxinic herbicide 2,4-DB,
suggesting their potential application in herbicide resistance strategies [102].

5.2. The Specialized Functions of IAA-Amino Acid Conjugates beyond Their Role as Auxin Stock

Previous studies found that the exogenous addition of IAA-aa and IAA both rapidly
increased content-free IAA levels and exhibited similar high growth factor phenotypes,
suggesting that IAA-aa is a storage form of IAA [103]. Subsequent studies found that these
IAA-aa, IAA-Leu, and IAA-Ala could be reversibly converted to free IAA by the action of
the hydrolases, IAA-LEUCINE RESIS TANT1 (ILR1), ILR1-LIKE proteins (ILLs), and IAA-
ALANINE RESISTANT3 (IAR3) [5,104,105]. IAA-Glu and IAA-Asp, once considered only
as degradation intermediates, are now recognized as reversible storage forms [14]. Beyond
storage, IAA-aa have been identified as possessing unique biological functions. IAA-Trp,
for instance, acts as a ‘super inactivator’ by not only consuming free IAA for its synthesis
but also antagonizing the activity of residual IAA, with IAA-Trp significantly mitigating
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root inhibition effects caused by IAA [24]. IAA-Asp has been reported to have more diverse
roles: (1) correcting the temperature sensitivity of henbane (Hyoscyamus muticus) XIlB2
(temperature-sensitive variant) cells [22]; (2) IAA-Asp directly and specifically enhance
the pea (Pisum sativum) responses to abiotic stress by increasing the antioxidant enzyme
activity and then reducing the H2O2 concentration [23]; (3) IAA-Asp as a ripening signal
in grapes (Vitis vinifera) can be perceived at a certain stage of fruit development; however,
the mechanism of sensing remains unknown [21]; and (4) IAA-Asp promotes pathogen
development in plants by regulating the transcription of virulence genes [92]. These insights
suggest that IAA-amino acids are not just byproducts of GH3 activity but are biologically
active molecules with specific roles.

6. Concluding Remarks

Our review underscores that Group II GH3 enzymes and IAA-amino acids are integral
components of plant biology, with roles extending beyond the simple conversion of free
IAA to its stored form. The functional diversity of these enzymes and their products in
plant growth, development, and stress adaptation is a testament to the complexity of plant
hormonal regulation. Each GH3 gene exhibits specific spatial and temporal expression
patterns, contributing to a nuanced regulatory network. These findings challenge the
traditional view of IAA-amino acids as mere storage forms and highlight the need to
consider their biological activity in understanding plant physiology and development.
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