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Abstract: Global food production is challenged by plant pathogens that cause significant crop losses.
Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger
is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine,
rouging infected plants, and control of natural vectors are used as the main means of disease and
pest control in garlic crops. Agricultural biotechnology, meristem-tip culture, and cryotherapy offer
solutions for virus eradication and for the multiplication of ‘clean stocks’, but at the same time,
impact the symbiotic and beneficial components of the garlic microbiome. Our research involves
the first metatranscriptomic analysis of the microbiome of garlic bulb tissue, PCR analyses, and
a biological assay of endophytes and pathogens. We have demonstrated that in vitro sanitation
methods, such as shoot tip culture or cryotherapy can alter the garlic microbiome. Shoot tip culture
proved ineffective in virus elimination, but reduced bacterial load and eliminated fungal infections.
Conversely, cryotherapy was efficient in virus eradication but demolished other components of
the garlic microbiome. Garlic plants sanitized by cryotherapy exhibited a lower survival rate, and
a longer in vitro regeneration period. The question arises whether total eradication of viruses,
at the expense of other microflora, is necessary, or if a partial reduction in the pathogenic load
would suffice for sanitized garlic production. We explore this question from both scientific and
commercial perspectives.

Keywords: Allium sativum; fungi; bacteria; potyvirus; carlavirus; allexivirus; cryopreservation;
tissue culture

1. Introduction

Global food production is challenged by plant pathogens that cause significant crop
losses [1]. Fungi, bacteria, and obligate pathogens such as viruses, viroids, or phytoplas-
mas have long threatened sustainable and profitable agriculture [2]. The danger is even
higher in vegetatively propagated horticultural crops, such as potatoes, yam, banana, and
grapes, where pathogen load accumulates from one production cycle to another. Therefore,
pathogen-free stock plants are produced in quarantine programs, and healthy propaga-
tion materials are used in nurseries and in horticultural trade [3,4]. In this context, garlic
(Allium sativum L.) is certainly one of the most challenging crops. Commercial varieties of
garlic are propagated only vegetatively. After harvest, the underground bulb is stored for a
few months and then separated into cloves that serve as propagules for the next production
cycle. This system expedites not only contamination by field and storage pathogens but
also a gradual accumulation of the pathogen load. The disease compendium of garlic
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includes bacteria (e.g., Pseudomonas Pectobacterium), fungi and oomycetes (Penicillium,
Botrytis, Peronospora, Alternaria, Fusarium), parasitic nematodes, phytoplasmas, and
viruses [5]. Most pathogens live in the plants for years and might severely damage a garlic
crop. The list of pathogens is constantly growing. Sclerotium cepivorum, Bacillus siamensis,
and Streptomyces setonii were recently detected in garlic in different sites in China [6]. In
Argentina, the world’s second-largest exporter of garlic, Penicillium viridicatum, P. hirsutum
and P. allii are the causal agents of blue mold [7]. In Egypt, isolates of Fusarium oxysporum,
F. proliferatum and F. solani caused the highest rates of clove rot [8].

Viral infections in garlic are regarded as the most devastating [9]. Currently, the
garlic virome includes at least 20 members [10] which vary in virulence and the degree
of damage they cause to the crop. Garlic viruses A-to-D (GVA, GVB, GVC, and GVD),
Garlic virus X (GVX), and Garlic mite-borne mosaic virus (GMbMV) belong to allexiviruses
and are transmitted by eriophyid mites. Potyviruses Garlic mosaic virus (GMV), Leek
yellow stripe virus (LYSV) and Onion yellow dwarf virus (OYDV) are transmitted by
aphids. Carlaviruses, transmitted by aphids or other insects, include Garlic latent virus
(GLV), Garlic common latent virus (GCLV) and Shallot latent virus (SLV). Iris yellow
spot virus (IYSV) (Tospoviridade) is transmitted by thrips and infects both garlic and
onion [11]. Potyviruses are recognized as the most dangerous pathogens, but Allexiviruses
and Carlaviruses also weaken garlic plants and reduce crop productivity [12,13].

Prophylaxis (quarantine, roguing infected plants, and control of natural vectors) is the
main means of pathogen restriction [14]. While in other crops, modern defense strategies
of breeding for genetic resistance (e.g., transformation, gene editing or cross-protection)
are under development, they are still impractical for garlic, due to the absence of reliable
regeneration methods. Therefore, the main strategies to keep propagation stock clean are
pathogen eradication and protected cultivation of “clean” stocks.

In the absence of sexual reproduction of garlic by seed, pathogen-free plant material of
garlic might be achieved by in vitro procedures, such as meristem culture, thermotherapy,
chemotherapy, or cryotherapy [15,16]. Taşkin et al. [17] reported that meristem culture
could completely eradicate garlic’s virulent viruses, OYDV and LYSV, while shoot tip
culture was less effective and resulted in the presence of 73% and 87% of OYDV and
LYSV in treated plants, respectively. Vitrification cryo-methods have been developed for
garlic gene bank collections [3,18]. Cryotherapy might eliminate plant pathogens such as
viruses, phytoplasmas and bacteria by brief immersion of shoot tips in liquid nitrogen.
Healthy plants are regenerated from the surviving pathogen-free young meristematic
tissue. Although shoot tip regeneration rates are low after cryotherapy in comparison with
traditional meristem culture, explant excision is easier and the regenerants are pathogen-
free [19].

After in vitro procedures, three to five years of ex vitro propagation are required
to obtain a sufficiently large population for commercial use [20,21]. Over the course of
these seasons, there is the possibility of reinfection, and in any case, field production will
contaminate the material again.

The question arises whether total eradication of viruses (and other microflora) is
necessary, or if a partial reduction in the pathogenic load would be preferable for sanitized
garlic production.

The concept of the plant as a holobiont suggests that host plants interact with the
microbiotic community and that beneficial and symbiotic microorganisms play an integral
role in the plant’s metabolism, nutrient uptake, stress tolerance, pathogen resistance, and
other physiological processes [22,23]. Plant microbiomes include epiphytes that colonize
the exterior surfaces of plants and endophytes that penetrate the epidermis and colonize
intercellular and intracellular space [24]. While viruses are mostly destructive pathogens,
they are also an integral part of a plant’s microbiome and may make positive contributions
to balance in a plant’s life [25]. Beneficial or mutualistic symbioses of viruses with various
host organisms, including bacteria, insects, fungi and plants have been discovered and
reported [26]. However, a major contradiction exists between the phytobiome approach
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and the practical need to eradicate pathogens from agricultural crops. This issue is essential
to numerous vegetatively-propagated crops, such as potatoes, cassava, citrus, cacao, and
many others [27].

In this report, we employed a metatranscriptomic approach to identify endophyte taxa
in garlic bulb tissues. This method has already enabled the identification of a high number
of endophytes in the living plant tissues of other plants, e.g., grapes [28] and oats [29].
Using RNA sequencing (RNASeq) to record expressed transcripts provides a closer look
at active members of a plant’s microbiome [30]. We have also used culture-dependent
methods and identification of bacteria by 16S rRNA gene sequence analysis and PCR to
detect fungi, bacteria, and viruses in the stored garlic bulbs.

Our results reveal the interface between the complex approach to the plant as a
holobiont and the practical need for pathogen eradication from garlic. We estimate the
garlic microbiome as a very large and variable community and show how different in vitro
sanitation techniques alter the garlic microbiome.

2. Results
2.1. The Mycobiome of Garlic

The full list of fungi associated with the transcriptome of garlic bulbs consisted of
96 species from 73 genera (Figure 1). Global analysis shows that garlic bulbs were enriched
with saprophytic Dacryopinax (Dacrymycetaceae) (12% of read counts). The genus As-
pergillus that causes storage decay in garlic is represented by 11 species. Amongst the
five species of Fusarium, the species F. proliferatum was dominant, accounting for 89.2%
out of all Fusarium reads. Other species of Fusarium found were F. graminearum (9.74%),
F. oxysporum (0.89%), F. fujikuroi (0.1%) and F. poae (0.03%).
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Figure 1. Fungal genera associated with the transcriptome of garlic ‘Shani’. Contigs homologous to
fungi were isolated, merged for isoforms of very similar proteins, filtered for identification degree
(above 80%), and compared with the NCBI database. Insert: account of five Fusarium species.

Fungal biota also included 10% Talaroromyces (formerly Penicillium), which has a
large distribution in a wide range of habitats and is considered an important pathogen [31],
as well as Microbotryum (8%). Other pathogenic genera were found in smaller amounts.
Interestingly, the entomopathogenic fungi Metarhizium and Acaromyces were present in
3 and 2% respectively. About 13% of genera are presented in quantities of less than 1%
(Figure 1).
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The biological assay of exophytic and endophytic fungi in garlic cloves confirmed
their presence in 87% of the samples of external segments, whereas internal segments
of cloves from the warehouse showed fungal development in only 13% of the samples
(Table 1). Of the cloves stored in the warehouse, about 30% of all samples developed
only one fungal genus, while 13% were infected with two or more species. Mixed fungal
infections originated only from the external samples.

Table 1. Percentage of fungi in the external and internal sections of garlic ‘Shani’ cloves.

Fungal Genus
Warehouse, Ambient Conditions Storage at Dark, 4 ◦C for 8 Months

Internal External Internal External

Penicillium 13% 60% 19% 84%

Aspergillus 0% 53% 6% 34%

Fusarium 0% 20% 3% 38%

Mucor 0% 0% 0% 3%

No fungi 87% 13% 72% 3%

Storage of cloves at 4 ◦C for eight months resulted in an increase in fungal infection.
Fungi were found in 97% and 28% of the external and internal tissues, respectively, while
at least 30% of samples were infected by a combination of two or even three fungal genera
(Table 1).

Visual identification of fungi according to the structure of hyphae and conidia predom-
inantly found in three genera: Penicillium, Aspergillus, and Fusarium (Figures 2 and 3).
Mucor was also found, but not commonly.
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Figure 2. Representative samples of mycoflora of garlic ‘Shani.’ The bulbs were cultivated in an
experimental field in Israel and subsequently stored for eight months in an open shed. (A) Epiphytic;
(B) Endophytic. Visual identification of Aspergillus, Mucor, Penicillium, and Fusarium.
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Figure 3. Representative images of mycelium tested on a PDA medium. Aspergillus (A); Fusarium
(B); Penicillium (C); Mucor (D). Scale bar (A,C)—50 µm, (B,D)—20 µm.

2.2. The Bacterial Community of Garlic

The full list of bacteria genera found to be associated with garlic transcriptome consists
of 125 species from 79 genera. Transcriptome analysis of clove-associated bacteria found an



Plants 2023, 12, 4125 5 of 17

abundance of Enterococcus (27%), Brachybacterium (11%), Cellulosimicrobium (7%), and
Vibrio (5%). Two genera that include pathogens of garlic (Enterobacter and Pseudomonas)
were found only in small amounts. We were able to identify P. fluorescens, P. savastanoi
and P. syringae, among others. At least 25% of species were found in less than 1% of reads
(Figure 4).
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teobacteria include Vibrio, Pseudomonas, and Enterobacter. Contigs homologous to bacteria were
isolated, merged for isoforms of similar proteins, filtered for identification degree (above 80%), and
compared with the NCBI database.

We next estimated the culturable bacterial microbiome by isolating bacteria from garlic
bulbs stored at 4 ◦C and inoculation on LB media (a non-selective media for bacteria) and
MS medium with 3% sucrose, which is typically used for garlic tissue culture. The MS
was used to estimate the presence of potential bacterial contaminants that can utilize the
media, and therefore, may have a destructive effect on garlic tissue culture. We observed
bacteria on 78% of samples on LB medium and 34% on MS medium, with surprisingly low
variability, mostly Bacillus spp. and Pseudomonas spp. of the fluorescence group (Figure 5).
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Figure 5. Representative samples of bacteria in garlic ‘Shani’. The bulbs were cultivated in an
experimental field in Israel and subsequently stored for eight months in an open shed. Visual
identification revealed a strong predominance of Bacillus.

2.3. Virome of Garlic

Global analysis of transcriptome-associated viruses shows a predominant presence
of the Allexiviruses GVA, GVC, and GVD, but no Poty- or Carla viruses (Figure 6). PCR
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analysis for the presence of a viral complex in the stored garlic bulbs identified Allexivirus
in 94%, LYSV in 47% and OYDV in 6% of the samples (Figure 7).
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Figure 7. Virus detection in ‘Shani’ cloves using RT-PCR. The bulbs were cultivated in an experimental
field in Israel and subsequently stored for eight months in an open shed. (A) Leek yellow strip virus
(LYSV); (B) Onion yellow dwarf virus (OYDV), (C) Allexiviruses. L—Ladder, P—Positive control,
N—Negative control.

2.4. In Vitro Sanitation and Pathogen Eradication

More than 80% of shoot tips of ‘Shani’ cultivated in vitro produced leaves 3–7 cm
in length during two weeks of cultivation, and most of them formed roots without any
additional treatment (Figure 8A). After two months of cultivation in vitro, these plantlets
were ready for ex vitro hardening. At the end of the first hardening cycle, 90% of the ex
vitro regenerants produced relatively large bulbs and entered dormancy after 6 months of
ex vitro cultivation (Figure 8C).

On the other hand, cryotherapy resulted in a much lower survival rate of garlic
explants (60%) and slower development of regenerants (Figure 8B). Only 20% of the
regenerants were ready for hardening after six months of in vitro cultivation. Hardening,
acclimation and growth for 10–16 months resulted in small dormant bulbs 0.5 cm in
diameter (Figure 8D).

Shoot tip culture completely eradicated fungal infection, while in some cryotherapy
regenerants fungi, mostly Penicillium, were identified, probably as a secondary infection
after regeneration and cultivation period.

We next assessed the efficiency of cryotherapy in the elimination of endophytic bacteria.
To do so, treated and untreated explants were surface sterilized, plated on LB media, and
monitored for the appearance of bacteria after seven days. We observed a reduction in
the presence of bacteria in the post-cryotherapy explants. Without cryotherapy treatment,
bacteria appeared in 60% of explants, while after cryotherapy treatment bacteria appeared
in 40%. In order to examine whether cryotherapy selectively affected the distribution of
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bacterial genera in explants, we characterized the bacterial isolates morphologically and
identified the isolates by amplifying and sequencing the 16S rDNA (Table S1). The diversity
of culturable bacteria in garlic explants was extremely low and was composed of Bacillus
sp. and Pseudomonas sp. Interestingly, P. gessardii was repeatedly isolated from samples
post cryotherapy treatment but was not found in the untreated explants.
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Figure 8. In vitro cultivation of garlic ‘Shani’. Scale = 2 cm (A) Isolated culture of shoot tips after seven,
11, and 14 days of regeneration. Fast formation of green leaves and roots is visible; (B) Regeneration
of garlic explants 26 days after cryotherapy and cultivation in Petri dishes. Only several regenerants
develop small leaf primordia; (C) Dormant bulbs produced after hardening and acclimation of shoot
tip regenerants grown ex vitro for 6 months; (D) Dormant bulbs produced after hardening and
acclimation of cryotherapy regenerants grown ex vitro for 16 months.

Virus detection in the post-sanitation samples in comparison with intact garlic cloves
showed higher efficiency of cryotherapy in comparison with shoot tip culture (Figure 9,
Table S2). Cryotherapy completely eliminated LYSV and OYDV in 50 and 70% of samples,
respectively. Still, although viral infection decreased in the post-cryo regenerant population,
some regenerants remained infected. Shoot-tip culture practically did not eradicate viral
infection (Figure 9).
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3. Discussion
3.1. Garlic Bulb as a Holobiont

The garlic bulb represents an assemblage of plant hosts with numerous species of
fungi, bacteria, and viruses that might make significant contributions to the plant’s life and
contribute to agriculture sustainability [32].

However, the assessment of microbiomes associated with garlic tissues is challenging.
Since garlic possesses high antibiotic activities due to the presence of active S-compounds,
e.g., allicin [33,34], the routine biological assay of microflora using crushed tissue is not
efficient. Upon tissue damage, allicin is produced from the amino acid alliin (S-allylcysteine
sulfoxide) in a reaction that is catalyzed by the enzyme alliinase and can inhibit the prolifer-
ation of both bacteria and fungi [35]. In intact tissue, cell compartmentalization of alliin and
alliinase restricts internal allicin production, and therefore, the symbiotic viruses, bacteria
and fungi can survive in the internal tissues.

The metatranscriptomic approach used in this study resulted in the identification of
numerous endophyte taxa in garlic tissues. This method is a cost-effective option to capture
the biodiversity and abundance of samples [30]. We also enriched transcriptomic data
by using culture methods, identification of bacteria by 16S rRNA gene sequence analysis,
and PCR. It is still possible, however, that only microorganisms with higher resistance to
allicin were able to survive sample preparation [36], so we may not have seen a complete
representation of the microorganisms present.

Fungi are the most abundant components of the garlic holobiont. Metatranscriptome
analysis reveals a large array of saprophytic and pathogenic fungal genera associated with
plant tissues (Figure 1). Some have potentially deleterious effects, whereas others might
be beneficial due to complex interactions with the plant, including the promotion of plant
growth, inducing resistance and immunity, and assisting in the assimilation and transloca-
tion of nutrients [37]. The interaction of most of them (e.g., Dacryopinax which is found
mainly in warm regions and has mycorrhizal association), [38], with the garlic plant is not
clear yet. Others are known as devastating pathogens (Aspergillus and Fusarium), [39].
Interestingly, data have indicated the presence of two fungi with acaropathogenic abili-
ties [40,41]. These fungi may induce plant immunity, growth promotion and suppression
of the bulb mite Rhizoglyphus robini [42].

The bacterial microflora associated with garlic bulbs is also highly variable, with
a predominance of Enterococcus (Figure 4). Although Enterococci are found mainly in
animals, their presence on the plant surface has also been described [43]. A number of
Enterococcus strains produce antimicrobial compounds including bacteriocins that are
considered probiotics [44,45]. Antibiotic-resistant strains of enterococci have been found in
animal hosts, plants, soil and water, and some possess novel resistance mechanisms [46].
The interplay of this group of bacteria with garlic needs further investigation to understand
whether they are resistant to garlic S-compounds and their antibiotic traits.

Other endophytic bacteria (Brachybacterium, Cellulosimicrobium, and Bacillus) are
known for plant growth promotion and antifungal activity [47]. In garlic, 2% of the
bacterial pool was mapped to four Bacillus species. Symbiotic Bacillus spp. are of special
interest since they improve plant response to pathogen attacks by triggering induced
systemic resistance [48]. Thus, root-associated B. saurashtrense promotes the growth of
Salicornia [49] and modulates physiological activity and abiotic stress in peanuts [50].
In garlic, Bacillus isolates have already been applied as biocontrol agents of Fusarium
clove rot [51]. Inoculation of corn with Bacillus from the garlic rhizosphere promoted
corn growth and yields and also inhibited in vitro development of the devastating parasite
Sclerotium cepivorum [52]. Similarly, the inoculation of garlic meristems with Enterobacter
and Burkholderia promoted the growth and physiological traits of garlic [53]. On the other
hand, pathogenic Enterobacter caused decay in garlic production [54], and Pseudomonas
species triggered garlic rot [55,56]. Therefore, bacterial endophytes include both negative
and beneficial agents and their interaction with living garlic tissue is not clear yet.
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Plant viruses are transmitted both horizontally and vertically, and similar to other
vegetatively propagated crops (e.g., potato) [57], garlic viruses are spread within and
between plant populations by aphids and thrips and during clonal propagation. Our
recent studies have shown that garlic viruses are also transmitted by true seeds from
infected mother plants and that some of them might even be integrated into the garlic
genome [58]. Potyviruses are regarded as pathogenic agents in garlic [13], but our analysis
of transcriptome-associated viruses shows a predominant presence of the Allexiviruses,
while Poty- or Carla viruses were identified only by PCR analysis (Figures 6 and 7). Fa-
vorable environmental conditions and proper production techniques can diminish the
appearance and spread of viruses in commercial fields [59]. It is, therefore, possible that
garlic plants can better handle a viral infection when other pathogens are being controlled.

3.2. Complete Elimination of Microflora by In Vitro Sanitation Is Not Essential for
Garlic Production

Ridding plants of infections is important for food crop production and consumption,
and a variety of agronomic and biotechnological methods have been developed for this pur-
pose. However, the contradictions between the holobiont approach and the practical needs
of pathogen eradication exist, especially in vegetatively propagated crops, such as potatoes
or bananas [3]. In garlic, it is commonly accepted that healthy plant material and higher
productivity require complete virus eradication [60,61]. However, biotechnological means
are rarely used in commercial practice because the procedures are expensive, the survival
rate of the virus-free propagules is low, and in-vitro multiplication is challenging [13,62].

Numerous publications are dedicated to in vitro sanitation as an efficient method of
virus eradication in garlic, but other components of the microbiome were neglected in
these studies. We employed two methods for in vitro sanitation—simple shoot tip culture
and the more complicated and expensive cryotherapy. Both methods did not eradicate the
virus load completely, but the number of infected regenerants was significantly lower after
cryotherapy in comparison with shoot tip culture. In addition, our sanitation treatments
reduced the bacterial load in the regenerants, but Bacillus and Pseudomonas spp. were still
found in the tissues (Supplementary Table S1). Bacterial endophytes play both negative
and positive roles in plant-pathogen interactions and their eradication may result in the
decline of plant immune systems.

We found that the garlic mycobiome is located mainly in the external clove tissues
(Table 1). Shoot-tip culture eradicated fungal flora from garlic regenerants, and can, there-
fore, be used as a sanitation procedure against fungal infections. When we employed shoot
tip culture, we eliminated mainly pathogenic fungi from the external tissues. This process
will make the garlic plant stronger with the ability to withstand other pathogens.

Taken together, shoot tip culture was not effective in virus elimination, but reduced
bacterial load and eliminated fungal infections. This method resulted in fast explant
regeneration and large and healthy bulbs in the first production cycle (Figure 8). On the
other hand, cryotherapy is efficient in virus eradication but also kills other components
of the garlic microbiome. Garlic plants sanitized by cryotherapy had a low survival rate,
and a longer in vitro regeneration period [15,63] (Figure 8). Similarly, a large screening
of the European garlic collections showed that virus elimination in vitro correlated with
meristem size: 29% of viruses were eliminated in small meristem size compared to 8% for
the larger size. The regeneration from the meristems was the opposite: 16% vs. 90% from
small and large meristems, respectively [64].

From a commercial perspective, shoot tip culture might result in ca. 500,000 propagules
from 100 explants in five years (Figure 10). Using cryotherapy, only about 10,000 propagules
would be obtained by the end of five seasons from the initial 100 explants (Figure 10).
Although post-cryotherapy regenerants could be virus-free, after a few years of commercial
production they would be re-infected anyway and garlic stocks would need to be replaced
by new sanitized propagation material. Therefore, even if garlic regenerants from shoot tip
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culture are not “totally free” of pathogens, they might provide a more efficient source for
garlic production (Figure 10).
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Figure 10. A trade-off between two pathways for pathogen eradication in garlic. Shoot tip culture
is a fast and effective method, but it only partially reduces the pathogen load. On the other hand,
cryotherapy is a powerful tool for pathogen eradication but is less efficient commercially.

In conclusion, producing robust and valuable crops in sustainable systems without
employing strong interventions to the plant’s biology is one of the main challenges of
modern horticulture. Complete eradication in vitro eliminates both pathogenic and ben-
eficial microbiota but does not guarantee immunity against future infections. Therefore,
fast sanitation of garlic plant materials using the cultivation of shoot tips in vitro might
provide an efficient alternative to more expensive techniques. The focus of garlic disease
control should shift from the complete eradication of viruses to the study of the naturally
occurring microbiome and identifying possible tools to protect the beneficial phytobiome
from destruction.

4. Materials and Methods
4.1. Plant Material

Bulbs of garlic (Allium sativum L.) cv ‘Shani’ were used in this study in 2020–2022. Plant
material was grown at Avnei Eitan Research Station in Northern Israel and in net-houses
of the Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion,
Israel. Cloves were planted in November and bulbs were harvested in May. Common
agriculture practices were applied during the growing season. In ARO plants were grown
in a 30% shaded insect-proof net-house. Cloves were planted in 40 L plastic containers
(40 cloves/container). The growing medium consisted of 50% ground coconut husk: 20%
volcanic tuff particles: 20% peat: 10% compost (Even Ari, Israel). Irrigation was augmented
with “Shefer” liquid fertilizer (N:P:K = 59:35:94 g/L, Dshanim, Israel). After harvest in
May, bulbs were cleaned and stored in an open warehouse in ARO.

For sanitation experiments, bulbs harvested in May 2021 were stored either in an
open warehouse or at 4 ◦C. After eight months in storage, 32 bulbs were numbered and
separated into cloves. From each bulb, we tested cloves for (1) fungal infection in four
cloves; (2) bacteria presence in two cloves; (3) PCR detection of Onion yellow dwarf virus
(OYDV), Leek yellow stripe virus (LYSV), Carlaviruses and Allexiviruses in one clove. The
remaining cloves were divided between sanitation by cryotherapy and shoot tips in vitro.
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4.2. Garlic Microbiome
4.2.1. Transcriptome Analysis

To assess a large number of in-plant endophytes, we used a culture-independent
approach and analyzed the full transcriptome catalog of garlic bulb tissues [65]. The
bulbs of the garlic cultivar ‘Shani’ were produced in a commercial field in Israel, using
regular growth practices. Internal buds and storage leaves were sampled in three replicates,
10 cloves from different bulbs in each replicate, pooled together and dipped immediately
in liquid nitrogen, thereafter stored at −80 ◦C until RNA isolation.

For RNA isolation and sequencing procedures, total RNA was extracted according
to the CTAB protocol [66]. Sample purity and integrity were verified by RNA 6000 Nano
Assay with an Agilent 2100 BioAnalyzer (Agilent Technologies, Waldbronn, Germany)
with a minimum RNA integrated number value of 7, and then samples were treated with
DNase (Epicenter, Madison, WI, USA) according to the supplier’s instructions. Total RNA
samples were shipped to the Roy J. Carver Biotechnology Center, W.M. Keck Center for
Comparative and Functional Genomics, Urbana, IL, USA, for library preparation and
sequencing. Twelve libraries of 100-nucleotide-long single-ended RNA sequences were
constructed and used for transcriptome sequencing using Illumina HiSeq 2000 Illumina
Inc, SanDiego, CA and TrueSeq protocols. The RNA-Seq data were deposited in the NCBI
sequence read archive (SRA) as bioproject PRJNA384121 and biosample SAMN06828997.

A total of 122.9 million cleaned reads, obtained after processing and cleaning, were
assembled de novo using Trinity software (v2.9.1) [67]. The assembled transcriptome was
used for a search against the NCBI non-redundant (nr) protein database, using DIAMOND
v.3 software [68]. The results were exported to Blast2GO version 4.0 [69] for taxonomy
assignments. To filter the transcriptome assembly, a set of criteria were applied: (1) ex-
tracting contig homology to bacteria, fungi, or viruses; (2) merging contigs of isoforms of
very similar proteins; (3) selecting isoforms above 80% identification degree, (4) comparing
contigs with known data on NCBI database. Clean reads were mapped on the bacteria,
fungi, and virus contigs using the BWA-MEM algorithm [70]. SOAP coverage (version
2.7.7) was used for depth estimation of each contig [71]. The list of viruses, bacteria, and
fungi was verified by the APS list of Diseases of Onion and Garlic [72].

The top 10 results from bacteria and fungi lists generated in our transcriptome analysis
were chosen for comparison in the samples before and after in vitro sanitation procedures.

4.2.2. Assessment of Fungal Flora

Mycoflora were assessed separately for the external and internal clove tissue of
32 bulbs. Cloves were peeled to remove the dry external scales and rinsed under run-
ning water for one minute. For the external tissue sampling, the bottom part of a basal
plate was cut into thin discs. To assess the infection of the inner tissues, cloves were
washed with soap and dipped in 70% ethanol for one minute. Under sterile conditions,
the material was then submerged for 20 min in 3% sodium hypochlorite solution with
0.01% v/v Tween 20, rinsed with sterile distilled water, and cut into slices of the basal
plate and the lower parts of the leaf primordia. Four to six slices were placed in 90 mm
Petri dishes containing potato dextrose agar (PDA, 39 gr/L) and 1µg/mL chloramphenicol
(Sigma, Merck KGaA, Darmstadt, Germany), pH 5.6, and kept in the dark at 25 ± 1 ◦C
for seven days until fungal colonies were evident [41]. Then, a piece of mycelia from each
colony was aseptically transferred to a fresh culture media for further fungal propagation
and identification. Hyphae-bearing conidiophores were sampled from each isolate for
morphological characterization by light microscopy as per Lacey [73].

4.2.3. Assessment of Bacterial Flora

The routine procedure for plant sample preparation includes incubation of crushed
tissues for seven days at 27 ◦C. However, we failed to culture any bacteria from garlic
tissue following this procedure. Therefore, surface-sterilized cloves were cut vertically into
quarters and placed on Petri dishes containing two different media: 15 mL Luria-Bertani



Plants 2023, 12, 4125 12 of 17

(LB, 20 g/L) and Cycloheximide (1 mL/L) [74], or 15 mL of 4.4 g/L MS [75], agar (9.5 g/L),
sucrose (30 g/L), pH 6. Plates were kept at 27 ◦C in the dark, for seven days.

For identification of bacteria by 16S rRNA gene sequence analysis, bacterial isolation
spreads of visually different colonies were cultivated on fresh media for 24–48 h. Isolates
were diluted in double distilled water and heated to 95 ◦C for five minutes. 1 µL of
diluted samples was used as templates for PCR, mixed with 12.5 µL Q5® High-Fidelity
2X Master Mix chemical, not equipment, 1.25 µL Uni16S—U1492R (GGT TAC CTT GTT
ACG ACT T) and Nuclease-Free Water to 25 µL total. The amplification protocol consisted
of three minutes at 94 ◦C, then 30 cycles of amplification as follows: denaturation at
94 ◦C for 30 s, annealing at 50 ◦C for 30 s, and extension at 72 ◦C for 120 s. The PCR
product was loaded on an agarose gel composed of Agarose 1% (CLS-AG500) Cleaver
Scientific Ltd. Rugby, UK diluted in an electrophoresis buffer Tris Acetate-EDTA (TAE)
(Biological Industries, Israel). Amplicons were purified using Gel/PCR DNA Fragment
Extraction Kit (Geneaid, Taiwan) and sequenced by Sanger technology (Hylabs, Rehovot,
Israel). Identification of bacterial sequences was conducted by using National Center for
Biotechnology Information (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=
blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome (accessed on 1 April 2023)).

4.2.4. PCR Detection of Poty-, Allexi- and Carlaviruses

RNA extraction was performed using the AccuPrep viral RNA Extraction Kit (Bioneer
Corporation, Daejeon, Republic of Korea), according to the manufacturer’s instructions.
For cDNA synthesis, the RevertAid Reverse Transcriptase cDNA Synthesis Kit was used
according to the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA,
USA). cDNA samples were kept at 4 ◦C before the PCR reaction.

For LYSV and OYDV amplification, the relevant viral segments were obtained by
enzymatic reaction of Hy-taq ready mix (×2) 10 µL added with Forward 9147 or Forward
9565 primer 1 µL, DDW 7 µL, and a Reverse primer RS1 1 µles and added to 1 µL of sampled
cDNA. Specific universal primer RS1 enables the isolation of Potyviral conserved genomic
sequences, including LYSV and OYDV. The primers were selected for the demarcation of
specific segments (Table 2).

Table 2. Primers used in the RT-PCR. Source: NCBI (National Center for Biotechnology Information)
and D. Gelbart, unpublished, 2014.

Target Virus Primer Sequence (5′–3′) Expected
Fragment Size, bp

RS1
Conserved
Potyvirus
sequence

9725R 5′- TGC TGT GTG CCT CTC CGT GTC CTC -3′

LYSV Forward 9147 5′- GAG GAA AGT CAA TAC TTA AC-3′ 578

OYDV Forward 9565 5′- GAG GAT GCA CAA TCA AG - 3’ 714

Degenerative
Allexiviruses

Forward 7457 5′- GCW TGG RCB TGC TAY CAC AAY GG -3′
725

Reverse 8182 5′- CYT TCA GCA TRT AGC TTA GCR GGT CC - -3′

Carlaviruses
Forward 5296 5′- CTG AAT CAG ATT ATG AAG CTT TTG ATG C- 3’ 949

Reverse 6246 5’ - CAA TCA CCC AGC TGG TAT TCG TC - 3’

Allexivirus amplification was conducted by enzymatic reaction of Hy-taq ready mix
(×2) 10 µL added with Forward 7457 primer 1 µL, DDW 7 µL and Reverse primer 8182,
added to 1 µL of sampled cDNA. Degenerative primers were used to amplify all Allex-
ivirus strands.

Carlavirus amplification was conducted by enzymatic reaction of Hy-taq ready mix
(×2) 10 µL added with Forward primer 5296 1 µL, DDW 7 µL and Reverse primer 6246,

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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added to 1 µL of sampled cDNA. Carlavirus primers were used to amplify Garlic latent
and Garlic common virus.

The reaction mix and samples were subjected to 94 ◦C for five minutes. For Potyviruses,
the reaction mixture was subjected to 38 cycles of amplification as follows: denaturation at
94 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 60 s. For Allexi- and
Carlaviruses the amplification protocol consisted of 40 cycles of amplification as follows:
denaturation at 94 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 60 s, to
end the annealing process. The PCR product was loaded on an agarose gel composed of
Agarose 1.7% (CLS-AG500) Cleaver Scientific Ltd. and diluted in TAE (Biological Industries,
Beit Haemek Israel), 1 kb. DNA ladder (Thermo Fisher Scientific, Walthma, MA, USA) was
used as a size scale [76]. Two controls were used, (1) negative—without cDNA but with
an addition of DDW 1 µL, and (2) positive—viral plasmids produced by [D. Gelbart, 2020,
pers. comm.].

4.3. Sanitation Procedures In Vitro
4.3.1. Cryotherapy

The procedures include cutting the clove under sterile conditions to excise a 1 mm2

explant of the apical meristem [15,77].
In the preliminary experiment, we optimized the conditions of tissue vitrification prior

to submerging in liquid nitrogen. For that, four groups of 40 explants each were treated with
Plant Vitrification Solution PVS3 before submerging to liquid nitrogen as follows: (1) PVS3
50% w/v sucrose and 50% w/v glycerol solution, sterilized for 15 min in the autoclave
(121 ◦C); (2) PVS3 50% w/v sucrose and 50% w/v glycerol solution, sterilized by syringe
filter (PVDF membrane, 0.45-micrometer pore size); (3) PVS3 40% w/v sucrose and 40% w/v
glycerol solution, sterilized by syringe filter; (4) Control group was treated by filtered PVS3
50% w/v sucrose and 50% w/v glycerol, but without submerge to liquid nitrogen.

Number of regenerants was counted two weeks after cryotherapy. The survival
rate of the explants after cryotherapy with 50% (w/v) sucrose and 50% (w/v) glycerol,
serialized by 15 min autoclave or syringe filter was 20–25%). At the same time, a diluted
version of PVS3 in concentration of 40% (w/v) sucrose and 40% (w/v) glycerol and filter
sterilization resulted in a survival rate of 60%, similar to that of the explants exposed to the
full protocol but without cryo-procedures in LN (control). Therefore, PVS3 in 40% (w/v)
sucrose and 40% (w/v) glycerol concentration sterilized by syringe filter was chosen to be
for ‘Shani’ cryotherapy.

In the main experiments, the explants from the apical meristems were placed in Petri
dishes with 4.4 g/L MS medium supplemented with sucrose 100 g/L, agar 9.5 g/L, Indole-
3-acetic acid (IAA) 100 µL/L, 6- (γ, γ-Dimethylallylamino) Purine (2iP) 500 µL/L, pH 6.
The plates were kept in a dark room at 20 ◦C for 24 h. The next day the explants were
moved to 2 mL cryotubes, 10 explants each. One ml of sterile loading solution (0.4 M
sucrose + 2M glycerol + 4.4 g/L MS, with pH set to 5.8) was added to the cryotubes for
20 min. Then the loading solution was replaced by 1 mL of sterile PVS3 40% (0.58 M
sucrose + 2.16 M glycerol + 4.4 g/L MS) sterilized by syringe filter (PVDF membrane,
0.45-micrometer pore size).

Cryotubes were slightly shaken and allowed to rest at room temperature for 2 h. The
PVS3 was replaced by fresh 0.5 mL PVS3 and the cryotubes were submerged in liquid
nitrogen for one hour, and then placed in a 40 ◦C water bath for two minutes. The defrosted
PVS3 was removed and 1 mL of sterile sucrose medium (1.2 M sucrose + 4.4 g/L MS,
pH 5.8) was added for 10 min. Then the medium was removed and explants were placed
on Petri dishes containing 4.4 g/L MS medium supplemented with sucrose 30 g/L, agar
9.5 g/L, IAA 100 µL/L, 2iP 500 µL/L, pH 5.8. Plates were kept in the dark at 20 ◦C for
seven days before moving to a 10/14 light cycle, under fluorescent lamp G13 36 W 6400 K,
light intensity 2700 mL. this is standartd lamps, we purchase them on-line
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4.3.2. Shoot Tip Culture

Shoot tips of 1–1.5 mm2 were excised from surface-sterilized cloves, introduced into
ventilated magenta boxes with 40 mL MS medium 4.4 g/L supplemented with sucrose
30 g/L, agar 9.5 g/L, IAA 100 µL/L, 2iP 500 µL/L, pH 6, and grown at 20 ◦C and 10/14 h
light/dark cycle, under fluorescent lamp G13 36 W 6400 K, light intensity 2700 mL.

4.3.3. Post-Culture Procedures No Conclusion Section in This Paper

After 40 days of regeneration after cryotherapy or shoot tip culture, segments of the
new leaves were sampled for pathogen identification.

For hardening, the regenerants were transplanted into tray cells with potting mixture
and grown in the chambers at 20 ◦C and 80–90% humidity [20]. Plantlets have been
acclimatized for 2 weeks and then transplanted into 1 L pots with planting mixture (50%
ground coconut husk: 20% volcanic tuff particles: 20% peat: 10% compost (Even Ari, Beit
Elazari Israel) and grown in an insect-proof net house in ARO the Volcani Center.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12244125/s1, Table S1: Culturable bacteria isolated from
garlic shoot tip after cryotherapy treatment; Table S2: PCR detection of Potyviruses LYSV and OYDV,
Allexiviruses and Carlaviruses in garlic tissues prior to in vitro culture, and following sanitation via
shoot tip culture and cryotherapy. 32 garlic bulbs was separated into cloves and each genotype/clove
served as an explant in different in vitro experiments. + detected; - not detected.
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