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Abstract: Short-term drought events occur more frequently and more intensively under global
climate change. Biochar amendment has been documented to ameliorate the negative effects of
water deficits on plant performance. Moreover, biochar can alter the soil microbial community,
soil properties and soil metabolome, resulting in changes in soil functioning. We aim to reveal the
extent of biochar addition on soil nutrients and the soil microbial community structure and how
this improves the tolerance of legume crops (peanuts) to short-term extreme drought. We measured
plant performances under different contents of biochar, set as a gradient of 2%, 3% and 4%, after an
extreme experimental drought. In addition, we investigated how soil bacteria and fungi respond to
biochar additions and how the soil metabolome changes in response to biochar amendments, with
combined growth experiments, high-throughput sequencing and soil omics. The results indicated
that biochar increased nitrites and available phosphorus. Biochar was found to influence the soil
bacterial community structure more intensively than the soil fungal community. Additionally, the
fungal community showed a higher randomness under biochar addition when experiencing short-
term extreme drought compared to the bacterial community. Soil bacteria may be more strongly
related to soil nutrient cycling in peanut agricultural systems. Although the soil metabolome has
been documented to be influenced by biochar addition independent of soil moisture, we found
more differential metabolites with a higher biochar content. We suggest that biochar enhances the
resistance of plants and soil microbes to short-term extreme drought by indirectly modifying soil
functioning probably due to direct changes in soil moisture and soil pH.

Keywords: biochar; resistance; soil; microbe; drought

1. Introduction

Drought events have been occurring more frequently recently in many regions of
the world under the background of climate change [1], with, in particular, more frequent
short-term and severe droughts [2,3]. As a natural hazard, drought induces continuous
negative and severe impacts on terrestrial ecosystems [4], including agroecosystems [5]. Soil
water deficit induced by drought reduces the performance of plants in many aspects [6,7],
though plants can shift their morphological, physiological and molecular processes in
response to drought [8–10]. Research has found that drought can influence the quality
and quantity of root exudates [11]. Drought would cause an increase in the water use
efficiency but a decrease in dry matter yields [12,13]. In legume plants, which usually exhibit
dependable mutualism with rhizomes, their large nodules might enhance their resistance
to drought, though drought would still cause a constraint in nitrogen fixation [14,15].
The consistent decrease in nitrogen fixation under drought has also been observed in the
nodules of peanuts [16].
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Many studies have demonstrated that drought can influence soil microorganisms and
underground nutrient cycling. Water deficits can evidently decrease soil respiration [17].
It is well-known that the soil microbial community is related to soil carbon cycling [18].
Drought can lead to a decrease in the soil C and N turnover rate in ecosystems [6,19] due
to its negative impacts on soil microbial activities [17,20]. A field survey has demonstrated
that arid conditions can reduce soil organic matter (SOM), total nitrogen (TN), ammonium,
nitrate and available phosphorus (AP), overall resulting in a decrease in soil multifunction-
ality, which relates to soil microbial richness and diversity [21]. Drought can vastly decrease
CO2 emissions and soil dissolved organic C [17]. Short-term drought may depress soil N
cycling [22], similarly to long-term drought. Inconsistently, short-term drought can increase
available labile C (i.e., water soluble organic carbon) in the soil [22], resulting in C loss
after drought events. On the other hand, feedback between plants and soil microbes under
drought may enhance plant resilience to drought [23]. One of the main reasons that drought
restricts plant growth is that drought reduces the contents of AP and mineral N in soils.
The variance in root exudates induced by drought may affect the carbon input required for
the growth of soil microorganisms, resulting in changes in the microbial community [24].
Root loss, which is affected by soil moisture [25], can determine bacterial communities,
resulting in shifts in soil nutrient cycling [26].

Biochar is produced through low-temperature pyrolysis [27]. The carbon-rich material
is thought to be useful in sequestering carbon and improving soil. Biochar may induce
changes in the microbial community, starting from the alteration of some soil properties
(e.g., carbon, moisture), and ultimately in soil nutrient cycling. In general, empirical studies
have found that biochar amendments can enhance SOM by 40% and the soil microbial
biomass carbon content by 18% [28]. However, biochar can abate the mineralization of
soil organic matter, especially with short-term amendments [29]. Biochar addition can
enhance soil multifunctionality [30] and increase soil C, N and phosphorus (P), but decrease
total potassium (K) in the soil [31,32]. Biochar addition can also increase the positive
influence of soil aggregates on soil microbial communities [33]. However, researchers
have reported inconsistent findings on how the advent soil fungal community changes
under biochar amendment. Some studies found a tiny impact of biochar on the soil
fungal community structure—only on the genus [32,34], while other studies found a
decrease in the fungal community abundance with biochar addition [35–37]. In many
studies, biochar amendments vastly shifted bacterial community components and enhanced
bacterial richness [31,37], resulting in relatively more determined assembly processes of
bacteria compared to fungi.

Soil microbial communities can vary in composition and functions in response to a
wide range of biotic and abiotic factors [38]. Additionally, the soil microbial community
can interact with plants and influence plant resistance to drought [39,40]. Legume plants
convene nitrogen-fixing bacteria in their nodules in order to obtain more N [41,42]. Legume
cortical cells have the ability to divide, which allows them to form rhizomes to convene
nitrogen-fixing bacteria [43]. Mutualism between legumes and the nitrogen-fixing bacteria
within their nodules can also be affected by drought and biochar. Soil moisture affects their
symbiotic relationship. For example, adequate or excess water may induce soil C loss [44],
restrict root nodulation and reduce the rates of nitrogen fixation and nitrification [45].
The microbial community under drought may destabilize soil C [46]. There is a limited
understanding of the responses of legumes and their soil microbes, under short-term
biochar addition, to short-term extreme drought [23].

We expect that even short-term biochar addition in advance can alleviate some aspects
of the negative effects of short-term drought on soil microbes, especially bacteria. Due to
the benefits of biochar on nutrient cycling, which has been found under drought [47,48],
soil nutrient cycling under short-term drought will be improved by short-term biochar
addition in advance compared to with no amendment, reflected by changes in the soil
chemistry, especially those relating to soil N cycling We have known that long-term biochar
addition may only have tiny effects on plant functions under drought [7], but biochar can
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change components of the soil metabolome independent of soil moisture [7]. As plants
can produce more root exudates, which help with plant resistance to drought, we still
expect that most of the differential metabolites between treatments would decrease with an
increasing biochar content.

2. Results
2.1. Plant Performance and Soil Nutrients under Different Biochar Levels

Plant performance under drought was significantly enhanced by a moderate concen-
tration of biochar (Table S1). The application of biochar reduced the plant wilting rate. In
general, biochar promoted plant growth performance in drought conditions. Although we
did not observe a significant impact of biochar use on peanut height, the moderate addition
of biochar could increase the yield, leaf weight, root weight and root length.

Changes in plant performance can be related to changes in soil properties. We ex-
animated the soil nutrients with different treatments and found that biochar addition
significantly influenced the contents of some soil nutrients. For instance, nitrites and AP,
the nutrients that are vitally related to the growth of plants, increased with an increasing
biochar content; conversely, TN, SOM and the N/P ratio decreased (Table S2).

2.2. Soil Microbial Community Composition and Diversity under Different Biochar Levels

Dominant OTUs varied with biochar addition (Figure S1). The most abundant bacte-
rial phylum was Proteobacteria covering more than 50% across samples, while the most
abundant fungal phylum was Ascomycota covering more than 50% in most samples. In
general, biochar addition increased the richness and Simpson diversity of the bacterial com-
munity but had little effects on the richness and Simpson diversity of the fungal community
(Figure 1). For example, a low content of biochar (BC2) significantly increased the richness
and Simpson diversity of the bacterial community. In contrast, mid and high contents of
biochar addition (BC2, BC3) might have negative effects on the bacterial community com-
pared to low contents. In the bacterial community, most OTUs were consistently present
between treatments, with only a few OTUs unique to certain treatments (Figure 2). There
were dominant taxa in the bacterial community with endemic families across the gradient,
while ITS communities varied more randomly across the biochar gradient.

For bacteria (16S), samples clustered according to biochar levels based on the
Bray–Curtis method or Unweighted Unifrac method, while samples showed poor clus-
tering across the biochar gradient when using the Jaccard method or Weighted Unifrac
method (Figure S2). For fungi, we found poor clustering using the Jaccard method or
Bray–Curtis method (Figure S3). We also distinguished two parts of beta diversity among
samples [49,50]. Nestedness indicates species loss or gain only in abundance without
replacement across samples, and turnover represents the replacement of species across
samples. We found good clustering of nestedness of samples according to biochar levels
in the bacterial community, but the nestedness in the fungal community showed poor
clustering (Figures S4 and S5).

2.3. Analyses of Assembly Processes and Networks Based on the Soil Microbial Community
across Treatments

Since neural theory fitted well in the sample clustering, we examined the determinacy
compared to randomness in assembly processes of microbial communities. We found
that determinant processes (stochasticity: 11.5%) explained more of bacterial community
assembly, but a high stochasticity (66%) was reflected by the processes of fungal commu-
nity assembly (Figure 3). In addition, bacterial community assembly had relatively low
randomness (38%) at low biochar concentrations and relatively high randomness (55% to
56%) with control, medium and high biochar concentrations (Figure S6).
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Figure 1. The Chao1 richness indexes and Simpson diversity indexes of the bacterial community (A,B)
and fungal community (C,D) across different biochar content levels; ns indicates not significant.
* means significant difference (p < 0.05).
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Figure 2. The Venn diagrams of OTUs in the bacterial community (A), families in the bacterial
community (B) and OTUs in the fungal community (C). CK indicates the control-check group, low
indicates biochar addition with a content of 2% (BC2), mid indicates biochar addition with a content
of 3% (BC3) and high indicates biochar addition with a content of 4% (BC4).
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Figure 3. The predicted occurrence frequencies for the bacterial community (A) and fungal commu-
nity (B). The solid blue line is the best fit to the neutral community model, and the dashed blue line
indicates 95% confidence intervals around the prediction. OTUs that occur more or less frequently
than predicted by the neutral community model are shown in green or red, respectively; while
OTUs that occur frequently similar to the prediction are shown in black. Nm represents the fit
model parameter. Rsqr represents the fit to this model. A higher Rsqr indicates higher stochasticity
explaining community assembly processes.

We structured the co-occurrence networks of microbes (Figure 4) and calculated the
topological properties of the networks (Table 1). We conducted threshold indicator taxa
analysis to determine the indicator OTUs of the biochar gradient. After that, we selected
a modular in the 0.001 network that contains the most indicator OTUs as a key microbial
modular or key sub community (Figure 5).
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Figure 4. The network graphs of the microbial community at two significant levels. Co-occurrence
networks were structured based on Spearman correlations between any OTU pair, with a coefficient
threshold of 0.88 and significance thresholds of 0.001 (A) or 0.05 (B), based only on bacterial OTUs (C)
and only on fungal OTUs (D) with a coefficient threshold of 0.88 and significance thresholds of 0.05,
respectively. Each node signifies an OTU, which could correspond to a microbial population. In
all the four figures (A–D), colors of the nodes indicate different major phyla. Blue nodes represent
bacterial OTUs, and orange nodes represent fungal OTUs. (E,F) mean the robustness of the bacterial
community network (E) and the fungal community network (F); where the blue lines represent the
ideal values of natural connectivity of the networks and the black dots represent the observed values
of the connectivity after the nodes were removed randomly.
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Table 1. Network topological properties of soil microbial community.

Topological Properties
Networks

Overall
(p < 0.001)

Overall
(p < 0.05)

Bacterial
(p < 0.05)

Fungal
(p < 0.05)

Number of nodes 548 1252 777 414
Number of edges 1160 5993 4763 918
Average degree 4.234 9.573 12.260 4.435

Network diameter 10.614 18.023 16.126 4.661
Network density 0.00774 0.00765 0.01580 0.01074

Connectivity 9.028 35.778 36.101 9.295
Modularity 0.9547 0.5941 0.4560 0.9536

Note: co-occurrence networks were structured based on Spearman correlations between any OTU pair, with a
coefficient threshold of 0.88 and significance thresholds of 0.001 or 0.05.

2.4. Response of Soil Microbial Community, Dominants and Key Sub Community to
Environmental Factors

We investigated the responses of microbial community components to soil nutrients
based on redundancy analysis, separating bacteria (16S), fungi (ITS) and the key microbial
modular (Figure 5). RDAs showed that soil nutrients affected community components
apparently and that some dominant OTUs were related to some soil nutrients. To under-
stand how distinct environmental factors influenced the microbial community, we used the
Mantel test to the relationships between soil nutrients and the community components of
bacteria, fungi and the key modular, respectively (Table S3). We found that the bacterial
(16S) community was affected significantly by more soil nutrients and in a higher strength
than the fungal (ITS) community. For example, TN, SOM and N/P only significantly
affected the bacterial community, rather than the fungal community. Moreover, the key sub
community was determined significantly by the same soil nutrients that determined the
bacterial community. However, the key sub community was related less to soil nutrients
(not only for overall soil nutrients, but for nitrate, AP, Na and SOM) than to the bacterial
community, indicating stability of the key modular in the soil microbial community.

2.5. Soil Metabolome under Different Biochar Levels

The soil metabolome represents the overall plant performance related to the root
exudates and overlooks soil functioning. We analyzed metabolomes in different treatments
(Figure 6A,B) and used the VIP values in partial least squares discrimination analysis
(PLS-DA) to select differential metabolites. We observed 1449 metabolites, including nega-
tive ones and positive ones. Overall, many metabolism pathways under biochar treatments
were enriched, suggesting that the application of biochar did result in significant changes
in metabolites. Furthermore, among negative metabolites, we observed 373, 381 and
425 metabolites in BC2, BC3 and BC4 compared with CK, while among positive metabo-
lites, we observed 421,444 and 476 metabolites in BC2, BC3 and BC4 compared with CK.
Therefore, differential metabolites between biochar-addition treatments and CK were ob-
served to increase with increasing biochar. It seemed that the biochar content influenced the
number of differential metabolites under drought. We observed 385 differential metabolites
across the four biochar contents. In addition, we used the KEGG database to check the
pathways influenced by biochar addition (Figure 6C), in which 126 metabolites of the 385
were annotated. In general, most of the pathways were enhanced with increasing biochar
content; meanwhile, some pathways, such as purine and tryptophan metabolisms, were
decreased. Among them, purine metabolism [51] was the most enriched, followed by
riboflavin metabolism (riboflavin), which are both involved in plant drought regulation.
Moreover, the glutamine metabolic pathway was also enriched. Glutamine as a precursor
for the synthesis of proline [52] and is also the main organic substances regulating plant
resistance to osmotic stress.
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Figure 5. The correlation analysis of soil microorganisms. (A,B,D) responses of microbial community
components to soil nutrients based on redundancy analysis. (C) Means the Key modular in the
microbial co-occurrence network based on the indicator OTUs. Green arrows indicate soil nutrients,
and blue arrows indicate dominant OTUs. CK indicates the control-check group, low indicates
biochar addition with a content of 2% (BC2), mid indicates biochar addition with a content of 3%
(BC3), and high indicates biochar addition with a content of 4% (BC4). SOM indicates soil organic
matter, TN indicates total nitrogen, AP indicates available phosphorus, Na indicates natrium, TK
indicates total potassium, AK indicates available potassium, the NP ratio indicates the ratio of total
nitrogen and total phosphorus and Gradient indicates the biochar content level.
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3. Discussion
3.1. Biochar Ameliorates the Negative Effects of Drought on Plant Performance and C, P and N
Nutrient Cycling

Studies have documented that biochar amendments can increase the water-holding
capacity of soil [53], resulting in higher water availability for the plants. This amelioration
from biochar may dependent on the soil type [54]. The soil water content was increased by
biochar addition when the soil texture was coarse or medium, while the water content in
the fine-texture soil would be decreased by biochar. The benefit of biochar in alleviating the
negative effects of drought on plant performance may be more evident when experiencing
mild water stress than extreme drought [7,55,56]. In our study, some aspects of plant
performance were generally enhanced by the biochar amendment (Table 1). The withering
rate of the plant was apparently decreased by biochar. These facts suggest that short-
term biochar application in proper concentrations before extreme short-term drought can
ameliorate some negative effects of water deficits.
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The impacts of drought on soil functioning may depend on the duration of drought.
In general, drought can depress CO2 emissions and decrease soil dissolved organic C [17].
Meanwhile, the microbial community under drought may destabilize soil C [46]. But
adequate or excess water may also induce soil C loss via interactions between soil microbes
and plants [44]. A laboratory experiment uncovered that short-term drought could promote
CO2 emissions and the accumulation of available labile C in the soil, probably resulting in
an increase in SOM [22]. Drought reduces the availability of AP and mineral N, which is
one of the main reasons restricting plant performance. As biochar addition alleviated water
deficits, we found lower SOM, higher mineral N and higher AP with pervious biochar
application compared to with no biochar amendment in the face of short-term drought
(Table S2). We found that a higher biochar content might lessen the promoting effect on
increasing the SOM and mineral N and might mediate the biochar content having a lower
promoting effect on increasing AP under extreme short-term drought (Figure 5).

The soil mineral N (i.e., nitrate plus ammonia) supply is very sensitive to drought.
Soil nitrogen (N) cycling can be changed by drought, regardless of short-term drought [22]
or long-term drought [17,21]. Studies have found that drought significantly decreases N2O
emissions by 29% and increases nitrate nitrogen (NO3

−) contents in soils [17]. Drought
can be attributed to soil aeration, which is unfavorable for denitrification [57], particular
in non-fertilized soils with a medium texture. Low water availability may enhance a
shift in the ratio of N2O to N2 produced through denitrification [58,59]. The soil N pool
would thus be directionally changed. Nitrate would rise significantly under drought in all
cases, and in particular, short-term drought can increase soil nitrate by 26%, robustly [17].
Although ammonia nitrogen (NH4

+) would be decreased generally under drought [17],
ammonia would accumulate with increasing drought intensity [57], partly because gross
nitrification that consumes ammonia and produces nitrate is inhibited by drought [60,61].
Therefore, under extreme short-term drought, soil nitrate would rise. We found that nitrate
contents with biochar treatments were significantly higher than with the CK (-Table S2),
indicating that biochar amendments can vastly mitigate the negative effects of extreme
drought on nitrate production. In addition, low biochar application may be most beneficial
for soil nitrate accumulation. Nevertheless, biochar is often alkaline [28] and can increase
the soil pH, reducing soil acidity. N2O emissions, through denitrification [59], would be
depressed significantly by drought in neutral and acidic soils but enhanced generally in
alkaline soils [17]. Biochar application may alleviate the negative effects of drought on soil
denitrification by altering the soil pH independently of increasing soil water availability,
resulting in the maintenance of a higher nitrate content compared to without biochar
condition. Denitrification, which was less depressed with a water deficit, would consume
more nitrate; this is also why nitrate decreased with an increasing biochar content.

Legume plants with large nodules may have relatively high resistance to drought, due to
nitrogen accumulation in the nodules [62]. Drought still constrains nitrogen fixation [14,15]
and inhibits root nodulation [63]. The consistent decrease in nitrogen fixation under drought
has also been observed in the nodules of peanuts [16]. Nevertheless, plants can regulate
symbioses in response to soil nutrient availability [64]. In legume–nodule relationships,
the hosts can monitor the N supply from N-fixing associations [65]. Based on soil NO3

−

availability, legume plants can regulate the total level of N fixation inside the nodules [66].
We found no significant differences in soil ammonia nitrogen (Table S2), indicating that
short-term biochar application may have little effects on symbiont N fixers or that latent
complex feedbacks balanced variations in ammonia. Plants originating from acid soils are
tolerant and prefer ammonia to nitrate [67], partly because the uptake of nitrate by plant
roots can cause alkalinization. Because biochar can reduce soil acidity, biochar amendments
may reduce the reliance of hosts on their symbiont N-fixers, resulting in a decline in the
C-N trade between them. Less ammonia would be produced by those symbiont N-fixers.
But nitrification, which consumes ammonia, is also reduced with decreasing soil moisture
with 50% soil moisture [68]. This may lead to the stabilization of the nitrate content between
different biochar levels.
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3.2. Biochar Ameliorates the Negative Effects of Drought on the Soil Microbial Community

Drought has been revealed to influence soil microbial communities, which regulate
soil functioning. Fungi and bacteria are dominant decomposers in the soil. They re-
spond differently to drought [20,69]. The fungi-to-bacteria ratio has been found to not
change significantly with altered precipitation [70], but to generally increase under mild
drought [71]. Typically, in response to drought, bacteria are more sensitive than fungi [20],
and Gram-positive bacteria are more sensitive than Gram-negative bacteria [72]. The
bacterial composition and soil decomposition would change when experiencing extreme
drought, despite the alpha diversity of bacterial community may not being changed sig-
nificantly by extreme drought [73]. The soil microbial community under drought may
destabilize soil C [46], probably starting a cycle for less and less soil C to feed soil microbes.
There is evidence that mutualists (e.g., arbuscular mycorrhizal fungi and rhizobium bacte-
ria) and Actinobacteria can play a role in maintaining the stability of microbial networks
by weakening taxonomic interactions and increasing the modularity under the extreme
drought event [74–76]. Biochar addition can increase the resistance of both the bacterial
and fungal networks to drought [77]. Biochar addition has little or inconsistent effects on
soil fungi [34,36] and significant effects on soil bacteria [31,37].

Under extreme short-term drought, biochar addition before the extreme short-term
drought did not significantly change the richness and alpha diversity of soil bacteria and
fungi (Figure 1; except increases in bacterial communities under a low content level of
biochar) when experiencing the drought. Biochar could significantly influence the bacterial
and fungal community components Table S3, Figure 5). Only small numbers of the unique
bacterial OTUs across different treatments were found, which was different from the
pattern of fungi (Figure 2). Therefore, biochar might mainly change the abundance, but not
the presence, of bacteria, while biochar might change the presence of fungi or affect fungi
randomly (Figures S2–S5). Our observation of the bacterial and fungal community assembly
processes also supports the highly random response of biochar to fungi and the evident
response of biochar to bacteria (Figure 3). In response to abiotic stress, co-occurrence
networks with weak interactions and high modularity are more stable than those with
strong interactions and low modularity [78]. Soil bacterial networks are less stable under
drought than fungal networks [79]. We observed that the bacterial co-occurrence network
had higher complexity (the higher average degree), higher connectivity and less modularity
than the fungal co-occurrence network (Table S4). We did not compare the stabilities of
networks between the no-biochar condition and biochar conditions, but we did observe
a higher robustness of the bacterial co-occurrence network than the fungal co-occurrence
network (Figure 5), indicating that biochar can vastly affect bacterial networks more than
fungal networks under the negative effects of extreme short-term drought. Nevertheless,
both bacterial community components were more dependent on the nitrate, AP, Na and
biochar content than fungal community components (Table S3). Meanwhile, bacterial
community components were also related to TN, SOM and the ratio of N and P. This
indicates that soil bacteria may play more important roles in soil nutrient cycling, especially
the part related to N and C, compared to soil fungi.

The root-associated microbiome in plant adaption to abiotic stresses has been studied
more and more recently [80,81]. Arbuscular mycorrhizal fungi, which form mutualisms
with the roots of most plants in agronomic systems [82], have beneficial influences on
plant performance in the face of abiotic stresses, including drought [83]. Some of the plant
growth-promoting bacteria can confer drought-tolerance of plants [80,84]. Trichoderma, as
plant growth-promoting bacteria, can induce plant resilience to drought [85,86]. In return,
plants can modulate the responses of soil microbes and root-associated microbes to drought
via those tight linkages during extreme droughts [41,87]. Beneficial associations between
plants and underground microbes may enhance plant tolerance to drought. We know that
the presence of some legume plants can stabilize soil processes under drought conditions in
agroecosystems [88]. Although rhizobium bacteria colonizing legume (e.g., peanut) roots can
use nitrogen accumulation in nodules to enhance plant tolerance to drought [62], their N fixation
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is depressed by drought [16]. This depression is widely found and studied [89–91]. Some
strains of Bradyrhizobium (one genus of rhizobium bacteria) can enhance the maintenance
of N metabolism under drought [91], despite Bradyrhizobium being very sensitive to many
stresses [92–94], including drought stress [95].

We found that the Actinobacteria phylum was one of the top five dominant phyla in the
bacterial community (Figure S1). The Actinobacteria phylum has been seen as an indicator
responding to heat, watered conditions and water deficits [96], which was found to be able
to stabilize microbial networks under drought, similarly to mutualists [74–76]. Biochar
increased their abundance, which might indirectly maintain microbial networks. We found
that Bradyrhizobium sp. was one of the top six dominant phyla. Biochar could not maintain
its abundance in soils (Figure 6 and Figure S1), indicating either that it was recruited by
nodules with biochar treatments or that biochar depressed its performance. We observed
the apparently highest Trichoderma sp. abundance without biochar treatments. Biochar
increased water availability in the soil, which might be less favorable for Trichoderma sp.
to induce plant resilience to drought compared to without biochar treatments. We used
threshold indicator taxa analysis to identify the indicator OTUs in response to biochar
content levels [97]. We compared the list of indicator OTUs and their degrees and modulars
within the overall microbial networks and extracted the key modular OTUs to construct
the key sub community in order to indicate the soil microbial community in response to
biochar (Figure 6). We found that Sorangiineae sp., one of the dominants, dominated this
key sub community and that the key sub community depended less on each soil nutrient,
except the ratio of N and P (Table S3). The Sporangium genus of the Sorangiineae phylum
has been found to be related to the decreased expression of growth and energy metabolism
under short-term drought [98].

3.3. Biochar Content Influences the Soil Metabolome

Legume–rhizobial symbiotic interactions beyond nitrogen fixation may have important
roles in legume tolerance to drought [99], which can be tested using soil metabolome
analysis. Both soil complex lipids and primary metabolites would significantly change
under drought conditions [100]. It is known that biochar can change components of the soil
metabolome independently of soil moisture [7]. We found that the metabolome components
under biochar treatments were significantly different compared than with CK (Figure 6).

Purine metabolism has been reported to constitutively improve plant resistance to
water stress [51]; likewise, riboflavin is also important in improving plant stress resistance.
Both of them were significantly enriched under biochar treatments. Furthermore, as
a proline synthesis precursor, the glutamine metabolic pathway was also significantly
enriched, which is a major regulator of drought stress in plants [52]. These observations
indicate, at the molecular level, that the use of biochar affected the synthesis of drought-
stress-related metabolites in peanut [101] and hence increased the resistance of peanuts to
drought stress. With increasing biochar, most of the pathways were promoted, indicating
that biochar may promote changes in metabolism to influence soil microbes and soil nutrient
cycling. We, however, did not distinguish the direct benefits of biochar for metabolism and
the indirect effects via enhancing soil properties, which calls for further research.

4. Materials and Methods
4.1. Experimental Design

We conducted the experiment in a greenhouse. The soil samples were collected from
top soil (0–20 cm) following an S-shaped sampling method in Laixi County (119◦39′ N,
37◦03′ E) of Shandong province. All soil samples were dried out and sieved against a
2.0 mm mesh to remove large impurities. The basic characters of soil were pH 6.7, available
nitrogen of 90.6 mg kg−1, available phosphorus of 51.2 mg kg−1, available potassium of
90.5 mg kg−1 and organic matter of 18.2 g kg−1. The biochar was produced from a mixed
biomass composed of peanut shell and vines (w/w:9/1). The biomass was first air-dried at
80 ◦C and then subjected to slow pyrolysis in the steel carbonization furnace at 450 ◦C for
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2 h without oxygen. The basic pH of the biochar was 8.4, the EC was 0.41 mS cm−1, the
content of C was 64.9%, the content of H was 3.1% and the content of O was 17.3%.

We added different contents of biochar into soils (0 for CK treatments; 2% for BC2 or
low treatments; 3% for BC3 or mid treatments; and 4% for BC4 or high treatments). We
used peanut (Huayu 22) seeds, and grew three seedlings in each pot (25 cm in diameter and
20 cm deep). The soil was kept at a 60% water holding capacity. After 15 days of greenhouse
growth, water control was initiated until drought manifested. Finally, we harvested the
peanuts and collected the soils for the subsequent measurements.

4.2. Measurements of Soil Chemical Properties

The soil suspension (water:soil, 1:5, w/v) was shaken for 1 h. pH and EC values
were determined using a pH meter and conductivity meter, respectively. The total N was
measured using the Kjeldahl technique. The total P and K were measured using the NaOH
melting and UV-vis spectrophotometer method and atomic absorption spectrophotom-
etry method, respectively [102]. Soil organic matter (SOM) content was determined via
potassium dichromate oxidation. Soil contents of sodium (Na) and potassium (K) were
determined using inductively coupled plasma mass spectrometry (ICP-MS). Nitrate nitro-
gen (NO3

−-N) in soil was determined with the phenol-disulfuric acid colorimetric method.
Ammoniacal nitrogen (NH4

+-N) in soil was extracted with 2.0 M KCl and determined
using the colorimetric method [103]. The amount of available potassium was determined
by leaching with 1.0 M NH4OAc and flame photometry.

4.3. Soil Total DNA Extraction and High-Throughput Sequencing

Soil samples, after collection, were quickly frozen and stored at −80 ◦C. Bacterial
DNA was isolated from soil samples using the DNeasy PowerSoil kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. The DNA concentration and in-
tegrity were measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-
entific, Waltham, MA, USA) and agarose gel electrophoresis, respectively, with agarose
gel electrophoresis used for the measurement. PCR amplification of the V3–V4 highly
variable region of the bacterial 16S rRNA gene was performed using a universal primer pair
(343F: 5′-TACGGRAGGCAGCAG-3′; 798R: 5′-AGGGTATCTAATCCT-3′) in a 25 µL reac-
tion. The reverse primer contained a sample barcode, and both primers were ligated with
Illumina sequencing adapters.

Amplicon quality was visualized via gel electrophoresis. PCR products were purified
using Agincourt AMPure XP beads (Beckman Coulter, Brea, CA, USA) and quantified
using the Qubit dsDNA detection kit. Concentrations were then adjusted for sequencing.
Sequencing was performed on an Illumina Miseq with two paired read cycles of 300 bases
each (Illumina Inc., San Diego, CA, USA; OE Biotech Company, Shanghai, China).

Paired reads were preprocessed using Trimmomatic software to detect and cut off
ambiguous bases (N). It also cut off low-quality sequences with an average quality score of
less than 20 using a sliding window pruning method. After trimming, pairs of reads were
assembled using FLASH software (10.1). The parameters for the assembly were as follows:
minimum overlap of 10 bp, maximum overlap of 200 bp and maximum mismatch rate of
20%. Sequences were further denoised as follows: reads with ambiguous, homologous
sequences or below 200 bp were discarded. Seventy-five per cent of the reads with bases
above Q20 were retained using QIIME software (version 1.8.0). Reads with chimeras
were then detected and removed using VSEARCH software (2.8.1). Primer sequences
were removed and clustered based on clean reads using VSEARCH software to produce
actionable taxonomic units (OTUs) with 97% similarity. Representative reads for each OTU
were selected using the QIIME software package. All representative reads were annotated
and tested against the Silva database (version 123) using the RDP classifier (confidence
threshold of 70%).
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4.4. Data Analyses

We used R software (version 4.3.1) for data analysis based on soil microbial communi-
ties, their relations with soil nutrients and the soil metabolome. We used the vegan package
to calculate richness and diversity indexes and conduct RDAs and Mantel tests in order to
examine the relationships between soil microbial community structures and environmental
factors, the betapart package [49,50] to cluster samples based on the species replacement
and species loss/gain, the TITAN2 package [97] to select indicator OTUs, the packages
Hmisc, minpack.lm, stats4 and grid to examine the determinacy in community assembly
processes based on the neutral community model [104,105], the packages ggClusterNet,
phyloseq and WGCNA to construct the microbial co-occurrence networks, the RMThresh-
old package to determine the proper correlation thresholds of the networks and the ropls
package to conduct PLS-DA. We conducted threshold indicator taxa analysis to gain the in-
dicator OTUs with respect to the biochar gradient [97]. We colorized the networks in Gephi
software (version 0.10.1) and showed them using the layout style of Yifan Hu. We used the
VIP values (a higher VIP value shows a higher significant difference of the metabolite in its
amount among treatments) of each metabolite in PLS-DA to select differential metabolites
across and between treatments. We annotated the differential metabolites based on the
KEGG database and analyzed the corresponded pathways using the OmicShare platform.

5. Conclusions

Biochar may have three mechanisms in enhancing the resistance of plants and soil
microbes to extreme short-term drought. Firstly, biochar may increase soil water availability,
as we observed better performance of plants under biochar treatments compared to under
CK. This would ameliorate the negative effects of drought on soil microbes and hence
stabilize the soil nutrient cycling to maintain adequate nutrients (e.g., N and P) for plants.
On the other hand, biochar increases the soil pH, which shifts the soil nutrient availability
of plants and soil N cycling in acid soils under extreme drought. Nevertheless, biochar
has some latent mechanism that is dependent on its content to directionally change soil
metabolism, which would enhance the tolerance to drought. The mechanisms of soil
metabolism need more research to uncover.

Biochar can promote peanut resistance to drought by affecting soil bacterial and
fungal communities, especially for short-term extreme drought, but its impact on long-term
drought is not yet clear. On the other hand, our experimental results are based on indoor
greenhouse conditions, and field research is needed in the future to verify its applicability
in agricultural ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12244155/s1, Figure S1. Dominant OTUs of bacterial
(16S) community and fungal (ITS) community. CK indicates control-check group, BC2 indicates
biochar addition with the content of 2‰ (low), BC3 indicates biochar addition with the content
of 3‰ (mid) and BC4 indicates biochar addition with the content of 4‰ (high). Each treatment
contains three replicates; Figure S2. Clustering based on dissimilarity indexes of the bacterial (16S)
community cross samples. CK indicates control-check group, BC2 indicates biochar addition with the
content of 2‰ (low), BC3 indicates biochar addition with the content of 3‰ (mid) and BC4 indicates
biochar addition with the content of 4‰ (high). Each treatment contains three replicates; Figure S3.
Clustering based on dissimilarity indexes of fungal (ITS) community cross samples. CK indicates
control-check group, BC2 indicates biochar addition with the content of 2‰ (low), BC3 indicates
biochar addition with the content of 3‰ (mid) and BC4 indicates biochar addition with the content
of 4‰ (high). Each treatment contains three replicates; Figure S4. Clustering of two parts of beta
diversity of bacterial (16S) and fungal (ITS) community across samples based on occurrence. CK
indicates control-check group, BC2 indicates biochar addition with the content of 2‰ (low), BC3
indicates biochar addition with the content of 3‰ (mid), and BC4 indicates biochar addition with
the content of 4‰ (high). Each treatment contains three replicates; Figure S5. Clustering of two
parts of beta diversity of bacterial (16S) and fungal (ITS) community across samples based on the
Bray method. CK indicates control-check group, BC2 indicates biochar addition with the content of
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2‰ (low), BC3 indicates biochar addition with the content of 3‰ (mid) and BC4 indicates biochar
addition with the content of 4‰ (high). Each treatment contains three replicates; Figure S6. The
predicted occurrence frequencies for the bacterial community (16S) with different biochar levels. CK
indicates control-check group, low indicates biochar addition with the content of 2‰ (BC2), mid
indicates biochar addition with the content of 3‰ (BC3) and high indicates biochar addition with
the content of 4‰ (BC4). The solid blue line is the best fit to the neutral community model, and
the dashed blue line indicates 95% confidence intervals around the prediction. OTUs that occur
more or less frequently than predicted by the neutral community model are shown in green and
red, respectively. Nm represents the fit model parameter. Rsqr represents the fit to this model. A
higher Rsqr indicates higher stochasticity explaining community assembly processes; Table S1. Plant
performance of peanuts along the biochar gradient; Table S2. Soil nutrients under different biochar
conditions; Table S3. Relationships between microbial community components and soil nutrients
using Mantel test based on the Spearman method; Table S4. Network topological properties of soil
microbial community.
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