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Abstract: Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the
interactions with their environment, such as attracting pollinating insects and seed dispersers and
defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic
impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals
industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty
acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber,
while aroma compounds play a major role in flavor and quality management of these horticultural
commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits
and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led
to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which
has aided to our comprehension of the regulatory molecular pathways involved in VOC production.
The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of
horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids,
particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally,
the methodological constraints and complexities that limit the transition from gene selection to host
organisms and from laboratories to practical implementation are discussed, along with metabolic
engineering’s potential for enhancing terpenoids volatile production at the industrial level.

Keywords: volatile organic compounds; horticultural commodities; industrial applications;
metabolic engineering

1. Introduction

Floral scent and color are essential traits for many floricultural crops, and floral
volatiles are biologically and economically significant plant-derived substances that play a
vital role in pollinator attraction, defense mechanisms, and interaction with the surrounding
environment [1–3]. Floral volatiles have a low molecular weight and are lipophilic, derived
from biosynthetic pathways, including terpenoid, phenylpropanoid/benzenoid, and fatty
acids [4,5]. Volatile terpenoids are among the most abundant volatile organic compounds
(VOCs), followed by selective benzenoids/phenylpropanoids.

Fruits and vegetables generate a variety of volatile compounds that contribute to their
distinctive aromas and flavor. Aroma has received increased attention in recent years as an
important characteristic of fruit quality. The most common volatile compounds found in
fruits are esters, aldehydes, alcohols, lactones, ketones, terpenoids, and apocarotenoids,
which determine the differences in aromas [6]. Fruit quality encompasses both preharvest
developments, such as changes in flavor, color, and texture with fruits development,
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and postharvest maintenance as perishable tissues age [7]. Flavor is composed of both
the perception in the mouth (sweetness, acidity, or bitterness) and the aroma, which is
synthesized by numerous volatile compounds [8]. The insight into the key volatile flavor
enzymes that hold the distinctiveness of the natural fruit is critical, because it produces the
fruit’s primary sensory uniqueness and peculiar flavor.

Terpenoids are derived from five-carbon isoprene units, including monoterpenes,
sesquiterpenes, apocarotenoids, and many others [1,9]. Five-carbon unit (C5) metabo-
lites such as isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are
precursors for terpene biosynthesis and are produced in distinct cellular locations by the
methylerythritol phosphate (MEP) and mevalonic acid (MVA) pathways, respectively [9].
Likewise, more than 8000 phenylpropanoids metabolites have been identified [10]; ben-
zenoids are the second largest class of VOCs generated from the amino acid phenylalanine,
whereas fatty and amino acid are crucial VOCs found in fruit and flower aromas [8].
Benzenoids/phenylpropanoids are generated via shikimate pathways via the catalyzation
of phenylalanine [4]. Meanwhile, the lipoxygenase (LOX) pathway is responsible for the
catabolism of fatty acids, the primary precursors of volatile components in floral scents and
fruit aromas [8]. Several key terpenoids biosynthesis genes and transcription factors have
been identified from various plant species [11–17].

VOCs have a huge impact on human society, due to their applications in the food,
cosmetics, and pharmaceutical industries. They are used in the pharmaceutical and food
industries due to their effectiveness and potential as medicinal preservatives and flavor
enhancers [4,18,19]. Terpenes are found in a wide range of products, such as rubber,
pyrethrin-based insecticides, carvone and hecogenin-based detergents, caryophyllene-based
antihistamines and antibiotics, methanol-based cleaning agents, and many others [17,20,21].
Similarly, several important crops, such as blueberries, apples, litchi, and cucurbits, rely
heavily on volatiles for pollination [22–24].

Rapid advancements have been made in floral aroma engineering for terpenoid biosyn-
thesis in model plants due to their commercial and ecological significance. The discovery of
key structural genes, as well as the decoding of the biosynthesis pathway and enzyme pro-
teins associated with these pathways, has made genetic engineering in plants exceptionally
feasible [4,16,25]. Several input and output attributes in crops can be improved via genetic
engineering approaches, such as weed management through allelopathy, insect/pathogen
resistance, intensifying the aroma production of fruits and vegetables (by modifying the
floral fragrance), and the output of bioactive compounds. The industrial use of volatile
terpenoids is widespread, and they have promising economic prospects; however, there
are several obstacles that limit large-scale production. These objectives are now extremely
attainable due to the rapid advances in multi-omics technologies.

Multiple studies on floral scents and fruit aromas have advanced our understanding
of their roles, components, biosynthesis, and regulation over the last decade. Furthermore,
prior studies focused on floral scents or fruit aromas individually, even though both have
significant volatile components that contribute to the economic value of horticultural
crops. More emphasis was placed on aroma compounds and their role in the environment
rather than human health and industrial applications. In this review, we emphasized the
role of volatile organic compounds in the aroma quality of fruits and vegetables, as well
as their industrial applications. Furthermore, the complexity and limitations of aroma
production on an industrial scale, as well as the application of various metabolic engineering
approaches, are discussed. Herein, we place more emphasis on volatile terpenoids, because
they are the most profuse class of volatile organic compounds.

2. Aroma Profile of Horticultural Crops

Volatiles released from flowers, fruit, and vegetable crops act as pollinator attractants,
repel herbivores, and are essential for plant defense [26]. Plants emit multiple types of
volatiles from their flowers, roots, stems, leaves, seeds, barks, fruits, and other special
storage parts as part of their metabolic activity during the developmental stages [12,27].
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Even though many aroma characteristics of various crops are shared, each crop has a
peculiar aroma that is determined by the mixture of volatiles, the concentration, and the
perspective threshold of individual compounds.

Fruit and vegetable quality parameters consist of both pre- and postharvest devel-
opment. Preharvest development includes changes in color, flavor, and texture with fruit
development, growth, and ripening, while postharvest maintenance affects how perishable
tissues age [28,29]. Flavor is based on the perception in the mouth (sweetness, acidity, or
bitterness), as well as the odor, which is generated by many volatile compounds. Since
aroma is among the most valuable features, volatile flavor compounds play crucial roles in
determining perceptions of customers and the acceptability of products [30]. As a result,
VOCs are regarded as biomarkers in horticultural commodity quality management, and
insight into the key volatile flavor metabolites that carry the distinctive characters of the
natural fruit is critical [31]. Many factors influence the composition of these VOCs, such as
genetic make-up, degree of maturity, environmental conditions, and postharvest handling
and storage. Herein, we summarize couple of important horticultural crops and their
aroma volatile profiles.

2.1. Aroma Profile of Fruits

Fruit aroma is an important factor in determining fruit quality. VOCs that contribute to
the distinctive aromas and flavors of fruits and vegetables most commonly include, esters,
terpenoids, alcohols, lactones, aldehydes, ketones, and apocarotenoids. Volatile profiles
are complex, because they depend on the cultivar; ripeness; pre- and post-harvest climatic
parameters; fruit samples (whole fruit, slices, or homogenized samples); and analytical
methods employed (Tiwari et al. 2020). For example, the number, identity, and intensity of
VOCs released by ripening apple fruit vary according to cultivar. Moreover, environmental
and agronomic conditions, the stage of maturity, handling and storage, and the amount of
time exposed to UV radiation have all been shown in various studies to have significant
influence on the amount of these compounds [32].

The aromatic compounds are frequently emitted when enzymes and precursors/substrates
are intact. Although a large variety of chemical compounds have been identified as
volatile compounds in fresh fruit, yet a subset of these compounds has been found as
impact elements of fruit flavor, depending on their abundance and olfactory thresholds [6].
Monoterpenes and sesquiterpenes are among the most predominant group of compounds
in the aroma profile. These compounds can also play a significant role in determining the
odor profile. The significant influence of aroma on fruit marketability motivates the need to
advance in our comprehension of this quality trait (Figure 1). Berry fruits and pomaceous
fruits are two prominent fruit families with excellent nutritional contents. Berry fruits, such
as strawberries, blueberries, raspberries, and grapes, are commercially well known for
their sweet flavor, which is attributed to fructose and volatile compounds. Apples, citrus,
peaches, and mangos are examples of pomaceous fruits which volatile chemicals have been
thoroughly investigated in numerous cultivars.

Strawberries (Fragaria x ananassa) are by far the most popular berry fruit crop world-
wide, valued for its distinct flavor and nutritional content, and its overall likeability is
highly influenced by the sensory characteristics, sweetness, and flavor intensity [33,34].
Strawberry aroma is an excellent example of a complex fruit aroma, and VOCs are es-
sential components of strawberry flavor, despite accounting for less than 0.01% of the
fruit’s weight [34]. Fresh strawberries have been found to contain over 360 volatile com-
pounds, including esters, alcohols, ketones, furans, terpenes, aldehydes, and sulfur com-
pounds; however, their concentration and composition vary depending on cultivar and
maturity [35,36]. Nine sesquiterpenoids and three triterpenoids were revealed to have
been isolated from ‘Falandi’ strawberries as nonphenolic components with antidiabetic,
antitumor, and antioxidant properties [37,38]. Even though volatile compounds account
for only 0.001%–0.01% of the fruit’s weight, they are critical elements of strawberry flavor,
and minor changes can drastically alter the taste [34].
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Apples (Malus domestica) are one of the most popular fruits, and their distinct aroma is
caused by a complex mixture of volatiles that varies depending on the volatile compounds,
concentrations, and odor thresholds. Apples are low-calorie fruits that are exceptionally
high in vitamins, minerals, acids, dietary fiber, and phenols [39]. Moreover, apples are
beneficial in the prevention of several cardiovascular diseases, cancer, and asthma [40].
In addition, the phenolic compounds and triterpene acids found in apples have anti-
inflammatory properties and have been shown to provide protection against Alzheimer’s
disease [41]. In apples, 300 VOCs were found, and each compound contributed uniquely
to the scent profile [42,43]. Among terpenoids, α-farnesene, D-limonene, geranyl acetone,
and farnesol are prevalent, but their content varies with variety [41,44]. In addition,
monoterpenes, sesquiterpenes, and various terpene derivatives have been identified in
apple floral and vegetative tissues.

Blueberries (Vaccinium spp.) are the second most valuable soft fruit species after
strawberries, and their aroma is determined by the interaction of large numbers of VOCs
produced by the fruit during ripening [45,46]. Even though ripening has a major impact on
blueberry aroma, the wide genetic distinctions among blueberry species also contribute
to the wide range of blueberry aroma profiles. For example, a large production of esters
(i.e., methyl acetate, ethyl acetate, or methyl butanoate) is characteristic of lowbush blue-
berry (V. angustifolium), bilberry (V. myrtillus), and other wild species, whereas highbush
(V. corymbosum) and rabbiteye blueberry (V. virgatum) profiles are typically associated
with a high composition of (E)-2-hexenal, hexanal, and (Z)-3-hexenol and terpene alcohols
such as linalool, nerol, and geraniol [47–49]. Eight terpenoid volatiles have been identi-
fied as the primary metabolic group linked to these olfactory perceptions. These include
p-cymene, myrtenal, linalool, L-carvenol, geranyl acetone, geranyl acetate, D-limonene,
and myrcene [49,50].

Similarly, more than 200 volatile compounds have been identified in raspberries
(Rubus idaeus x ursinus), with terpenoids contributing significantly to the raspberry aroma
profile [51]. The primary volatile chemicals in the volatile profile of raspberry include rasp-
berry ketone, linalool, α/β-ionone, nerol, (E, Z)-3-hexenol, geraniol, β-ocimene, β-pinene,
α-terpineol, hexanal, 1-octanol, Furaneol, heptanal, benzaldehyde, and β-damascenone;
however, among these, α/β-ionone, linalool, nerol, geraniol, and raspberry ketone may play
a significant role in red raspberry aroma [6,51]. Further research revealed that the volatile
composition varies from cultivar to cultivar, particularly α/β-ionone, linalool, geraniol, and
(Z)-3-hexenol [52,53]. Likewise, the most abundant volatiles in the volatile profile of black-
berries (Rubus laciniata) are p-cymen-8-ol, α-terpineol, 2-Heptanol, 4-terpineol, 2-heptanone,
nonanal, pulegone, isoborneol, 1-octanol, elemicine, 1-hexanol, myrtenol, and carvone [54].

Grapes (Vitis spp.) are one of the extensively grown fruit crops in the world, and their
distinct appearance and flavor have earned them a high level of commercial importance
on a global scale [55]. Grapes are classified as wine grapes or table grapes based on their
physiochemical properties and utilization. For wine grapes, taste refers to the ultimate
product of grape fermentation and other industrial operations such as juicing [56,57]. Fla-
vor is important in affecting customer acceptability of ripe fresh grapes, which is normally
experienced as a combination of taste noticed in the mouth and aroma traveling into the
nose. The fruit volatiles of Vitis vinifera contain a diverse range of compounds, includ-
ing monoterpenes, C13 norisoprenoids, alcohols, esters, and carbonyls [58]. Each grape
variety’s unique aroma is the result of a complex interaction between many different volatile
compounds; for instance, more than 100 terpenoids have been identified as contributing to
the aroma of Muscat-type grape varieties, and these are thought to be responsible for the
distinctive varietal flavors of these table grapes [55,56].

Among the most widely grown and consumed fruits, Citrus is a vital part of the diets
of people all over the world. In the citrus fruits, mandarins are among the most promi-
nent representatives, because they, along with the pomelo and the citron, are thought to
be the original predecessors from which all other citrus species evolved [59,60].
In Citrus, terpenoids such as β-pinene, S-linalool, valencene, and limonene are the
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primary aroma compounds. Terpenoids (d-limonene, valencene, linalool, terpinen-4-ol, and
α-terpineol) were among the most rich and major constituents of aroma compounds and
significantly contribute to the distinctive flavor of ‘Dortyol yerli’ orange juice, which
contained 58 volatile components that were identified and quantified [61]. The juice of
four citrus species—a ‘Powell’ Navel orange (Citrus sinensis), a ‘Clemenules’ mandarine
(C. reticulate), a ‘Fortune’ mandarine (C. reticulate), and a ‘Chandler’ pummelo (C. maxima)—
contains over a hundred volatile chemicals, with a few compounds unique to individual
citrus varieties [6,61].

Peach (Prunus persica) volatiles have been extensively studied, and more
than 100 volatile compounds responsible for the quality of peach aromas have been
identified [62,63]. Alcohols, C6 compounds, esters, terpenoids, aldehydes, lactones, and
ketones are the main volatile components of the peach fruit aroma. The most abundant
peach volatiles are C6 compounds, linalool, esters, C13 norisoprenoids, benzaldehyde,
and lactones. Peach fruit flavor is thought to be heavily influenced by esters such as
hexyl acetate and (Z)-3-hexenyl acetate [6,64]. A previous finding demonstrated that the
intensity and aroma composition of peach fruit differ depending on cultivar, fruit develop-
ment, processing, and storage conditions [63,65,66]. Additionally, numerous studies have
demonstrated the impact of culture conditions and management on the concentration and
composition of aroma volatiles in peach fruit [6,65,67].

Mango (Mangifera indica) has a very appealing flavor, and more than 270 aroma volatile
compounds in various mango varieties have been outlined in free form. Terpenes are the
most abundant class of compounds in New World mangos, accounting for 16–90% of the
total, while there are great variations in both quantity and quality of ketones, esters and
alcohols, especially of Old-World varieties. Monoterpene 3-Carene is the most abundant
compound in several New World mango varieties, followed by myrcene, β-ocimene, and
limonene, whereas sesquiterpene hydrocarbons can be found in up to 10% of cultivars [68].

Recent discovery of health advantages in pomegranate (Punica granatum), together
with its sensory quality and flavor preferences, have made it a commercially significant
fruit [69,70]. Several different types of volatiles, such as alcohols, aldehydes, ketones, and
terpenes, combine to create the aroma, which is characterized by a wide range of ‘green’,
‘woody’, ‘earthy’, ‘fruity’, ‘floral’, ‘sweet’, and ‘musty’ notes [71,72]. Volatiles discovered
in pomegranate characteristics that contribute to the distinct scent and flavor include
three alcohols, six aldehydes, one ketone, and eleven terpenes (six monoterpenes, two
oxygenated terpenes and three sesquiterpenes). The majority of these compounds appeared
to be hexanal derivatives (hexanal, hexanol, and (Z)3-hexenol) and terpenes (α-pinene,
limonene, α-terpineol, and β-caryophyllene), all of which can be regarded as significant
aroma volatiles in pomegranate fruits [71,73].

The volatile composition of fresh fruit is continually shifting owing to the complexity
of the volatile profiles. Several factors determine volatile composition, such as fruit genetics,
maturity, climate changes during fruit development, postharvest management, and storage.
So far, our knowledge of the interaction between these factors that establishes the fruits
volatile composition and flavor is confined and we need to explore further in order to
improve the quality characteristics of fruits. Regulating volatile compound emissions is
often hampered by our current lack of knowledge regarding the regulation of pathways
leading to the synthesis of such compounds. Huge progress in metabolic engineering
targeted at enhancing the set of volatiles emitted by fruits have been assisted by the
characterization of key signature enzymes associated with biosynthesis pathways of flavor
and aroma compounds in certain fruits. Marker-assisted selection based on QTL and
linkage analyses can help to transfer desirable flavor and aroma from aromatic lines to
non-scented or less aromatic lines, as well as promising agronomic traits.

2.2. Aroma Profile of Vegetables

Volatiles not only improve the quality of fruits and vegetables, but also have signif-
icant impacts on human health due to the numerous medicinal properties they possess.
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Recently, there has been an increase in global interest in plant-based foods, specifically
fruits and vegetables, because of the ability of bioactive compounds to scavenge free
radicals (such as, reactive oxygen and reactive nitrogen species), in addition to their an-
timicrobial, anti-inflammatory, and antiproliferative activities [74,75]. The occurrence of
secondary metabolites, such as polyphenols, carotenoids, and terpenoids, in specific food
matrices contribute to their functional properties, which are manifested as an enhanced
counteractive action of the development of several chronic diseases, such as cardiovascu-
lar disease, cancer, neurodegenerative diseases, and diabetes [18,76]. Carrots, tomatoes,
onions, and spinach are the most commonly utilized aromatic vegetables in the daily di-
ets of various cuisine cultures around the world, and their volatile chemicals have been
thoroughly explored.

Terpene compounds dominate the volatile profile of carrot (Daucus carota) varieties.
Terpenes are abundant in orange carrot, with 31 identified that accounted for 58.1% of
the total volatiles of this variety, whereas terpenes are less prevalent in white carrot, with
22 volatile metabolites identified that accounted for 61.3% of the total volatile compounds [31].

In terms of the volatile composition of tamarillo (Solanum betaceum), 65 volatile
biomarkers were identified, 20 of those were terpenoid compounds, 17 esters, 7 alcohols,
5 benzyl compounds, 4 aldehydes, 4 furan compounds, and the rest 7 miscellaneous
compounds. In tamarillo, 65 volatile metabolites were identified, including 20 terpenes,
17 esters, 7 alcohols, 5 benzenes, 4 aldehydes, 4 furans, and 7 various compounds [31].

The volatile profile of both (red and yellow) onion (Allium cepa) varieties is very
distinct. Red and yellow onions have very different volatile profiles. Red onions contain
aldehydes (26.7%), organosulfur compounds (19.6%), and carboxylic acids (15.3%), while
yellow onions contain mainly organosulfur compounds (73.8%) [6,77].

A total of 61 volatile compounds were identified in Beta vulgaris (beet), the majority
of which were terpenoid (61.0%), furanic (20.6%), carboxylic acids (5.6%), and benzene
derivatives (5.2%) [31]. Similar to onions, garlic and broccoli are also rich in organosulfur
compounds, which give it its aroma, flavors, and bioactive attributes [78,79].

In tomatoes (Solanum lycopersicum), aldehydes and furanic compounds make up
71% of the total volatile profile. The remainder aroma and taste contributors were alcohols
(6.6%), esters (5.9%), terpenoid compounds (5.5%), carboxylic acids (4.7%), organosulfur
compounds (2.9%), and ketones (1.6%) [31,80].

In spinach’s (Spinacia oleracea) volatile profile, 57 metabolites were identified, including
14 esters, 13 terpenes, 8 alcohols, and 7 aldehydes [31]. Other interesting functions in plants
that are not discussed here include pathogen defense, heat and oxidative stress tolerance,
signaling among plant organs, inter-plant interaction, and allelopathy [30,81,82].

Predicting and better understanding the behavior of flower visitors, as well as the
function of volatile compounds in certain plants, requires a thorough quantitative and
qualitative analysis of aroma compounds. The combination of solid-phase microextrac-
tion in headspace mode (HS-SPME) and gas chromatography-mass spectrometry (GC-MS)
is a popular and effective analytical method for metabolomics studies of volatile or-
ganic compounds (VOCs) due to its many advantageous features; however, there is a
need to explore further. Understanding the volatile profile of fruits and vegetables is
useful for enhancing their flavor and determining which of their metabolites have the
greatest biological significance and, thus, the most potential for application in targeted
nutraceutical therapies.

2.3. Function and Volatile Profiles of Flowers

Flower fragrances are a complex mixture of volatiles that play multiple roles and
are used by pollinators in combination with other signals such as color. Floral scent is
broadly used in aromatherapy, perfume, cosmetics, flavoring, and pharmaceutical indus-
tries; however, their prime role is to facilitate pollinator, herbivore, and pathogen inter-
actions in their native ecosystems [1,83]. Floral visitors utilize floral fragrance to predict
the quantity of incentive found in flowers, to aid in the particular aspect host flower, or as
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chemically similar signals to those essential for pollinating insects in other ecological circum-
stances [26,84]. β-ocimene is universal terpenoid implicated in pollinators attraction such as
trans-β-ocimene emitted in highest amount at night coinciding with flower opening and
pollinators’ activity [85,86]. Floral scents are composed of a variety of compounds that are
classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives. Terpenoids
are the most diverse class of volatile compounds, with over 40,000 structures synthesized
from C5 isoprene units, including monoterpenes, sesquiterpenes, apocarotenoids, and
others [8]. Ginger flowers, jasmine, and Narcissus are aromatic plants with distinct fra-
grance properties, and their volatile chemicals have received a lot of interest in commercial
applications in recent years.

Orchid is the richest flowering plant family (Orchidaceae), with 20,000–30,000 species,
75% of which are fragrant [87,88]. Monoterpenes, such as cineole, (-) selinene, linalool,
and geraniol, are abundant in both Cymbidium and Phalaenopsis orchids [89,90]. The major
terpenoids found in an orchid hybrid (Vanda Mimi Palmer) are ocimene, linalool, linalool
oxide, and nerolidol.

Since rose is one of the most economically important ornamentals due to its widespread
cultivation for cut flowers, essential oil, and perfumes, its floral aroma is the primary
economic characteristic, and cultivars are classified based on the concentration of their
aromatic components. Monoterpenes are the primary constituent of the floral volatile
profile of many rose varieties, including ‘Fragrant Cloud’ and six Hybrid Rugosa roses [91].

Lilium species and varieties are widely regarded as among the best cut flowers and
potted plants in the world, with over a hundred cultivars commercially available based
on flower shape and color [92,93]. Lilium is highly valued by consumers due to their
large showy flower and rich in fragrance, which is primarily composed of terpenoids and
benzenoids, with linalool and ocimene being the most prominent among all. Its emission
occurs in a circadian rhythm, coinciding with floral visitors [12,13,15,94,95].

Hedychium is a fragrant plant that is grown commercially for its ornamental and
pharmacological values. Hedychium flowers release a broad array of volatile organic
compounds, the majority of which are terpenoids (monoterpenes and sesquiterpenes),
phenylpropanoids, and fatty acid derivatives [14,96–99]. Hedychium species vary in color
and shape, and in terms of floral scent, Hedychium species range from scentless to fragrant
with high ornamental values [16,27,100,101].

Plants of the lavender genus are known for their exceptional aromatic and therapeu-
tic qualities [102]. Linalool, linalyl acetate, 1,8-cineole, and α-terpineol are the primary
volatiles that can be extracted from lavender essential oil [102–104]. Other volatile com-
pounds that can be extracted from lavender essential oil include oxygenated derivatives of
monoterpenes and monoterpene alcohols [104]. Terpenoids were the main constituents of
essential oils in both Lavandula officinale and L. angustifolia [105,106]

Narcissus floral volatile compounds and essential oils are extensively being used in
the cosmetics industry. The major VOCs in Chinese daffodil flowers (Narcissus tazetta)
were acetic acid phenethyl ester; ocimene (E-ocimene, allo-ocimene, and neo-allo-ocimene);
α-linalool; 1,8 cineole. and benzenoids [107–109]. The main VOCs in daffodil (Narcissus
pseudonarcissus) are monoterpenes, particularly β-myrcene and β-ocimene [110]. Like-
wise, terpenoids are the primary constituents of floral aroma profiles in Narcissus
essential oils [111].

There are only a few fragrant tulip cultivars, but they produce a wide variety of
different floral scents. Monoterpenes (linalool, α-pinene, β-ocimene, eucalyptol, and
d-limonene), sesquiterpenes (caryophyllene, α-farnesene, β-ionone, and geranyl acetone),
and benzenoids are the primary odorants in tulip (Tulipa L.) cultivars [112].

Jasmine flowers are famous for their delicate and distinctive aroma profiles. The floral
volatile profile of Jasminum species (J. grandiflorum, J. auriculatum, J. sambac, and J. multiflorum)
is dominated by monoterpene linalool and sesquiterpene (3E, 6E)-α-farnesene [113,114].

Given the importance of volatile compounds in flavor and health effects on consumers,
multiple studies on aroma volatiles of horticultural crops have been conducted. However,
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there is a need to explore the precise volatile profiles of them through advanced instruments
and identify the key genes involved in the specific biosynthetic pathways of these volatiles.
Farmers are typically compensated for production quantity rather than flavor or aroma, so
less attention is paid to preserving or enhancing desirable fragrance and flavor.

2.4. Analytical Protocols and Methods for the Characterization of VOCs

The scientific and industrial communities have recently increased their interest in
identifying and quantifying the volatile odorant molecules released by natural products
of horticultural commodities. These compounds can be either natural or synthetic, and
they are classified based on their sensory properties. In addition to the characteristics
and structure of the raw materials, the aroma is also dependent on the chemico–physical
properties of the aroma itself, which determines how volatile the odorants are [115]. There
are two types of volatile compounds, endogenous and emitted, with the former typically
requiring direct organic solvent extraction.

Extraction can be accomplished with a wide variety of solvents, including but not lim-
ited to hexane, pentane, diethyl ether, dichloromethane, chloroform, ethyl acetate, and sol-
vent mixtures [116,117]. A solid-phase extraction (SPE) column was used to separate some
non-volatile compounds from a volatile organic solvent extract [118]. Headspace sampling
techniques such as solid phase microextraction (SPME), Gerstel Twister, and Monotrap, and
dynamic headspace sampling systems have been used to collect emitted volatiles [119–122].
Solid–liquid extractions (microwave-assisted extraction (MAE) and ultrasound-assisted
extraction (UAE), accelerated solvent extraction (ASE), supercritical fluid extraction SFE),
and solid-phase microextraction are among the new techniques (SPME) [44].Under atmo-
spheric pressure, organic solvents such as hexane, acetone, methanol, ethanol, or water
were commonly used, and the solvent of selection was largely determined by the polarity
of the analytes. The next step in the process involves identifying the volatiles by using the
appropriate analytical tools.

Gas chromatography-mass spectrometry (GC-MS) and headspace analysis have be-
come increasingly popular in recent years for determining the identity and concentration
of aromatic compounds in flowering plants. Gas chromatography-mass spectrometry
(GC-MS) is a popular and powerful technique for analyzing volatile compounds, and it can
provide information on chemical structure [13,100,123,124]. The Electronic nose (E-nose)
is another approach that have been widely employed in testing of quality of products,
medical diagnosis and environment monitoring [125,126]. The zNose technique, which
combines a collection device and an analytical instrument to collect and analyze volatiles in
real time, has been established for measuring volatile compounds emitted by plants [119].
Metabolites of the glycolysis and pentose phosphate pathways can be analyzed using mass
spectrometry (MS) in conjunction with an isolation technique such as gas chromatography
(GC), liquid chromatography (LC), or capillary electrophoresis (CE). The most reliable
techniques for determining plant metabolites, such as those involved in the production of
volatile fatty acid derivatives, are gas chromatography (GC) and liquid chromatography
(LC) or mass spectrometry (MS) coupled with GC or HPLC. GC is the standard method in
laboratories across academia and industry for characterizing fatty acid profiles of lipids
in biological materials such as human food. Isoprene and linalool have been analyzed
by using HPLC-tandem MS (MS/MS) and ultra-HPLC-MS/MS with ion-pair reagents.
Fourier transform near-infrared (FT-NIR) spectroscopy with attenuated total reflection
(ATR-FT-NIR) or GC-olfactometry (GCO) has been used to assess the sweetness of fresh
apples as an internal quality attribute [44].

The most common method for identifying fatty acids in horticultural commodities is
gas chromatography (GC) coupled to a flame ionization detector (FID) or a mass spectrom-
eter (MS). Although HS-SPME-GC-MS has been widely used for floral aroma detection,
combining HS-SPME-GC-MS with Proton transfer reaction mass spectrometry (PTR-MS)
or electronic nose (E-nose) would be very efficient for accurate determination of floral
volatiles [100,101,127], or it could more proficiently assess the complex volatile phenotype.
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Through molecular breeding, there are opportunities for aroma enhancement and new
applications of the most current innovations in biotechnological modifications of flavor
and aroma in horticultural crops.

3. Industrial Applications of Plant Volatiles

Aside from their critical role in plant survival, volatile terpenoids have a wide range of
important applications in humanity. They are widely used in the pharmaceutical industry
for their medicinal properties, in the cosmetic industry for their strong and appealing
fragrance, and in the food industry as flavoring agents (Figure 2). The focus of this
review is on high-value terpenoids in pharmaceuticals, fragrances and flavors, cosmetics,
agriculture, and useful biomaterials.

Plants 2023, 12, x FOR PEER REVIEW 10 of 25 
 

 

chromatography (LC) or mass spectrometry (MS) coupled with GC or HPLC. GC is the 

standard method in laboratories across academia and industry for characterizing fa�y 

acid profiles of lipids in biological materials such as human food. Isoprene and linalool 

have been analyzed by using HPLC-tandem MS (MS/MS) and ultra-HPLC-MS/MS with 

ion-pair reagents. Fourier transform near-infrared (FT-NIR) spectroscopy with a�enuated 

total reflection (ATR-FT-NIR) or GC-olfactometry (GCO) has been used to assess the 

sweetness of fresh apples as an internal quality a�ribute [44].  

The most common method for identifying fa�y acids in horticultural commodities is 

gas chromatography (GC) coupled to a flame ionization detector (FID) or a mass spec-

trometer (MS). Although HS-SPME-GC-MS has been widely used for floral aroma detec-

tion, combining HS-SPME-GC-MS with Proton transfer reaction mass spectrometry (PTR-

MS) or electronic nose (E-nose) would be very efficient for accurate determination of floral 

volatiles [100,101,127], or it could more proficiently assess the complex volatile phenotype. 

Through molecular breeding, there are opportunities for aroma enhancement and new 

applications of the most current innovations in biotechnological modifications of flavor 

and aroma in horticultural crops. 

3. Industrial Applications of Plant Volatiles 

Aside from their critical role in plant survival, volatile terpenoids have a wide range 

of important applications in humanity. They are widely used in the pharmaceutical in-

dustry for their medicinal properties, in the cosmetic industry for their strong and appeal-

ing fragrance, and in the food industry as flavoring agents (Figure 2). The focus of this 

review is on high-value terpenoids in pharmaceuticals, fragrances and flavors, cosmetics, 

agriculture, and useful biomaterials. 

 

Figure 2. A visual representation of plant volatiles used in plant biological interaction, pharmaceu-

ticals, cosmetics, the food and flavor industry, and biofuels. Biological interactions include both be-

low- and above-ground interactions. Plant volatiles play an important role in multiple plant off-

Figure 2. A visual representation of plant volatiles used in plant biological interaction, pharmaceu-
ticals, cosmetics, the food and flavor industry, and biofuels. Biological interactions include both
below- and above-ground interactions. Plant volatiles play an important role in multiple plant off-
springs and lifespan by attracting pollinators and mediating various interactions between plants and
their surroundings.

3.1. Food and Flavor Industry

Plants have the ability to generate, accumulate, and release volatiles that, when
interacting with human receptors, can act as aroma and flavor molecules. Flavor and
aroma are desirable attributes that influence the quality of horticultural crops. To ensure
customer perception, a desirable mix of volatile compounds is desired. The olfactory
epithelium lining the nasal cavity contains receptors that allow humans to comprehend
volatile compounds [128]. Volatile compounds contribute significantly to the distinctive
flavors and off-flavors of several foods [129]. Terpenoids are the primary components of
most plant essential oils, providing a wide range of pleasant scents, ranging from flowery,
fruity, woody or balsamic notes. As a result, terpenoids are a highly valued class of VOCs
in the fragrance and flavor industries [130].
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Flavorants, pharmaceuticals, agricultural pesticides, and chemical industries all rely
on volatile compounds for their commercial success. Terpenoids are responsible for a
wide range of odors, including “fruity” and “floral”, as well as “earthy” and “woody”.
Terpenoids account for more than 90% of the volatiles in citrus peel oil, while in lime, the
most copious volatiles were limonene (73.5%), geranial (8.4%), neral (4.9%), myrcene (2.1%),
and β-bisabolene (1.6%) [131]. Quantitative analysis of mango fruit found that the most
prevalent volatile compounds were monoterpenes such as δ-3-carene, limonene, terpino-
lene, and β-phellandrene [68]. Over 96% of the orange fruit’s volatiles, which contribute
to its flavor, are terpenoids [132]. C13 norisoprenoids, a class of volatiles derived from
carotenoids, were found to be the most abundant in raspberry fruit, accounting for between
64% and 94% of the total volatile content across nine different raspberry genotypes [133,134].
Likewise, β-ionone was the major aroma compound in ‘Meeker’ raspberry, with a
“raspberry, perfume, floral” aroma [51].

Monoterpenes and sesquiterpenes accounted for 97% of the volatile compounds in
seven carrot varieties. These compounds included myrcene, γ-bisabolene, γ-terpinene,
α-pinene, sabinene, terpinolene, β-caryophyllene, and limonene [135]. According to Gas
chromatography–olfactory detection, foremost terpenes that contribute significantly to
fragrance include myrcene, terpinolene, sabinene, and 1,3,8-p-menthatriene [136], having
“herbaceous and woody”, “sweet and piney”, “woody and spicy”, and “camphoreous
and herbal” aroma notes, respectively [128]. Geosmin, a terpenoid, is responsible for the
“earthy” aroma of red beets [137]. Tomatoes get their “fruity” and “floral” aromas from the
terpenoids geranial, β-ionone, β-damascenone, and 6 methyl-5-heptene-2-one [138].

Due to their pleasant scents, essential oils (predominantly mono- and sesquiterpenes)
derived from aromatic trees, herbs and shrubs such as rose, jasmine, Hedychium, Boswellia
and Santalum have attained high global market values. Essential oils of fragrant plant
species have been commercially exploited due to their distinctive flavors in the perfume,
beverage, and food industries, including valencene (a sesquiterpene) derived from citrus
fruits [139]. Limonene, linalool, and 1,8-cineole (monoterpenes) are wildly used for the
scent of lime/lemon beverages [21]. Sesquiterpenes (β-caryophyllene and α-humulene)
contribute to the aroma and flavor of hops, which influence beer quality [140,141].

Genetics, maturation, pre- and postharvest environmental conditions, and postharvest
handling all contribute to the distinct chemistry and biochemistry that gives fresh fruits
and vegetables their distinct flavor and aroma. Flavor is determined by a dynamic chemical
profile that is affected by these factors. Aroma and flavor are imparted to a product by
a unique combination of aroma-active volatile compounds, which may include “impact
compounds” unique to that product.

As food supplements and colorants, beta-carotene and astaxanthin hold a substantial
market value. In strawberries, nerolidol and several key signature terpene synthase genes
responsible for the formation of volatiles have been identified and functionally charac-
terized. Likewise, in mango fruit, several terpenes such as caryophyllene, terpinolene,
beta-myrcene, 3-carene and alpha-pinene substantially contribute to the mango aroma
profile [142]. In carrot, terpene synthases were mainly responsible for the production of
aroma and flavor compounds [143]. Quality parameters of foods can thus be enhanced
through advanced metabolic/genetic engineering tools. In the coming years, we should
have a better grasp on the flavor formation mechanisms especially with the advent of new
genomic and metabolomics technologies. Greater consumption and consumer satisfaction
can be achieved by developing and implementing methods for enhancing the flavor of
fresh horticultural commodities.

3.2. Pharmacological Applications

Plants synthesize a variety of volatile organic compounds, and most of them are volatile
terpenoids. Terpenoids are being used in the diagnosis and treatment of a variety of human
diseases. A large number of terpenoid compounds and derivatives have been evaluated to
determine the biochemical and cellular basis of their pharmacological properties [144,145].
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Floral scents have been shown to have positive effects on mental health, depression,
and memory disorders. For instance, plum blossom fragrance, has been shown to have
positive effects on mood and may even help train specific regions of the brain responsible
for memory, speech, and motor control, which could have positive effects on mental health,
depression, and neurological memory disorders [146]. In a natural setting, people are
more receptive to the subtle odors of plants, and gardens can be designed to take edge
of these appealing floral aromas, which may create feelings that result in various types
of therapeutic experiences [147,148]. Floral scents frequently evoke memories of specific
times, events, places, or feelings. Aromatherapy is a natural approach of healing the mind,
body, and soul. Aromatherapy has been used as an alternative or complementary medicine
since ancient times, particularly in ancient Egypt, China, and India [148,149]. Essential oils
and fragrance compounds have been used in the treatment of a wide range of mental and
physical ailments, including but not limited to: headaches, pain, insomnia, eczema, stress-
induced anxiety, depression, and digestive issues, in both conventional and alternative
medical systems [150]. Essential oil aromas such as peppermint, jasmine, and ylang-ylang,
as well as individual essential oil components (1,8-cineole and menthol), had a significant
impact on basic forms of attention behavior [151]. Inhaling enantiomers of limonene and
carvone (chiral fragrances) for extended periods of time alters autonomic nervous system
characteristics and states of brain activity associated with self-evaluation [152]. According
to the findings of these studies, fragrances have both immediate and long-term effects on
human mental and physical health.

According to research, both natural monoterpenes and their synthetic derivatives
have antiarrhythmic, anti-aggregating, antibacterial, anti-inflammatory, antioxidant, an-
ticancer, anti-spasmodic, antinociceptive, antifungal, antihistaminic, and local anesthetic
properties [153]. Terpenoid substances benefit health by interacting with key molecular
targets in human and animal physiology by acting as immunostimulants, modulating blood
coagulation hemostasis, increasing antioxidant activity, and modulating transcription of
genes that control signaling pathways related to different chronic diseases.

Taxol, a diterpene, was effective against cancer and malaria (artemisinin, a
sesquiterpene) [154,155]. Both of these diseases support pharmaceutical industries valued
in the billions of dollars that entirely rely on natural products.

As an antimicrobial agent, cineole, also known as 1,8-cineole or 1,8-cineol (eucalyptol),
is a monoterpenoid oxide found in the essential oils of several plants, including euca-
lyptus, and is widely used to treat respiratory ailments exacerbated by infection [156].
Likewise, eugenol showed anticancer properties as well as quick bactericidal effects on
Salmonella enterica. Terpineol was found to have high bactericidal activity against S. aureus
strains, while citronellol, carveol, and geraniol all demonstrated clear bactericidal effects
on Escherichia coli [157,158]. Several studies have shown that numerous terpene-based
VOCs (β-limonene, α-pinene, p-cymene, linalool, β-phellandrene, and terpinenes) present
in the essential oils of several trees, shrubs and herbs (Hedychium, Eucalyptus, Ocimum,
Alpinia, Citrus, coniferous trees, rosemary, Artemisia, and several others) have antioxi-
dant, sedative-hypnotic and anti-inflammatory properties [21,155]. The aforementioned
two examples are pharmaceutical industries valued in the billions of dollars that entirely
rely on natural products.

Terpenes are also essential components of a variety of human nutritional and health
care products, i.e., carotenoids and tocopherols, are source of vitamin A, E, and K and
coenzyme Q10 [159,160]. Artemisia annua is an important ornamental and medicinal plant
that is considered to be effective against COVID-19 [161], and terpenoids are the main
constituents of this plant. Identification, isolation, and characterization of terpenoid-
associated biosynthesis enzymes is the key step for high production of pharmaceutical
terpenes. Furthermore, upregulation of genes and transcription factors (TFs) associated
in terpenoid biogenesis and suppression of competitive metabolic pathways are effective
strategies for enhancing the levels of pharmaceutical terpenoids.
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3.3. Cosmetics Industry

Since ancient times, plants and their VOCs have been the primary source of aroma
for perfumes and cosmetics. Flowers such as roses, leaves including lavender, fruits, seeds
such as anise, some roots (ginger) as well as barks (cinnamon bark), and some woods, such
as pines, continue to provide vast quantities of aromatic plant materials for the perfume
industry. In 1970, the global market for cosmetics and beauty products was estimated to be
$2.4 billion per year, and by 2017, the global beauty and cosmetics industry was valued at
more than $500 billion [21,162]. Organic ingredients, specifically terpenes and terpenols,
significantly contribute to the overall market value.

Terpenes and carotenoids are widely used in the cosmetics industry due to their
aroma, health benefits, beauty enhancement and antioxidant properties. Terpenes and
carotenoids also protect skin from UV radiation and prevent skin wrinkling, aging, and
melanogenesis [163]. Alpha-terpineol is used to improve skin permeability and has insecti-
cidal properties [164].

Essential oils are a multifaceted mixture of volatile compounds, particularly terpenoids,
that have been used since early on in human civilizational history to enhance the phys-
ical health and appearance of the human exterior, as well as to protect body parts from
environmental damage [165]. Fragrant essential oils are also important perfume additives
in cosmetic products. Numerous monoterpenes, including geraniol, ocimene, eucalyptol,
citronellol, limonene, camphor, pinenes, linalool, citral, and myrcene, are well-known
aromatic compounds found in essential oils of various plants and are widely used in cos-
metic and perfumed products [19,166]. Flower essential oils such as gardenia, tuberose,
Lavandula officinalis, rose, narcissus, and jasmine continue to be among the most prominent
aroma components in the cosmetic industry [163]. Linalool is an essential compound in the
industrial production of many fragrance substances, including geraniol, nerol, citral, and
its derivatives, and a key substance in the synthesis of vitamins A and E [167]. Likewise,
limonene is used in common cleaning products.

There remain scented species whose natural compounds have yet to be elucidated,
which could provide a source of new human-beneficial terpenes. Much research remains to
be done regarding the several aromatic compounds that have little or no information.

4. Metabolic Engineering Strategies for Production of VOCS

Metabolic engineering aims to accurately model biological networks, determine the
output of valuable products on an industrial scale in a cost-effective manner, and identify
network components that limit the manufacturing capacity of such products [168]. Due to
the enormous use and involvement of secondary volatile metabolites in modifying floral
aroma profile, enhancing fruit quality, eliminating unwanted compounds, and bettering
both direct and indirect plant defenses, metabolic engineering has enormous potential in
various agricultural applications [5,169]. For example, pollinators frequently select high
floral VOCs in ecological systems, implying that pollination services can be enhanced by
generating more fragrant flowers [170,171].

Similarly, flower sizes of many crop cultivars are smaller, and some lack volatiles or
have less volatiles, attracting flies that are insufficient pollinators, therefore, molecular
breeding and genetic engineering tools may be applied to benefit such crops in attaining
those advantageous characteristics. Furthermore, many high-yielding crops, such as corn,
lack key defense-related aroma volatiles, such as (E)-β-caryophyllene, which attracts pest-
killing parasitic wasps and entomopathogenic nematodes [3]. Thus, methodologies to
overcoming these issues must be developed, and metabolic engineering of both floral
and defense-related VOCs is a valuable technique for enriching plant chemodiversity and
beneficial insect biodiversity. Altering biosynthetic pathways is an effective method for
improving the flavor, fragrance, and aroma of fruits, herbs, and vegetables (Figure 3).
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Figure 3. Terpenoids biosynthetic pathways and potential target points for large-scale genetic
modification of products. Terpenoids are synthesized via mevalonic acid (MVA) and methylery-
thritol phosphate (MEP) pathways. The MEP pathway occurs in plastids and begins with pyru-
vate and GA-3P condensation and proceeds through a series of reactions to yield hemiterpenes,
monoterpenes, and sesquiterpenes; the MVA pathway, on the other hand, begins with acetyl-
CoA condensation and proceeds through a series of chemical reactions that stretch the cytosol,
peroxisomes, and endoplasmic reticulum to yield monoterpenes and sesquiterpenes. Abbreviations:
GA3P, Glyceraldehyde 3-phosphate; DMAPP, dimethylallyl diphosphate; IPP, isopentenyl diphosphate;
TPS, Terpene synthase; FPP, farnesyl diphosphate; GPP, geranyl diphosphate; GGPP, geranyl geranyl
diphosphate; ACoA, acetyl-CoA; ER, endoplasmic reticulum; Per, peroxisome; NG sequencing, Next
generation sequencing.

4.1. Enhanced Terpenoid Bioengineering Approaches

Previously, bioengineering approaches have been applied to boost plant defense
mechanisms. In Arabidopsis, elevated levels of linalool deterred the aphid (Myzus persicae) in
dual-choice assays following transcriptional activation of the F. ananassa synthase (FaNES1)
targeted to chloroplasts [5]. Moreover, petunia transformed with the (S)-limonene synthase
gene from Clarkia breweri produced linalool, which repelled aphids [83]. As volatile-based
plant defenses are species-specific, findings attained in model systems cannot be readily
transferred to crops. Furthermore, pleiotropic impacts of altered VOC profiles on plant
defense must be assessed within an agroecosystem setting.

Terpenoid bioengineering efforts may also hold implications for the pharmaceuti-
cal properties of plants and affect their ability to treat a variety of ailments. Recently,
artemisinin (sesquiterpene) and taxol (diterpene) have been widely used in the pharmaceu-
tical industry [21], and their increased production could benefit humans both economically
and physiologically. A major bottleneck in the application of bioengineering technology
is the lack of precise and efficient DNA modification tools. However, numerous research
findings have shown that upregulation of TPS genes is an efficient strategy for addressing
these issues through manipulation of terpenoid production in transgenic plants [4,95,172].
Moreover, as the price of DNA synthesis has decreased, a large number of potential en-
zymes have been codon optimized, synthesized, and used to complete metabolic pathways.
Together with the rapid advancement of plant metabolism, genetics, and plant modern
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genetic approaches, researchers have advanced from single-celled organisms to sophis-
ticated plant systems. Moreover, plant synthetic biology is a new field that incorporates
engineering principles with plant biology [173].

4.2. Host Plant/Organism Selection

Countless essential plant natural products pathways have been reconstructed using
microbes and model plants. Yeast is typically a more suitable host in synthetic biology
approaches for uncovering complex plant volatile metabolic pathways due to its eukaryotic
features [174]. Due to their strong biosynthetic ability, microorganisms (Escherichia coli and
Saccharomyces cerevisiae) are broadly used for the biosynthesis of several plant secondary
metabolites, and their genetic operation and metabolic modifications have been thoroughly
studied [173,175]. Longer biosynthetic pathways, on the other hand, are a limitation in
large-scale production of these products, therefore there is a need to identify new pathways
and engineer easier, shorter, and more effective pathways to produce a greater quantity
of VOCs. The rapid development of high-throughput sequencing has made it feasible
to reveal the genetic code of several important species and implement genetic mutation
among individuals at the population level, which has served as the foundation for in-depth
gene mining and research into plant volatile biosynthesis mechanisms.

4.3. Epigenetic Modification

DNA/RNA methylation and histone modification, two epigenetic factors that govern
both genes and transcription factors, may stimulate adaptive mechanisms to evolution-
ary pressures while also regulating the rhythmic emission of VOCs via circadian clock
regulation [176]. Recent advancements in omics advancements have facilitated the identifi-
cation of genes encoding candidate enzymes implicated in the regulation of plant VOCs
biosynthesis and a deeper understanding of this process. However, the epigenetics’ function
in VOC metabolic pathways and regulation has been disregarded.

Changes in gene function caused by epigenetic regulation are not dependent on a
change in DNA sequence but can be passed down through generations in both the mitotic
and meiotic cells [177]. Two epigenetic signaling pathways have a significant impact on
gene regulation and expression patterns: posttranscriptional modifications involve chro-
matin transformation, whereas cytosine DNA methylation is implicated with both transpose
elements and genes [176]. Methylation alters the biophysical properties of DNA, allowing
some proteins to inhibit DNA recognition while enabling others to recognize it, resulting in
gene silencing [178]. These methyl-binding proteins are transcriptional suppressors that
cause chromatin remodeling by recruiting corepressors and histone deacetylases [179]. Fur-
thermore, chromatin modification and transcriptional silencing can be accomplished using
RNA-based epigenetic mechanisms. To a large extent, epigenetics would be responsible for
controlling VOC emissions in plants.

Non-coding RNAs have long been recognized for their infrastructure significance [180].
The formation and stability of heterochromatin is thought to be aided by RNA-mediated
epigenetic inheritance. In Schizosaccharomyces pombe, RNAi machinery disruption causes het-
erochromatin abnormalities, particularly H3K9 methylation issues [181]. RNAi-mediated
DNA methylation is easily recognized in plants, but in humans, this may be confined to
the infrequent non-CpG DNA methylation seen largely early stages of development [182].
Non-coding RNAs, both small and long (smRNA and lncRNA), play critical roles in tran-
scription, RNA processing, and protein synthesis [183,184]. In addition to playing a role
in the epigenetic mechanisms of histone and DNA methylation patterns, small RNAs
also serve as a component of self-reinforcing, positive feedbacks with an amplification
element. To date, our understanding of how lncRNA scaffolds independently recruit
polycomb-group proteins and other histone modifications complexes is limited.

Given the environmental challenges that plants face and the fact that epigenetic
mechanisms are reversible, they may be critical to their survival. Epigenetic variables
have lately emerged as important modulators of quick plant responses to surroundings,
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allowing plants to respond more efficiently to repeating stress events while also preparing
progeny for subsequent obstacles [185]. The emission of volatile organic compounds is
modified by epigenetic modification of the circadian clock. The expression of genes and
transcription factors involved in phenylpropanoid and terpenoid biosynthesis can also
be altered by other epigenetic alterations, such as DNA/histone modification and long
noncoding RNAs. Furthermore, the wide range of VOCs and their importance in plant
evolution can be explained largely by the combination of plant polyploidy and epigenetics.

4.4. Overexpression or Silencing of Key Structural Biosynthesis Genes

The preferred strategy for functional verification of target pathways in their native
plants has recently been to suppress the function of all or a subset of the enzymes via gene
deletion or expression silencing, and afterwards assess changes in terpenoids to detect
the functions of candidate pathway genes. Silencing HcMYB1/2/3/7/8/75/79/145/238/248,
Aux/IAA and HcARF5 significantly reduced the expression level of key volatile terpene
synthesis genes, resulting in lower volatile terpenoid emission and indicating that these transcrip-
tion factors play critical roles in H. coronarium’s volatile regulatory mechanism [14,16,27,96,97].
Similarly, Azuma et al., used overexpression/gene silencing and GUS staining assays to
identify that InMYB1 promoter expression is petal-specific and presents a useful tool for
molecular breeding of numerous floricultural crops (Eustoma, chrysanthemum, carnation,
Japanese gentian, stock, rose, dendrobium and lily) [186]. These findings suggest that
transcription factors and promoters could be important targets for modifying crop plant
volatile profiles using a combination of genetic engineering tools.

4.5. CRISPR/Cas9 Gene-Editing Approach

With the advent of CRISPR/Cas9 in recent years, gene-editing technology has been
extensively used for functional validation of key enzymes and regulatory elements due
to its versatility and capacity to knock out several genes at once with high accuracy and
precision [187,188]. CRISPR/Cas9 genome editing has been applied to many plants for
gene expression regulation and enzyme manipulation. Strong fragrance, for example, was
successfully developed in non-aromatic rice by creating novel alleles of OsBADH2 through
genome editing with CRISPR/Cas9 [189,190]. Moreover, using synthetic biology platforms
to elucidate such pathways has also proven an effective method.

4.6. Subcellular Compartmentation

Targeting subcellular compartments may be an effective strategy for increasing plant
volatile production, such as the introduction of artemisinin in tobacco (N. tabacum) into the
chloroplast and nuclear genomes using two distinct biosynthetic pathways, which increased
artemisinin production without interfering with plant physiology. Researchers manufac-
tured high level terpenoid production in tobacco plants by upregulating
the expression of IPP (isopentenyl diphosphate) and diverting carbon flow from the
cytosolic or plastidic compartments, resulting in 1000-fold increases in production of
amorpha-4,11-diene and patchoulol (sesquiterpenes), and 10–30-fold increases in limonene
(monoterpene) production [191–194].

Chemical synthesis is frequently inefficient and costly, and it may not produce enan-
tiomerically pure terpenes, whilst large-scale microbial manufacturing involves the use of
expensive feedstocks. The large-scale production of VOCs naturally in plants via metabolic
engineering approaches may provide an optimal avenue to meet the demands of both
therapeutic applications and industrial production.

5. Conclusions

The volatile compounds produced by plants have profound effects on all forms of life.
Flowers and fruits release aromas to attract pollinators and humans who consume the fruit.
Most horticultural varieties and cultivars, on the other hand, are chosen based on human
preference. It is critical to identify VOCs that are relevant to human sensory preferences
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in order to meet consumer requirements. Flower and fruit aromas have been extensively
studied from the perspective of plant ecology, but their application to humans has received
less attention. Recent technological advances have accelerated the discovery of VOCs and
the synthetic enzymes, genes, and TFs responsible for their synthesis, resulting in a better
overall understanding of VOC biosynthesis in plants. There are, however, a number of
unanswered questions that must be addressed. Its role can be broadened with the help of
genetic engineering by improving crop plant genetic ability, improving the aroma quality
of fruits and flowers, and producing pharmaceuticals.

6. Research Gaps and Future Directions

Plants can produce a wide range of volatile metabolites that attract pollinators and
seed dispersers while also strengthening plant defense responses. Maximizing plant
volatile production is also beneficial to the cosmetics, pharmaceutical, food and flavor
industries. Furthermore, metabolic engineering can also be used to develop crops with
enhanced defense systems, lowering the agricultural sector’s reliance on harmful pesticides.
The use of data mining algorithms to process information on VOC emissions as well as
environmental variables obtained from fields by various sensors will enable the utilization
of big data to evaluate plant performance and determine early signs of stress. The goal of
metabolic engineering is to create precise models of biological networks in order to predict
the yield of economically valuable products at industrial scale and to pinpoint the elements
of these networks that restrict production.

Although several volatile biosynthesis pathway genes have recently been identified,
the mechanism underlying aroma and flavor of several crops remains largely unknown.
Decoding genome sequencing of numerous plant species has recently been accomplished,
providing an opportunity to identify and characterize key signature genes associated with
aroma production, thus improving the potential of genetic engineering to successfully
enhance aroma quality of horticultural commodities. Through such endeavors, plant
genetic engineering has the potential to yield aromatic horticultural products that are high
in health-promoting phytonutrients.

Although the biosynthetic pathways of volatile formation have been studied, there is
still a need to reengineer the existing pathways using metabolic and genetic engineering,
as well as to investigate potential novel unknown pathways and biosynthesis genes, which
has recently become possible with the advancement of innovative omics and genomic
tools. Correspondingly, there is an urgent need to determine which transcription factors
control the production of these fugitive compounds. Unfortunately, the role of various
hormones (such as auxin, abscisic acid, salicylic acid, ethylene, and jasmonic acid) and
environmental factors (such as temperature, light, humidity, and so on) in influencing
aroma quality is understudied. There is also a lack of information about the TFs that are
involved in hormonal or environmental signaling pathways. A better understanding of how
hormones, environmental factors, and their interplay regulate transcription is a priority
for future studies. Gene editing and the discovery of model organisms for enhanced
volatile production hold the promise of future benefits for humankind. CRISPR/Cas9
genome editing has made it easy to silence or overexpress specific genes in charge of
modifying desirable traits, and it will persist to play a crucial role across every stage of
crop plant development, from the introduction of novel biosynthetic pathways to the
alteration of floral fragrance in scentless crops. Despite their potentially enormous impact
on plant growth, miRNAs and posttranscriptional mechanisms in plants have received
comparatively little attention. Understanding the mechanisms underlying transcriptional
regulation of active pharmaceutical ingredient biosynthesis via epigenomics, phenomics,
and cutting-edge bioinformatics provides a theoretical groundwork for breeding new plant
varieties with elevated levels of desirable natural compounds.

Improved volatile production is one example of a novel quality trait that can be
incorporated into future germplasm development due to the increased resources available
to breeders today. This is aided by the fast development of plant genome sequences, as well
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as a multitude of aroma- and flavor-associated microsatellites that can be used to identify
the most interesting alleles or key signature candidate genes. Investigation of natural
diversity and identification of signature volatiles associated with specific plant aroma can
provide useful insight for achieving the objectives of enhancing the aroma profile of certain
horticultural crops, providing a tangible benefit for end-consumers.
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