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Abstract: Root exudates of the invasive Solidago canadensis and the cereal crop Sorghum bicolor (L.)
Moench cv. ‘Hybridsorgo” were tested for allelopathic interactions against native and invasive plant
species in a controlled environment. After the surface was sterilized, the seeds of two invasive species
(Bromus sterilis and Veronica persica) and two native species (Youngia japonica and Rumex acetosa) were
germinated and transplanted into the soil (1:1 mixture of coco peat and sand) that had been condi-
tioned for one month by the cultivation of Solidago canadensis and Sorghum bicolor, both in combination
or as unplanted controls. After an additional eight weeks of growth, morphometric measurements of
the shoot and root, including foliar characteristics and above- and below-ground biomass accumula-
tion, were performed. The results revealed significant inhibitory effects of root exudates released by
Sorghum bicolor and Solidago canadensis on native species’ productivity and physiology. The invasive
species exhibited variable growth responses, with Veronica persica showing reduced shoot and root
expansion, but Bromus sterilis revealed increased shoot and root biomass allocation and nutrition
under the exudate treatments. Exudates from Solidago canadensis and Sorghum bicolor together showed
synergistic negative effects on native species, while they promoted growth and nutrition in Veronica
persica. Taken together, the differential species responses indicate that the tested native species were
more sensitive to the allelopathic compounds than the invasive species, which is in line with the
theory of novel weapons. The legacy effects of root exudates of both Sorghum bicolor and Solidago
canadensis could promote invasive establishment through imposing allelochemical interference com-
petition against native plant species. Understanding the specific allelopathic mechanisms may help
with the development of integrated strategies for managing invasive species.

Keywords: Sorghum bicolor; Solidago canadensis; root exudates; allelopathy; sorgoleone; legacy;
invasive and native species

1. Introduction

As an important ecological process, allelopathy can impact plant community dynamics
and the establishment of invasive species [1,2]. Allelopathic substances released from living
roots and their persistence in soils might provide certain invasive plants a competitive
edge in colonizing new regions or suppressing native vegetation [3-5]. Two plant species,
Solidago canadensis and Sorghum bicolor, have shown well-established allelopathic effects on
other plants through root exudation [6-9].

Sorghum bicolor, an important cereal crop, has the strong ability to release allelopathic
compounds from its roots that can inhibit the germination and growth of neighboring
plants [4,10-12]. Sorgoleone has been identified as the main allelochemical exuded naturally
from Sorghum bicolor roots and is a highly phytotoxic compound reported to inhibit root
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and shoot growth of test plant species at IC50 value under 10 pM [12-16]. The secretion of
sorgoleone from Sorghum bicolor roots appears to occur independently of plasma membrane
H*-ATPase activity and proton gradients [17]. This uncoupling from proton motive forces
suggests vesicular transport may mediate sorgoleone exudation to avoid autotoxicity. Similar
to many phenylpropane and flavonoids, sorgoleone is likely synthesized on the surface of
the endoplasmic reticulum and then transported from its site of synthesis to the extracellular
space through vesicles [18,19]. Several studies have shown that sorgoleone is a potent
photosystem II inhibitor that inhibits photosynthesis and reduces the chlorophyll content in
treated plants by hindering the oxidation of the plastoquinone pool in photosystem II [20,21].
Sorgoleone exhibits pre-emergence herbicidal activity by inhibiting mitochondrial respiration
in germinating seeds and seedlings [22-24]. Furthermore, sorgoleone can alter the soil
microbial community, for example, limiting root colonization of arbuscular mycorrhizal fungi,
which, in turn, may affect plant growth [25,26]. However, it has been found that certain
plant species respond differently to allelochemicals. For example, the weed species Sorghum
halepense exhibited a higher tolerance towards sorgoleone compared to crop plants and certain
native grasses [9,27,28]. This indicates the natural variation in the allelochemical sensitivity
of different plant species. Notably, throughout the growing season, living Sorghum bicolor
roots continuously exude sorgoleone for weeks. Sorgoleone can persist in soil environments
for prolonged durations after exudation, contingent upon various factors, including soil type,
moisture content, temperature, and microbial activity [29-31]. Research has documented
the presence of residual soil sorgoleone in unplanted Sorghum bicolor fields for 16-20 weeks
following harvest [9,21,32,33]. This persistence of sorgoleone enables it to operate as a
post-emergent and pre-emergent herbicide in Sorghum bicolor agroecosystems, inhibiting the
growth of both annual and perennial weeds through residual soil activity.

The allelopathic potential of Sorghum bicolor has several implications in agriculture.
Herbicide use can be minimized by rotating Sorghum bicolor with cereals, legumes, and
vegetables to suppress weed development in succeeding crops [9,34-37]. For example,
sorghum-wheat, sorghum-soybean, and sorghum-corn rotations in the Midwestern United
States decreased weed pressure in the following crops by 21-51% compared to continuous
cropping of the same species [38]. The weed-suppressing effects of Sorghum bicolor sorghum
rotation can persist for multiple growing seasons. In Kansas, USA, sowing Sorghum bicolor
in the prior year resulted in 54% lower weed density and 61% lower biomass in wheat
compared to continuous wheat [39]. Sorghum bicolor as a mulch or as a cover crop can
also inhibit weed growth in agricultural production systems through sorgoleone release
and leaching following the gradual breakdown of Sorghum bicolor residues [4,9,40,41].
For instance, when used as a summer smother crop in broccoli farming, a sorghum-
sudangrass hybrid cover crop decreased weed biomass in the subsequent broccoli crop by
72% compared to fallow controls [42]. Field trials of sorgoleone formulations exhibited
effective control of broadleaf and grass weeds at rates under 2 kg/ha [43]. Following the
recognition of sorgoleone as a natural herbicide, efforts have spurred the formulation of
Sorghum bicolor root exudates as a commercial bioherbicide product [23,32].

Solidago canadensis is a perennial herbaceous plant native to North America and
considered invasive in Europe, Asia, and Oceania. It has been reported that Solidago
canadensis roots produce multiple phenolic acids, including ferulic acid, caffeic acid, and
p-coumaric acid, which, after release into the rhizosphere, affect other plants through
allelopathic activity [44,45]. In test plant species, caffeic acid, in particular, inhibits seed
germination, root elongation, and seedling development. Its possible modes of action
include disruption of cell division, mitochondrial respiration, plasma membrane integrity,
and hormonal signaling pathways [46,47]. Solidago canadensis leaf and root extracts reduced
conifer seed germination and seedling growth in controlled trials [7,48,49]. According
to Abhilasha et al. [50], the germination of pine and spruce seeds exposed to Solidago
canadensis extracts was entirely stopped by caffeine doses of 175-200 uM. Moreover, field
surveys show negative relationships between Solidago canadensis cover and native tree
seedling density [51]. For example, in New England forests, native tree seedling density
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decreased exponentially from 5000-6000/ha to less than 1000/ha as Solidago canadensis cover
increased from 1% to 60% [52]. Therefore, allelochemicals from Solidago canadensis may
limit native tree regrowth where invaded. There is also evidence that Solidago canadensis
residues inhibited carrots, alfalfa, timothy, and barley biomass mainly due to high soil
ferulic acid concentrations [53,54], highlighting Solidago canadensis allelopathic effects on
diverse plant species. Apart from caffeic acid and ferulic acids, Solidago canadensis roots
produce flavonoid quercetin, which has been reported to show phytotoxic effects in lab
studies [50]. The diversity of allelopathic chemicals found in Solidago canadensis indicates
that the plant uses a number of inhibitory pathways to obstruct physiological processes
in plants to obtain an edge over competitors. Solidago canadensis has an established root
system that can maintain a continuous release of allelochemicals into the soil. It is likely
that residual allelochemicals accumulate over time in Solidago canadensis growth zones.

Even though many studies have evaluated the phytotoxicity of Sorghum bicolor and
Solidago canadensis root exudates on model plants and common crops, research comparing
the allelopathic effects of compounds found in Solidago canadensis and Sorghum bicolor roots
on native versus invasive species is still limited. Therefore, this study aimed to determine the
residual allelopathic effects of root exudates from Sorghum bicolor and Solidago canadensis on
different invasive and native plant species. The invasive species Veronica persica (common
names: Persian speedwell and bird’s-eye speedwell) is native to Europe and parts of Asia but
has spread globally as an aggressive weed [55]. It infests croplands, nurseries, lawns, and nat-
ural areas across North America, South America, Australia, Africa, and New Zealand [56-58].
Veronica persica competes strongly with crops and native vegetation, reducing yields by up
to 45% in cereals and 79% in legumes [59]. Its rapid growth allows it to quickly colonize
open habitats. In Australia, Veronica persica has invaded over 25 million acres of cropland
and caused estimated annual losses of AUD 15 million [28,60]. Other countries likely in-
cur comparable agricultural costs for Veronica persica management [61]. The invasive grass
species Bromus sterilis (barren brome) is native to the Mediterranean region but has invaded
ecosystems worldwide, including North and South America, Australia, and South Africa [62].
It colonizes roadsides, crop fields, rangelands, pine forests, and coastal habitats [63]. Bromus
sterilis infestations replace native plants, increase soil erosion, and reduce livestock forage
quality [64]. In western North America, it dominates more than 10 million acres of grasslands
and shrublands [65]. Dense stands exacerbate wildfire risk, and post-fire re-establishment
hinders native community recovery [66]. Annual economic impacts of Bromus sterilis in
the western United States alone are estimated at over USD 50 million from both losses in
livestock production and control costs [67]. Both species reproduce prolifically by seeds.
Veronica persica produces up to 2500 seeds per plant under ideal conditions [68]. Bromus sterilis
forms persistent soil seed banks averaging 3800 seeds/m? in invaded California grasslands,
allowing populations to recover after control efforts [69]. Their adaptive biology and sub-
stantial ecological impacts demonstrate the need for sustainable integrated management
techniques such as allelopathic cover crop rotations.

We hypothesized that the legacy of residual root exudates in the soil would have
an overall inhibitory effect on both invasive and native plant growth and performance.
However, we predict invasive species may show greater tolerance to the allelopathic
compounds compared to native species. Understanding these interactions could provide
insights into the establishment and management of invasive plants as well as the ecological
implications of allelopathic crop cultivation.

2. Results
2.1. Above-Ground Growth Responses of Invasive and Native Species to Sorghum bicolor and
Solidago canadensis Root Exudates

The results indicate a significant impact of root exudates of Sorghum bicolor and Solidago
canadensis on most of the above-ground growth traits of both invasive and native plant
species, but the effects differ by species (Figure 1). Among the invasive species, Veronica
persica showed a significantly decreasing trend in its longest leaf length, shoot length,
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and shoot biomass in response to all allelopathy combinations compared to the control
(Figure 1B,D,E). However, there was no significant impact observed on the longest leaf
width (Figure 1C). For invasive Bromus sterilis, shoot biomass, shoot length, and longest
leaf length increased with allelopathy except for longest leaf width, which only increased
with combined Sorghum bicolor and Solidago canadensis exudates. In addition, both the
invasive species showed a decrease in the number of leaves in all allelopathy combinations
(Figure 1F). Among all the allelopathy combinations, Sorghum bicolor alone had the strongest
impact on invasive species. On the other hand, native Youngia japonica and Rumex acetosa
showed reduced shoot biomass, root biomass, longest leaf length, longest leaf width, and
the number of leaves when exposed to Sorghum bicolor alone, Solidago canadensis alone, or
both allelopathy. Both the native species showed the highest sensitivity to the combined
Sorghum bicolor and Solidago canadensis allelopathy.
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Figure 1. Effect of root exudates of Sorghum bicolor and Solidago canadensis on above-ground
growth responses: (A) phenotype of 8-week-old plants, (B) longest leaf length, (C) longest leaf
width, (D) shoot length, (E) shoot biomass, (F) number of leaves of invasive (B. sterilis and V. per-
sica) and native (Y. japonica, and R. acetosa) species. CK, S, Sr, and SI*Sr in the graphs represent
the treatments: Control (no donor plants), Solidago canadensis alone, Sorghum bicolor alone, and
Solidago canadensis + Sorghum bicolor intercropped, respectively. Bars show means + SD (n = 5). Dif-
ferent letters above bars indicate significant differences between treatments for each species and trait
at p < 0.05 by LSD test.

2.2. Below-Ground Growth Responses of Invasive and Native Species to Sorghum bicolor and
Solidago canadensis Root Exudates

The root exudates of Sorghum bicolor and Solidago canadensis revealed significant allelo-
pathic effects on the root systems of both invasive and native species, but the sensitivity
varied. The root exudates significantly reduced the root length and root biomass of invasive
Veronica persica across all treatments (Figure 2). However, combined Sorghum bicolor and
Solidago canadensis had a higher inhibiting effect on root length but not on root biomass than
Solidago canadensis alone and Sorghum bicolor alone compared to the control. Sorghum bicolor
alone root exudates overall decreased root length and root biomass more than Solidago
canadensis alone, but the impact on root length was non-significant. For invasive Bromus
sterilis, all allelopathy combinations increased root length and root biomass, with Sorghum
bicolor alone having the greatest effect. On the other hand, native Youngia japonica had
a slightly reduced root length but a significantly decreased root biomass in response to
Solidago canadensis alone and combined Solidago canadensis and Sorghum bicolor root ex-
udates than Sorghum bicolor alone compared to the control (Figure 2). Likewise, native



Plants 2024, 13, 58 50f12

Rumex acetosa showed a decrease in root length and root biomass across all the allelopathy
treatments, but the combined Solidago canadensis and Sorghum bicolor allelopathy gave the
strongest reductions in both measures.

(A) ®)

60 | wmmm CK == S| === Sy === SI*Sr
a a
50 T 10 a I T
g b [ Joc a Y a a ab
< 40 4 a g 84
g A a bab a
i b a a b 2 b B
= 30 a g 6 a
B0 ab 3
5 3 b
= 20 1 = 44 be .
g 2 c ababb
) gl | h
0 y { ! 0 - t y t
2 & > » 2 P ’ #
‘Le,. TS, ", - - Le,. X 'J',)“ A, ‘@,
<. "’?’7 2% Z . /)('///'(,q Ce /OJ'Q <y 7(‘(/ <y %, /),)///('({ ((,O‘"q

Figure 2. Effect of Sorghum bicolor and Solidago canadensis root exudates on below-ground
growth responses: (A) root length and (B) root biomass of invasive (B. sterilis and V. persica)
and native (Y. japonica, and R. acetosa) species. CK, Sl, Sr, and SI*Sr in the graphs represent
the treatments: Control (no donor plants), Solidago canadensis alone, Sorghum bicolor alone, and
Solidago canadensis + Sorghum bicolor intercropped, respectively. Bars show means + SD (n = 5). Dif-
ferent letters above bars indicate significant differences between treatments for each species and trait
at p < 0.05 by LSD test.

2.3. Responses of Invasive and Native Species to Sorghum bicolor and Solidago canadensis Root
Exudates in Physiological Traits

In terms of physiological indicators in invasive Veronica persica, Solidago canadensis
alone and Sorghum bicolor alone significantly reduced nitrogen content and chlorophyll
content compared to the control. However, the combined Solidago canadensis and Sorghum
bicolor resulted in a significant increase in both indicators (Figure 3). For invasive Bromus
sterilis, all the treatments reduced leaf nitrogen content and chlorophyll content with
Sorghum bicolor alone, having maximum effect compared to the control. The native species
Youngia japonica and Rumex acetosa had lowered leaf nitrogen content and chlorophyll
content in response to all treatments compared to the control.
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Figure 3. Effect of Sorghum bicolor and Solidago canadensis root exudates on (A) leaf nitrogen and
(B) chlorophyll content of invasive (B. sterilis and V. persica) and native (Y. japonica and R. acetosa)
species. CK, S, Sr, and SI*Sr in the graphs represent the treatments: Control (no donor plants),
Solidago canadensis alone, Sorghum bicolor alone, and Solidago canadensis + Sorghum bicolor intercropped,
respectively. Bars show means + SD (1 = 5). Different letters above bars indicate significant differences
between treatments for each species and trait at p < 0.05 by LSD test.
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3. Discussion

The findings of the current study suggest that root exudates produced by Solidago
canadensis and Sorghum bicolor had strong allelopathic effects and significantly affected the
growth and physiology of the tested native and invasive plant species. The effects vary,
contingent on the plant species and the formulation (single or combination) utilized. Our
results demonstrate contrasting growth responses of invasive Veronica persica and Bromus
sterilis to the root exudate treatments. Veronica persica exhibited a decrease in the shoot
growth traits, including biomass, length, and longest leaf length, when exposed to all
exudate treatments compared to the control (Figure 1). This indicates a higher susceptibility
of Veronica persica to the allelochemicals [70,71]. Previous studies have also reported the
inhibitory effects of Sorghum bicolor and other crop residues on the growth of Veronica per-
sica, which was attributed to the release of phenolic acids and other allelochemicals [72,73].
On the other hand, it was observed that the shoot growth of Bromus sterilis exhibited an
increase when subjected to the exudate treatments except for leaf width (Figure 1). This
finding implies the possibility of growth promotion by hormesis, particularly at low con-
centrations of allelochemicals [74]. Previous studies have established the phenomenon
of hormetic growth stimulation of invasive species through allelopathy [75-77]. Further,
all the treatments, especially combined exudates, caused a reduction in root growth (root
length and biomass), indicating root inhibition (Figure 2), whereas Bromus sterilis exhibited
an increased root growth under all the treatments, which once again suggests the potential
hormesis. Other studies also found differential root growth effects of allelopathy contingent
upon the invader species [78]. Varying shoot and root growth responses of Veronica persica
and Bromus sterilis reveal the different allelochemical sensitivities of these invasive species.
The decreases in the leaf number observed for both invasive species across all treatments
suggest the possible inhibition of leaf initiation and expansion [79]. In terms of physiology,
the results revealed variable effects on nitrogen and chlorophyll content in Veronica persica,
decreasing under individual exudates while increasing under combined exudates (Figure 3).
This implies that mixed exudates may have complementary impacts on photosynthesis
and nutrition [80,81]. On the contrary, the observed decreases in nitrogen and chlorophyll
for Bromus sterilis point to decreased nutrition and photochemistry as a result of allelopa-
thy [82,83]. Overall, the findings demonstrate the species-specific physiological responses
of invasive species to allelopathy.

On the contrary to the varied responses of invasive species, the root exudate treat-
ments resulted in diminished shoot growth, root development, leaf size, and leaf number
in both native species Youngia japonica and Rumex acetosa (Figures 1 and 2). This shows
the sensitivity of the native species to the allelopathy. The observed decrease in leaf nitro-
gen and chlorophyll content is indicative of imbalanced nutritional status and decreased
photosynthetic activity. The significant decrease in growth under mixed Sorghum bicolor
and Solidago canadensis exudates indicates the synergistic allelopathic effects, as previously
reported for native species [8]. Overall, our findings indicate that the tested native species
showed more sensitivity to the allelochemicals than the invasive species. This supports the
novel weapons hypothesis, where invasive species exhibit greater allelopathic resistance
than native species [84]. The decreased growth and altered nutrition of native species
under the persistent root exudate treatments suggest the potential for allelopathy to assist
invasion by suppressing native competitors. While differential inhibitory effects were
observed across plant species, the tested native species generally exhibited more restricted
growth metrics under root exudate conditions compared to the invasive species. However,
taxonomic differences within groups may play a role in these patterns, along with invasion
status, emphasizing the need for controlled within-family assessments.

It is probable that the persistent root exudates induced allelopathic effects via mul-
tiple mechanisms. Documented allelochemicals in Sorghum bicolor include benzoic, p-
hydroxybenzoic, vanillic, ferulic, chlorogenic, m-coumaric, p-coumaric, momilactones,
gallic, and caffeic acids [85], p-hydroxybenzaldehyde, dhurrin, sorgoleone [16,86], m-
hydroxybenzoic acid, and protocatechuic acid [87] with the potential to reduce weed
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growth. These compounds can inhibit growth by affecting cell division, nutrient uptake,
photosynthesis, and hormone balance [88,89]. For instance, momilactones may act as auxin
inhibitors, whereas polyacetylenes can inhibit mitochondrial respiration [90]. The gener-
ation of reactive oxygen species leading to oxidative damage is another potential mode
of action [91]. Sorgoleone can inhibit photosynthesis by blocking electron transport in
photosystem II [24]. The sorgoleone concentrations achieved in the root exudate treatments,
even after dilution in the soil, were likely sufficient to disrupt photosystem II function in
sensitive native species, contributing to the measured reductions in the chlorophyll content
and growth (Figures 1-3). Sorgoleone also inhibits mitochondrial respiration [24], which
may explain the stunted root growth patterns (Figure 2). For Solidago canadensis, compounds
like caffeic acid can affect mitochondrial respiration, cell division, membrane integrity, and
hormonal signaling [50,92]. The inhibition of leaf initiation and expansion in native species
indicates possible interference with cell division and hormone pathways governing growth
processes. The observed synergistic effects in the presence of combined exudates indicate
that allelochemical compounds originating from both donor species may have exerted
greater effects on shared physiological targets via additive or multiplicative mechanisms of
action [83]. The varying species responses indicate how allelopathy effects depend on the
interacting allelochemical-receiver combination and concentration-dependent hormetic
effects [83]. Further investigation is required to identify specific allelochemicals and their
mechanisms involved in inducing the growth and physiological changes observed here.

The results have several implications for managing plant invasions. First, the findings
highlight the feasibility of using Sorghum bicolor as a cover crop where its allelopathic
effects can suppress invasive and encourage native plants through residual root exudates.
Allelopathic rotations can provide longer-term and environmentally friendly weed control
than mowing or herbicides alone [4]. The stronger growth inhibition of native species
points to potential trade-offs, but lower exudate doses could be optimized to reduce native
plant suppression while still keeping the invader species at a minimum. Second, the results
suggest residual Solidago canadensis exudates could help limit certain invaders like Veronica
persica through allelopathic interference. Fostering competitive invasive species like Solidago
canadensis could aid invader resistance without requiring chemical control [2,93]. Lastly,
the results provide baseline data on species-specific allelopathy responses that can inform
integrated management programs relying on multiple control techniques.

4. Materials and Methods
4.1. Experimental Material

Seeds of two invasive species, Bromus sterilis and Veronica persica, and two native
species, Youngia japonica and Rumex acetosa, were collected in April 2022 from a field site at
Xianglushan (119°13'41" E, 32°07'42.9" N) around Zhenjiang in Jiangsu Province, China.
Seeds were stored in paper bags at room temperature until their experimental use in
August 2022.

4.2. Seed Germination

Seeds of four species were surface sterilized in 10% hydrogen peroxide for 10 min,
rinsed thoroughly with distilled water, and germinated in plastic germination trays
(25 cm x 15 cm) filled with coco peat growth medium. Trays were kept in a germina-
tion chamber at 25 °C/15 °C day/night temperatures and a 12 h photoperiod for 2 weeks
until seedlings emerged.

4.3. Donor Species Growth

Sorghum Sorghum bicolor (L.) Moench cv. ‘Hybridsorgo” and goldenrod (Solidago
canadensis) plants were grown from seed in plastic pots (15 cm diameter, 20 cm height) filled
with a 1:1 mixture of coco peat and sand. Five seeds of each donor species were directly
sown in each pot and thinned to one plant per pot after 2 weeks. Donor plants were grown
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in a glasshouse for 4 weeks at 25 °C/15 °C day/night temperatures and ambient light
conditions. The pots were watered daily to maintain optimal soil moisture.

4.4. Treatments

After 4 weeks of growth, the donor plants were uprooted, and the soil containing the
root exudates was removed from each pot. The soil from pots of the same treatment was
mixed thoroughly and used to refill the pots. This ensured even distribution of the root
exudates for the following treatments applied with 5 replications per treatment: 1. control
(no donor plants), 2. Solidago canadensis alone, 3. Sorghum bicolor alone, and 4. Sorghum
bicolor + Solidago canadensis intercropped. The 2-week-old germinated seedlings of the
invasive and native species with uniform phenotypes were transplanted into the pots
containing the donor species’ root exudates. Each pot contained one seedling of each
receiver species. Seedlings were watered daily and grown for 8 weeks before harvest.

4.5. Growth Trait Measurement

The following growth parameters were measured on each plant at harvest: number
of leaves, length of the longest leaf (cm), width of the longest leaf (cm), shoot height (cm),
root length (cm), leaf nitrogen content, relative chlorophyll content, aboveground biomass
(g), and belowground biomass (g). Plant height and root length were measured with a
ruler, and the relative chlorophyll content and leaf nitrogen content were measured with a
SPAD-502 chlorophyll content analyzer.

4.6. Data Analysis

All the experimental data were pooled for calculations of means and £+ SD and
analyzed by one-way ANOVA, followed by the LSD test at p < 0.05 to determine the
statistical significance of the differences between individual treatments, indicated by letters
above bars.

5. Conclusions

Our results revealed that root exudates from Sorghum bicolor and Solidago canadensis
exerted strong phytotoxic effects in tested plant species. Invasive species showed variable
sensitivities, with Veronica persica exhibiting susceptibility and Bromus sterilis demonstrating
tolerance. The native species Youngia japonica and Rumex acetosa experienced consistent
growth and performance inhibitions under root exudate treatments. While native species
appeared more negatively impacted overall, taxonomic differences between the evaluation
groups confound definitive conclusions regarding the intrinsic effects of invasive status.
Therefore, comparing more closely related taxa within the same families could better
isolate invasion-associated traits from phylogenetic variability. Still, certain aggressive
invaders like Veronica persica proved vulnerable to allelochemical legacy impacts in soil.
Optimizing the cultivation and rotation of bioactive cover crops could provide ecological
weed control options. Species-specific allelopathic responses underscore the need for
integrated management deploying multiple approaches against heterogeneous exotic plant
populations. Further controlled experiments on taxonomically paired invasive and native
species can help elucidate mechanisms governing allelopathic resistance. Building on
this foundational study, elucidating why some invasive plants tolerate phytotoxins could
inform protection strategies leveraging plant-plant inhibitory interactions to impede exotic
plant ingress while recovering native biodiversity.
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