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Abstract: Rice production faces challenges related to diverse climate change processes. Heat stress
combined with low humidity, water scarcity, and salinity are the foremost threats in its cultivation. The
present investigation aimed at identifying the most resilient rice genotypes with yield stability to cope
with the current waves of climate change. A total of 34 rice genotypes were exposed to multilocation
trials. These locations had different environmental conditions, mainly normal, heat stress with low
humidity, and salinity-affected soils. The genotypes were assessed for their yield stability under these
conditions. The newly developed metan package of R-studio was employed to perform additive
main effects and multiplicative interactions modelling and genotype-by-environment modelling.
The results indicated that there were highly significant differences among the tested genotypes and
environments. The main effects of the environments accounted for the largest portion of the total
yield sum of squared deviations, while different sets of genotypes showed good performance in
different environments. AMMI1 and GGE biplots confirmed that Giza179 was the highest-yielding
genotype, whereas Giza178 was considered the most-adopted and highest-yielding genotype across
environments. These findings were further confirmed by the which–won–where analysis, which
explained that Giza178 has the greatest adaptability to the different climatic conditions under study.
While Giza179 was the best under normal environments, N22 recorded the uppermost values under
heat stress coupled with low humidity, and GZ1968-S-5-4 manifested superior performance regarding
salinity-affected soils. Giza 177 was implicated regarding harsh environments. The mean vs. stability-
based rankings indicated that the highest-ranked genotypes were Giza179 > Giza178 > IET1444 >
IR65600-77 > GZ1968-S-5-4 > N22 > IR11L236 > IR12G3213. Among them, Giza178, IR65600-77,
and IR12G3213 were the most stable genotypes. Furthermore, these results were confirmed by
cluster-analysis-based stability indices. A significant and positive correlation was detected between
the overall yield under all the environments with panicle length, number of panicles per plant, and
thousand grain weight. Our study sheds light on the notion that the Indica/Japonica and Indica
types have greater stability potential over the Japonica ones, as well as the potential utilization of
genotypes with wide adaptability, stability, and high yield, such as Giza178, in the breeding programs
for climate change resilience in rice.

Keywords: multilocation; climate change; heat stress; GGE biplot; AMMI analysis; yield stability;
genotypes ranking; sustainability; biodiversity

1. Introduction

Rice (Oryza sativa L.) plays a vital role as a staple component in the diets of significant
portions of the global population. As the world’s population is projected to reach 10 billion
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by 2058 [1], the importance of rice production becomes even more critical. Approximately
755 million tons of paddy rice are produced annually from about 162 million hectares of
land [2]. However, in order to ensure food security and combat poverty, there is a pressing
need for a substantial increase, exceeding 60%, in high-quality rice production [3,4].

To meet this escalating demand, programs of rice breeding have implemented various
strategies to enhance yield potential and develop high-yielding rice varieties. These strate-
gies have often focused on utilizing specific germplasms tailored to a single environmental
condition, such as submergence, upland, lowland, salinity, or drought. However, the
ever-growing threat of climate change poses new challenges, emphasizing the importance
of stability and adaptability in rice cultivars across different environmental conditions.
Therefore, it is crucial to model genotype-by-environment interactions (GEI), quantify
genotypic resilience, and assess the stability of the parental genotypes that are frequently
used as donor varieties. Such an approach is necessary to increase the efficiency in genotype
selection and determine the adaptability of the genotype under multienvironment trials
(METs) [3,5–9]. Parental selection for crosses might consider high adaptation (genotype ca-
pability to positively adapt to surrounding stressors) and yield stability (genotype capacity
to react in relation to the environment’s yield prospective) across various environments
(places, seasons, or both). Taking these considerations into account, parent selection is
also critical for reproduction tasks looking for a greater area of protection, particularly
in places with diverse environmental and soil conditions [10]. Wide adaptability and
stability under different environments are the most important characteristics that should
be imbedded as criteria for varietal selection in breeding programs. Rice genotypes with
widespread adaptability could be recommended as elite parents in rice breeding programs
to improve general adaptability in various climates, particularly with the unpredictability
of climate change events and the potential occurrence of extreme stressors simultaneously
or successively. Several statistical approaches have been created to enhance the precision
of genotype x environment interactions and to aid understanding the stability as well as
adaptability of tested genotypes [3,11].

Grain yield is considered the most reliable determinant of genotypic performance,
mainly determined by the additive effects of genotype (G), environment (E), and the non-
additive effect of GEI [12]. Evaluating different rice varieties across diverse rice production
locations provides essential insights into their performance and resilience to the inher-
ent environmental factors unique to each location. Furthermore, this approach allows
for tailored genotype selection tuned to distinct natural environments [13]. Additionally,
such multilocation preliminary yield trials facilitate the selection of promising varieties by
demonstrating their yield potential and stability across diverse environments [14]. So long
as the environment differs in terms of climatic conditions, the varieties that exhibit stability
across these environments demonstrate greater resilience to the effects of climate change.

Several statistical methods have been developed to measure GEI, including regression
coefficient [15], sum of squared deviations due to regression [16], and additive main effects
and multiplicative interaction (AMMI) [17]. Another method, known as G + G × E (geno-
type + genotype × environment, GGE) polygon view, incorporates a graphical approach
(GGE biplot), which characterizes the mega-environment, ranks varieties, and identifies
the best genotypes in each environment (which–won–where) [18,19].

In recent a development, a novel R package named “metan” has been specifically
designed to analyze multienvironment trials (METs) [20]. This package offers a workflow-
based procedure that encompasses sequential functions for assessing commonly used
parametric and nonparametric stability statistics [21]. The metan package provides a
comprehensive set of tools for MET data management, manipulating, analyzing, and
visualizing the MET data. It has been successfully employed to quantify yield stability in
various crops, including rice [14], lentil [22], wheat [23], soybean [24,25], sugarcane [26],
and others [27–31].

In the current investigation, the yield performance of different rice genotypes was
evaluated at different rice growing environments. These genotypes are commonly em-
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ployed as donors for different breeding purposes, such as salinity, water shortage, and
disease resistance. These genotypes are tested under environments where heat stress, low
humidity, and salinity stress are naturally inherited in these locations. This study aims
to conduct a comprehensive multilocation evaluation of yield performance, identifying
genotypes with both high yield potential and stability in diverse locations.

2. Results
2.1. GY Combined AMMI Analysis of Variance and Genotypic Variability

To cope with climate change, 34 genotypes were assessed at four locations during two
seasons of study (2021 and 2022). The obtained results indicated highly significant differ-
ences among the genotypes across the different environments under study (Figure 1A,B
and Table 1). The AMMI model analysis of variance for the 34 genotypes across the four
locations throughout the two seasons exhibited a significant influence of all the factors
analyzed on the genotypes’ yield performance (Table 1). The main effects of environments
accounted for a substantial portion, as much as 71.29%, of the total sum of the squared
deviations for the genotypes’ yield, while the proportion that accounted for G and GEI was
14.77 and 13.94, respectively. Accordingly, 29.32% of the grain yield variability could be
attributed to identifying genotypes with narrow adaptability.
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Figure 1. Genotypic performance across the different locations. (A) Genotypes’ grain yield means
across the 8 different environments. (B) Box plot of grain yield for the 8 different environments
explaining the differences among the 4 locations.

The variability among the genotypes is supported by the differences between the
mean yield values of the genotypes under study as they ranged from 238.5 g m−2 for
Giza177 (G1) in 2022 at the Alexandria location to 1209 g m−2 for Giza179 (G3) in 2022 at
the Gemmiza location (Figure 1A, Supplementary file: Table S3). Furthermore, the average
yield production throughout the locations was also highly changeable. The average yield
at Alexandria revealed the lowest values (525.9 g m−2 and 525.5 g m−2 for the two seasons,
respectively), while the Gemmiza site recorded the maximum values (987.7 and 990.4 g m−2,
respectively) for the two seasons of study (Figure 1B).

2.2. GEI-Structure-Based Additive Main Effect and Multiplicative Interaction Model

The decomposition of the effect in the interaction-related multiplicative variance of
the GEI was depicted by AMMI analysis and yielded four significant principal components
of interaction (IPCAs, Table 1). These four IPCAs explained 99.5 percent of the total GEI
effects, contributing 88.9%, 7.9%, 2.2%, and 0.5% for IPCA1, IPCA 2, IPCA3, and IPCA4,
respectively. Meanwhile, IPCA5, IPCA6, and IPCA7 displayed nonsignificant impacts, and
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their ratio amounted to 0.5. IPCA1 and IPCA2 together gathered about 96.9%, explaining
that both IPCAs are the best predictive model and sufficient for explaining the GEI. These
results further indicate the extensive interaction of multivariate datasets with the PCA
output, subsequently extracting and understanding the patterns regarding GEI that existed
in the yield performance of the 34 genotypes under the different environments.

Table 1. AMMI analysis of variance model and GEI decomposition.

Source Df Sum Sq Mean Sq F Value Pr (>F) Proportion Accumulated

ENV 7 32,277,639 4,611,091 5554.827 0
REP(ENV) 16 13,281.69 830.1054 1.703935 0.042241

GEN 33 6,685,134 202,579.8 415.83 0
GEN:ENV 231 6,311,279 27,321.56 56.08221 8.8 × 10−275

PC1 39 5,612,970 143,922.3 295.43 0 88.9 88.9
PC2 37 499,545.4 13,501.23 27.71 0 7.9 96.9
PC3 35 141,380.5 4039.443 8.29 0 2.2 99.1
PC4 33 28,625.39 867.4361 1.78 0.0054 0.5 99.5
PC5 31 15,441.88 498.1253 1.02 0.439 0.2 99.8
PC6 29 10,612.79 365.9583 0.75 0.8262 0.2 100
PC7 27 2703 100.1111 0.21 1 0 100

Residuals 528 257,225.6 487.1697
Total 1046 51,855,839 49,575.37

ENV: environments; REP: replicates; GEN: genotypes; PC: principal components; Df: degree of freedom; Sq:
squares; and Pr: probability.

2.3. Detection of Stable and High-Yielding Genotypes via AMMIs Model Biplot

To identify high-yielding and stable genotypes across the environments, the AMMI1
biplot was generated. The AMMI1 biplot plots the means of the genotypes and environ-
ments against their PCA1 (Figure 2A). The AMMI1 biplot revealed that those environments
located at Alexandria (E3 and E4) and Kharga oasis (E7 and E8) produced the lowest
yields across the genotypes. Similarly, Sakha103 (G32) showed the minimized grain yield
average across the different environments presented in the current research (Figure 2A and
Supplementary file: Table S3). Furthermore, the AMMI1 biplot exhibited that Giza179 (G3)
had the uppermost yielding values, whereas Giza178 (G2) was considered the most widely
adopted and highest-yielding genotype across the environments. Based on the genotypes’
performance with PC1 estimates, a value close to zero means that the genotype has general
adaptability under the different environments. Morobereccan (G17) and Nerica 7 (G16)
were the most stable genotypes, owing the least PC1 values of 0.22 and 0.3, respectively
(Figure 2A and Supplementary file: Table S4).
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axes of G+GEI effect (IPCA1 and IPCA2) values for the tested genotypes and environments. The tested
genotypes are 34 (G1:G34 in blue color) grown in four locations in the two consecutive years, 2021 and
2022 (E1 and E2 = Sakha; E3 and E4 = Alexandria; E5 and E6 = Gemmiza; E7 and E8 = Kharga oasis).

The AMMI2 biplot pinpointed the genotype stability performance regarding yield
based on IPCA1 and IPCA2 values (Figure 2B). The genotypes and environments with
lower IPCA1 and IPCA2 values that are plotted in close proximity to the plot origin are
considered the most stable ones. This explains the reduced interaction ability of genotypes
and their adaptability regarding the different environments under study. Based on the
AMMI2 biplot, Nerica 7 (G16), Morobereccan (G17), IR11L236 (G27), and Giza179 (G3)
are demonstrated to be considerable genotypes. Both the AMMI1 and AMMI2 biplots
indicated the instability of Giza177 (G1) and Vandana (G30) for the different environments
in the present research.

2.4. Which–Won–Where Approach Based on GGE Biplot for Detecting the
Best-Performing Genotypes

The GGE biplot polygon view based on the which–won–where structure of a MET
approach is the simplest and most efficient method for detecting the genotype and its
environmental interaction (Figure 3A). It is used for interpreting GEI and detecting superior
genotypes across different environments. In the current investigation, the biplot polygon
view showed the tested environments in two different sectors. The environments of the
locations Gemmiza (E5 and E6) and Sakha (E1 and E2) were located in the same sector,
while the other two locations (Alexandria (E3 and E4) and Kharga oasis (E7 and E8))
were separated in another sector. The genotypes at the corner of each section of those
environments had the highest yield for the corresponding environments. The genotypes
joined by the polygon are the farthest from the origin and called vertex genotypes. Those
vertex genotypes located in the same sector or close to a specific environment are considered
the best genotypes for this environment. Accordingly, Giza179 (G3) is the best-performing
genotype in Sakha and Gemmiza, followed by Sakha Super 300 (G11). Likewise, N22 (G21)
followed by IET1444 (G15) are considered the most suitable genotypes for environments
E7 and E8 of Kharga oasis. IET1444 (G15) and Giza178 (G2) had stable performance for
the environments located in their sectors. Furthermore, Giza178 (G2) exists in the middle
of all the environments; consequently, it is stable across all the study environments. In
contrast, Giza177 (G1) is situated on the opposite side of E3, E4, E7, and E8, which reflects
the minimum appropriateness for these environments. Similarly, Dular (G31) exists on the
opposite side of E1, E2, E5, and E6, reflecting the same situation.

2.5. Grain Yield Versus Weighted Average of Absolute Score Stability Index Biplot

Various stability statistics were estimated and presented in the Supplementary Materi-
als (Table S5). Based on GY, which considers the main breeder selection criteria, genotypes
Giza179, Giza178, IET1444, IR65600-77, GZ1968-S-5-4, and N22 achieved the highest rank
in this regard. The weighted average of absolute scores (WAASB) was also used to better
identify the most adapted genotypes across the different environments based on the mean
GY and stability. The GY× WAAS biplot displayed the distribution of the tested rice
genotypes and environments based on the genotypes’ GY mean and WAASB values, as
presented in Figure 3B.

The first quadrant I, contains those genotypes that are low yielding and unstable
across all tested environments. Among these genotypes Giza177 (G1), G4, G5, G7, G8,
G19, G30, and G31. These genotypes are less desirable as they showed lower grain yield
and inconsistent performance compared to the mean of overall grain yield. In addition,
this quadrant has low GY environments E3, E4, E7 and E8. Accordingly, the genotypes
and environments located in this quadrant have the largest response to GEI. The second
section (quadrant II), contains the environments E1, E2, E5 and E6, coupled with the
genotypes that have a GY above average with a high GEI response, such as G6, G10, G11,
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G34, and G21. These genotypes are less reliable as they have high yield under normal
conditions, but didn’t display consistently under harsh environments. GY × WAAS biplot
also presented genotypes that showed relative stable performance across the evaluated
environments. These genotypes were existed in the quadrants III and IV. G13, G14, G16,
G17, G20, G23, G26, G29 and G32 presented minimum yield but stable performance
across the tested environments (Figure 3B). Those genotypes are more suitable for harsh
environments. At the same time, G2, G3, G9, G12, G15, G18, G22, G24, G27, G28 and
G33 located in quadrant IV. This quadrant contains the genotypes showing high yield
performance without being influenced significantly by specific environmental conditions.
These genotypes are desirable for broad adaption ability.
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Figure 3. (A) The “which–won–where” polygon biplot displays the winning genotypes at each
environment. (B) The “GY vs. WAAS” biplot displays the most-adopted genotypes across the tested
environments. The tested genotypes are 34 (G1:G34 in blue color) grown in four locations in the two
consecutive years, 2021 and 2022 (E1 and E2 = Sakha; E3 and E4 = Alexandria; E5, and E6 = Gemmiza;
E7 and E8 = Kharga oasis).

2.6. GGE Biplot—Means Versus Stability Model and Ranking of Rice Genotypes’ Performance

The genotypes’ mean performance versus stability biplot provides a visual tool for
discriminating the tested genotypes (Figure 4A,B). This biplot presents the two PCs (1 and
2), which, for their additive percentage, explain the G + GE effects, respectively. The single-
arrowed line in the biplot (Figure 4A) is the average environmental average (AEA) and
points towards higher mean performance across the tested genotypes. Regarding the AEA,
the average environment corresponding to the average values of the two PCs is pinpointed
by the arrowhead in Figure 4A and further circled in Figure 4B. The genotypes located
in the circle are considered to be the best genotypes. The perpendicular line to the AEA
is called the average ordinate environment (AOE), and the intersection is the point that
represents both the average mean performance and high stability. Other perpendicular
lines linking the genotypes to the AEA explain the stability of the genotype. The closeness
of genotypes to the AEA explains their stability across environments. However, using
the ranking of the biplot, the ideal genotype is Giza178 (G2), being in the center of the
circle. Giza178 had a high yield and the best adaptability among the other genotypes under
consideration. Giza179 (G3) also exhibited high yielding ability. Giza 177 (G1) manifested a
decrease in yielding ability with decreased stability compared to the other genotypes under
study. The ranking of the genotypes from the worst to the best could be followed using the
AEA direction. The yield average reduced in Sakha103 (G32) to the lowest values across the
environments, followed by Giza177 (G1), Morberekan (G17), Dular (G31), IRAT112 (G20),
and Nerica 9 (G14), following the AEA direction until Giza179 (G3). The uppermost-ranked
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genotypes were assigned for Giza179 (G3) > Giza178 (G2) > IET1444 (G15) > IR65600-77
(G22) > GZ1968-S-5-4 (G18) > N22 (G21) > IR11L236 (G27) > IR12G3213 (G24).
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Figure 4. (A) The “mean versus stability” model describing the interaction effect of the tested rice
genotypes evaluated across eight environments. (B) The “ranking genotypes” model of biplot to
assess the ideal genotype. The tested genotypes are 34 (G1:G34 in blue color) grown in four locations
in the two consecutive years, 2021 and 2022 (E1 and E2 = Sakha; E3 and E4 = Alexandria; E5 and
E6 = Gemmiza; E7 and E8 = Kharga oasis).

2.7. Cluster-Analysis-Based Stability Indices

Several stability indices were measured based on the genotypes’ yield records in the
environments under the present constructed study. Stability indices such as environmental
variance, mean variance component, GE variance component, joint regression analysis,
Tai’s stability statistics, coefficient of variance, superiority index, and AMMI-based stability
statistics are normally used to rank the genotypes based on their estimated values. These
indices are Shukla_R, Wi_g_R, Wi_f_R, Wi_u_R, Ecoval_R, Sij_R, Pi_a_R, Pi_f_R, Pi_u_R,
Gai_R, S1_R, S2_R, S3_R, S6_R, N1_R; Supplementary Table S5. The indices’ values cor-
responding to the tested genotypes were manipulated based on the squared Euclidean
distance to conduct hierarchical cluster analysis via Ward’s method (Figure 5). This method
was used to group the genotypes with the same stability in the same cluster. Based on this
fact, the tested rice genotypes were grouped in two main clusters (CL), resembling the
main grouping pattern. Each CL was divided into two subclusters (SCL). The first SCL
colored with red contains genotypes that had similar stability measures. Those genotypes
(Giza179, Giza178, IR65600-77, IR11L236, IR12G3213, and IR12G3222) have the highest
overall mean performance across the different environments. These genotypes are among
the top-ranked ones based on mean vs. stability ranking. Furthermore, IET1444 was
clustered with N22, and they are the top-performing genotypes under Kharga oasis en-
vironments. GZ1968-S-5-4 is the top-performing genotype under Alexandria conditions,
whereas IET1444 is considered among the top-four-performing genotypes. For the Gem-
miza location, Sakha104 and Sakha 107 are among the top-performing genotypes, whereas
Sakha104 and Sakha109 are categorized at the same rank in the overall mean performance
of the genotypes as compared to other genotypes. These results confirm the goodness of the
stability indices in ranking the genotypes and their utilization in clustering the genotypes
into different groups.
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Figure 5. Hierarchical dendrogram classifying the 34 rice genotypes based on their ranks for GY and
stability statistics conducted via Ward’s method.

The Sakha Super 300, Sakha101, and Sakha 108 genotypes showed top performance in
the Sakha and Gemmiza locations. However, their rank deteriorated in the unfavorable
environments of Alexandria and Kharga oasis as compared to the other tested genotypes.
Giza177, Sakha105, Sakha102, and Saka 106 were grouped together in the middle subcluster,
indicating their average performance under favorable conditions and low performance
under unfavorable conditions. At the same time, IRAT17, Giza182, Azucena, and Vandana
were grouped together and provided a slightly more stable performance in unfavorable
conditions and an unstable performance under favorable conditions when compared to
the other genotypes. Moreover, IRAT112, IR69116, IR6500-127, and Dular in the same
subcluster had average performance under harsh environments and low performance
under favored environments.

The Sakha 103, Nerica 9, and Moroberekan genotypes grouped together in the purple
subcluster and displayed a reduction in their performance with regard to the overall
performance under the different environments. In the last subcluster, IR69432, A22, and
Nerica7 located together due to their average ranking across the different environments.

2.8. Correlation Coefficient Analysis

The correlations among the studied yield-related characteristics and yield were ana-
lyzed under the different environments (Figure 6). All the evaluated characteristics have
a significant correlation with yield. A significant and positive correlation was detected
between the overall yield under all the environments with panicle length (r= 0.825), number
of panicles per plant (r = 0.904), and thousand grain weight (r = 0.491). In contrast, the total
yield performance negatively correlated with the genotypes’ sterility percentage under all
the environments. Interestingly, panicle length showed a highly significant and positive
correlation with yield under harsh conditions in contrast to the negative ones under fa-
vored environments. Furthermore, sterility was negatively correlated with all the measured
characteristics. In the density plots presented in the diagonal, it is noted that E1, E2, E6, E8,
and E2 have the highest peaks compared to the others for yield, panicle length, number of
panicles per plant, thousand grain weight, and sterility percentages, respectively.
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Figure 6. Spearman correlation coefficients for the yield, and other studied yield-related traits.
Scatterplots of each trait’s pair of numeric variables are situated in the left part of the figure. Variable
distribution is drawn on the diagonal. YLD: yield; PL: panicle length (cm); NPP: number of panicles
per plant; TG: thousand grain weight (g); and ST: sterility (%). These traits were recorded for the
tested genotypes grown in the four locations for the two consecutive years, 2021 and 2022 (E1 and
E2 = Sakha; E3 and E4 = Alexandria; E5 and E6 = Gemmiza; E7 and E8 = Kharga oasis). * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001.

3. Discussion

Breeding for yield stability across different environments is becoming the most popular
program with the current waves of climatic changes. Annually, there are major fluctuations
in climate records, especially with regard to water scarcity, temperature, and humidity.
Those stressors are considered among the main ones affecting rice production [10]. Iden-
tifying the most suitable genotypes for a specific climatic location involves an important
step of starting a breeding program for such an environment. AMMI analysis of variance
of 34 rice genotypes over eight environments for grain yield is provided in Table 1. Sig-
nificant differences were detected among E, G, and GEI. This means that the genotypes
showed different behavior in their environments. This enables the breeder to justify the
selection of genotypes based on the magnitude of interaction with the environment [32,33].
Environments accounted for the highest sum of squares, 70.68%, explaining the highest
differences among them. This indicates that different sets of genotypes appeared to be
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high-yielding in different environments. Accordingly, selection of the genotypes based
on the environment is effective while considering genotype performance and GEI. The
high effect of environments was mainly due to the unique environmental features for
each location. These variability among the environmental conditions may have activated
some yield-enhancing genes in different genotypes, which developed a significant GEI and
resulted in high yield variability (Figure 1A,B). While investigating the genotypic yield
stability across environments, the research reported by Barona et al. 2021, Dewi et al. 2014,
Tariku et al. 2013, and Zewdu et al. 2020 [34–37] also concluded that the environmental
effect recorded the highest impact. Meanwhile, other investigations reported genotypes’
effects to be the most effective impacts. In these investigations, the differences between en-
vironments were mainly due to one effect, such as identifying the most stable rice genotype
across different fertilizer levels [14].

Apparently, our investigation confirms that high variability exists between the tested
environments. Two locations had favored environments, Sakha and Gemmiza (Supple-
mentary Table S6), where the environmental conditions and soil properties are suitable
for good rice growth. Contrarily, Kharga oasis and Sobahya had unfavored environments.
Kharga oasis has high temperature records during the growing seasons together with low
humidity, while the Alexandria site suffered from poor soil conditions. These conditions
were reflected in the genotypes’ yield performance across environments (Figure 1A,B).
Consequently, the rankings of the tested genotypes, based on yield performance, were
subject to changes in specific locations. Giza179, Sakha Super 300, Sakha 108, and Giza178
developed the highest grain yield under the favored conditions of Sakha and Gemmiza.
Meanwhile, GZ1968-S-5-4, IRAT170, IET1444, and Giza179 were the best at the Alexandria
location despite affecting the soil with salinity. Moreover, at the unfavored environment of
Kharga oasis, with heat stress accompanied by low humidity conditions, genotypes N22,
IET144, Giza178, and IR65600-77 recorded the best values and the highest ranking. These
findings demonstrate the influence of GEI on the performance of the tested genotypes.
GEI reduced the performance of the evaluated genotypes by affecting their yield under
unfavored conditions. This output is supported by the findings of others [38,39].

To quantify the magnitude of the GEI in the current investigation, the GEI principal
components (PCs) were assessed. GEI was partitioned into seven PCs (Table 1). The first
two significant IPCs (PC 1 and PC 2) accounted for approximately 96.9% of the interaction
between the E and G. This indicates that these two PCAs were sufficient to present the
GEI complex patterns. Consequently, all the interaction information could be speculated
by plotting these two PCs. Our findings provide proofing for the results of several earlier
investigations obtained by others that support the idea that the first two IPCs of the AMMI
model are the most important during quantifying GEI [14,34–37].

The AMMI model provides an effective analytical procedure to understand the GEI
through a graphical biplot tool to clearly identify the ideal genotypes [21,40,41]. Among
these are AMMI1 and two biplots. AMMI1 revealed that Giza 178 is the best genotype
with regard to stability and mean performance across environments (Figure 2A). Geno-
types with small interaction with the environment have IPCA1 values close to zero [5,21].
Consequently, Giza178 showed wider adaption to the environments (normal, heat stress,
and salinity stress) under the current research, and high yielding performance. Contrarily,
Giza177 showed small adaptability to the tested environments. This is mainly due to
lacking specific genes that could provide the genotype resistance to the harsh environments
of Kharga oasis and Sobahya. The AMMI2 biplot summarizes information based on the
first two PCs (PC1 and PC2 in GEI). Genotypes with low IPCA1 and IPCA2 values have
low interaction with the environments [38–40,42–44]. These genotypes are centered near
to the origin of the AMMI2 biplot. Among these genotypes, Giza179 had high yielding
performance and had general adaptability to the conditions under study. Giza179 is an
Egyptian rice cultivar bred for climate change resistance [9,45].

Evaluating the genotypes across multilocation trials provide the fundamentals re-
garding variation. The GGE biplot clarifies the best-performing genotypes across all the
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environments [42,46]. The polygon view of the GGE biplot (which–won–where) illustrated
the winning genotypes for each environment under study (Figure 3A). This biplot view
considers the most efficient and simplest method for characterizing the genotypes and
their interaction with the environment [5,14]. In this biplot, the genotypes with the longest
distance from the biplot origin in the same direction or close to one or more from the
environment are considered the best genotypes for those environments. Giza179 is the
superior-performing genotype in the Sakha and Gemmiza environments, followed by
Sakha Super 300. These environments are considered ideal for rice crop growth in Egypt.
Meanwhile, in a harsh environment where heat stress is excited in Kharga oasis, N22 and
IET1444 were preferable. This finding is supported by N22 and IET1444 harboring specific
genes for heat and water shortage stress tolerance [43,44,47–49]. Furthermore, IET1444 and
Giza178 were located in the middle between the eight studied environments regarding
their stable performance [5], while Giza177 was inferior for the environments located in
Kharga oasis and Sobahya. This was mainly due to the harsh environments coupled with
heat and salinity stress. Giza177 is a popular Egyptian variety with high grain quality
characteristics but is sensitive to heat and salinity stress [47,50].

We further calculated the stability index of WAAS to consider the sum of the absolute
values of the genotypes’ IPCAs [39,43]. Then, a GY × WAAS biplot was generated to better
clarify the superior-performing genotypes. In terms of WAAS values, Moroberekan repre-
sents the minimal and desirable WAAS value. Moroberekan is a drought-blast-resistant
genotype but with poor yield potential under favored conditions [47,51]. These features
provided the genotype with stability performance across the different environments tested
in the current study. However, as the biplot considers both GY and WAAS values for the
genotypes, Giza178 and Giza179 are the superior ones (Figure 3B). These genotypes had
high yield and minimum estimates for WAAS stability index. The GY × WAAS biplot
further divided the tested genotypes into four different categories (i.e., high-yielding stable,
high-yielding not stable, low-yielding stable, and low-yielding unstable genotypes). This
classification provides a clear vision for rice breeders to predict the genotypic performance
of each genotype under study prior to integrating them in the different programs.

It is essential to assess the average stability together with the genotype’s performance
through the means versus stability model of a GGE biplot (Figure 4A,B). This model is
capable of detecting high-ranking genotypes with great stability performance based on
AEC decisions [23,52]. Giza179 is considered the highest, whereas the ideal genotype was
Giza178 via being high-yielding and more stable than Giza179. In contrast, Giza177 had low
stability with sensitivity to harsh environments under study, which decreased its overall
yield performance. Based on AEC ranking, the lowest-ranked genotypes are Sakha103,
Giza177, Moroberekan, Dular, IRAT112, and Nerica 9, while the top-ranked genotypes are
Giza179 (G3) > Giza178 (G2) > IET1444 (G15) > IR65600-77 (G22) > GZ1968-S-5-4 (G18)
> N22 (G21) > IR11L236 (G27) > IR12G3213 (G24). Among them, Giza178, IR65600-77,
and IR12G3213 were the most stable ones. These genotypes could be utilized in breeding
programs while having high yielding ability under unfavored environments and also
maintaining good performance under normal conditions.

To further identify the groups of the genotypes based on the different stability indices,
cluster analysis was conducted. It is worth mentioning that, based on this analysis, the geno-
types with the highest overall mean performance across the different environments were
clustered in a single SCL. These genotypes are Giza179, Giza178, IR65600-77, IR11L3213,
IR12G3213, and IR12G3222, which are the top-ranked ones based on mean vs. stability
ranking (Figure 5).

Correlation coefficients indicated that number of panicles per plant exhibited the high-
est positive correlation with grain yield under all the environments. However, the overall
correlation coefficient between panicle length and grain yield records was significantly
positive, and the coefficient was positive under unfavored environments and negative
under favored environments (Figure 6). This indicated the importance of panicle length as
a characteristic for increasing yield under harsh environments. This positive relationship
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suggests that it is possible to improve yield by breeding cultivars with higher panicle length.
These findings are supported by those obtained by Laza et al. [49,52], who highlighted
the importance of panicle size as a promising characteristic for enhancing cultivars’ yield
potential.

Considering our results, Giza179 and Giza178 exhibited high performance. Giza178
was the ideal genotype and had the widest adaptability. GZ1968-S-5-4 displayed the best
genotype performance under Alexandria environments, where salinity stress affected the
soil. At the same time, N22 presented the best values in Kharga oasis since high temperature
coupled with low humidity are the common environmental conditions at this location.

4. Materials and Methods
4.1. Plant Materials

In the present research, a total of 34 rice genotypes were carefully selected. These
genotypes could be classified into two sets. The first set consisted of elite Egyptian rice
cultivars, specifically selected for their adaptability within the Egyptian rice production
systems. These cultivars have been extensively cultivated and grown throughout Egypt,
making them representative of the local rice landscape. The second set comprised interna-
tional donor genotypes, known for their tolerance to salinity and water shortage stresses
(Table 2). These donor genotypes were incorporated into the breeding program to enhance
the resilience of the Egyptian elite cultivars against these specific constraints.

Table 2. List of genotypes used in the study.

No. Genotype Origin Type

1 Giza 177 Egypt Japonica
2 Giza 178 Egypt Indica/Japonica
3 Giza 179 Egypt Indica/Japonica
4 Sakha 101 Egypt Japonica
5 Sakha 102 Egypt Japonica
6 Sakha 104 Egypt Japonica
7 Sakha 105 Egypt Japonica
8 Sakha 106 Egypt Japonica
9 Sakha 107 Egypt Japonica
10 Sakha 108 Egypt Japonica
11 Sakha Super 300 Egypt Japonica
12 IRAT 170 Ivory Cost Tropical japonica
13 A22 Srilanka Indica
14 Nerica 9 Ivory cost Indica
15 IET 1444 Inbdia Indica
16 Nerica 7 Ivory Cost Indica
17 Moroberekan Guinea Japonica
18 GZ 1368-S-5-4 Egypt Indica
19 Azucena Philippine Japonica
20 IRAT 112 Ivory Cost Indica
21 N22 India Aus
22 IR65600-77 Philippines Indica
23 IR69116 Philippines Indica
24 IR12G3213 Philippines Indica
25 IR69432 Philippines Indica
26 IR6500-127 Philippines Indica
27 IR11L236 Philippines Indica
28 IR12G3222 Philippines Indica
29 Sakha 109 Egypt Japonica
30 Vandana India Indica
31 Dular India Indica
32 Sakha 103 Egypt Japonica
33 Giza 181 Egypt Indica
34 Giza 182 Egypt Indica
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4.2. Experimental Locations and Climatic Conditions

The research trials were conducted across four distinct locations in Egypt, as presented
in Table 3.

Table 3. List of four locations used in the present study.

No. Location (Governorate) Altitude–Latitude

1 Sakha (Kafr El-Sheikh) 31.09◦ N and 30.9◦ E
2 Gemmiza (ElGharbya) 30.88◦ N and 31.05◦ E
3 Sobahya (Alexandria) 31.2◦ N and 29.9◦ E
4 Kharga oasis (New Valley) 25.4◦ N and 30.5◦ E

The trials were carried out over two consecutive growing seasons, 2021 and 2022. The
temperature data for the four locations over the two years were acquired from https://
weather.com/ (accessed on 3 December 2022), while the humidity data were extracted from
the NASA POWER project for agricultural needs (https://power.larc.nasa.gov/ (accessed
on 1 June 2023)).

Each of the four locations exhibits unique climatic conditions and soil properties.
Kharga location, for instance, experiences high temperatures accompanied by very low
humidity during the two growing seasons (Figures 7 and 8, Supplementary Table S1). The
climatic conditions varied between the two seasons (Figures 1 and 2). Alexandria (Sobahya)
location recorded the lowest maximum temperature and the highest humidity among the
four locations, whereas the minimum temperature was exhibited at Gemmiza location
during the two cropping seasons.

The physical and chemical analyses of the 8 environments’ soils are presented in
Table S2. The soils of the Gemmiza and Sakha locations are clay for the two seasons, while
in Alexandria location was sandy clay loam. In contrast, Kharga oasis included loam
sandy and clay sandy for 2021 and 2022 seasons, respectively. The Alexandria location soil
analysis indicated the existence of high salt stress since Na+ was 59.10 and 58.94, whereas
Cl− amounted to 74.5 and 70.78 for the two seasons, 2021 and 2022, respectively.
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4.3. Experimental Design and Data Recording

Randomized complete block design (RCBD) with three replications was adopted at
each of the four different locations during the two successive seasons. The experiment
consisted of total eight environments, representing the combination of the four locations
and the two years. Each genotype’s seeds were planted in seedbed in May and transplanted
after 25 days. The experimental plots were structured with five rows 2 m long with planting
space of 20 cm × 20 cm. This layout was standardized for each genotype within every
environment. To maintain the uniformity of all factors, except for the varying climatic
conditions specific to each environment, standard agronomical practices such as field
preparation, fertilizer application, and weed control were implemented. At the harvest
stage, the plots were harvested at harvest stage and grain yield (g m−1) was recorded for
each experimental plot after adjusting the moisture content. Furthermore, the yield-related
characteristics, such as number of panicles per plant, panicle length (cm), thousand grain
weight (g), and sterility (%), were studied.

4.4. Statistical Analysis

The statical packages available in R (R Core Team [53]) version 4.2.3. were used to
conduct multivariate procedures for stability analysis according to AMMI and GGE. The
“metan” package [20] was applied for AMMI analysis, whereas AMMI Model merged
ANOVA and PCA techniques. The package was also employed for GGE biplot analysis [54],
stability statistical analysis, and weighted average of absolute scores (WAAS) [43], while
GGE-Biplot-GUI package was functioned to support the GGE-biplot-based analysis. Addi-
tionally, hierarchical cluster analysis was conducted via “Nbclust” package [55]. The AMMI
analysis followed the below mathematical equation: Yge = µ + αg + βe + Σnλnγgnδen + ρge,
where Yge represents the grain yield for a particular genotype (g) in a given environment
(e), µ is the genotype grand mean, αg is the deviation of genotype performance from the
mean, βe stands for the deviation of environment from the mean, λn signifies the singular
value of n component, γgn indicates the value of eigenvector for genotype (g), and δen is
the value of eigenvector for e and ρge, which is the remaining residual [55], while the GGE
biplot model mathematical equation was Pij = (yij − µ − δj)/λj = (βi + ϵij)/λj, where Pij is
the matrix for genotype i and environment j, µ is the genotype grand mean, δj is the column
(environment) main effect, λj is an evaluating factor, βi is the row (genotype) main effect,
and ϵij stands for GEI, and yij is a two-way table for G and E [56]. The Spearman correlation
coefficient was calculated among the grain yield, the studied yield-related characteristics
using the GGaly R software package.
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5. Conclusions

Different sets of genotypes showed high yield performance under different environ-
ments. While the environments had the highest portion of yield sum of squared deviations,
the results showed that the selection should be conducted based on genotypes’ performance
with respect to GEI. Furthermore, the results of AMMI, GGE biplot, and which–won–where
showed that Giza178 had less response to the differences among the tested environments.
This indicates that, compared to the tested genotypes, it has wide adaptability and capabil-
ity as a climate-change-resilient genotype.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/plants13010074/s1, Table S1: The monthly maximum
and minimum temperature (◦C) as well as relative humidity (%) at four locations during 2021 and
2022 rice seasons; Table S2: Physical and chemical properties of experimental field soils at four loca-
tions in the rice growing seasons; Table S3: Genotypes mean performance under the eight different
environments; Table S4: Genotypes and environments overall mean performance and their PC1; Table
S5: Genotypes rankings based on yield performance and several stability indices; Table S6: Favorable
and unfavorable classification of the environments.
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