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Abstract: Salinity greatly affects the production of soybeans in arid and semi-arid lands around
the world. The responses of soybeans to salt stress at germination, emergence, and other seedling
stages have been evaluated in multitudes of studies over the past decades. Considerable salt-tolerant
accessions have been identified. The association between salt tolerance responses during early and
later growth stages may not be as significant as expected. Genetic analysis has confirmed that
salt tolerance is distinctly tied to specific soybean developmental stages. Our understanding of
salt tolerance mechanisms in soybeans is increasing due to the identification of key salt tolerance
genes. In this review, we focus on the methods of soybean salt tolerance screening, progress in
forward genetics, potential mechanisms involved in salt tolerance, and the importance of translating
laboratory findings into field experiments via marker-assisted pyramiding or genetic engineering
approaches, and ultimately developing salt-tolerant soybean varieties that produce high and stable
yields. Progress has been made in the past decades, and new technologies will help mine novel salt
tolerance genes and translate the mechanism of salt tolerance into new varieties via effective routes.

Keywords: soybean; salinity stress; salinity tolerance; ion homeostasis; gene identification

1. Introduction

Soil salinity is due to the accumulation of soluble salts, including chlorides and sulfates
of sodium, and more than 3% of farmlands are seriously threatened by salinization [1,2].
Salinity usually inhibits crop growth through the osmotic effect, which reduces a plant’s
water take up or ion toxic effect, which inhibits enzyme activity [3]. The extent and severity
of the effect of saline soils on crop production is predicted to worsen because of factors
such as global warming and inadequate drainage of irrigated land [4–6]. The need to
expand agriculture into marginal lands, coupled with increasing global food requirements
due to increasing population sizes, requires the development of crops that can achieve
higher yields in soils with higher salt contents [7,8]. Salt stress reduces the yield of most
crops [4,9–11]. The exploration of salt-tolerant crop plants that can withstand high salinity
is considered one of the most effective biological strategies to cope with this problem and
sustain food production [12]. Among the wide range of salt concentrations in saline soils, it
was found that moderately saline soil had a minimal effect on reducing the soybean seed
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yield of salt-tolerant varieties, indicating the promising potential for using these varieties
in saline fields [13].

As a source of vegetable protein and oil worldwide, soybean (Glycine max L. Merrill)
plays important roles in human nutrition, animal feed, and oilseed production [14]. It
was reported that extracts of soil solutions with conductivity (ECe) values of 5 dS m−1 or
greater affect soybean germination and later developmental stages [15,16]. Soil salinity
values of 7.3 and 9.6 dS m−1 caused complete stand loss of salt-sensitive and intermediate
salt-tolerant soybeans, respectively. In contrast, the stands of salt-tolerant varieties were
not appreciably decreased with salt, indicating inheritance control over salt tolerance [13].
Significant progress has been made in the evaluation and genetic analysis of soybean
salt tolerance during the past few decades. In this review, we focus on the advances in
genetics and possible mechanisms of salinity tolerance in soybeans at different growth
stages. Suggestions are made for future studies that aim to improve salt tolerance via the
ontogeny of soybeans.

2. Identification of Salt-Tolerant Accessions in Soybean
2.1. Salt Tolerance Evaluation at Soybean Germination Stage

Many germination tests have illustrated the negative effects of salt exposure on soy-
bean germination. High salt concentrations decrease the soybean germination rate and
inhibit the growth of radicle and lateral roots [17]. A study conducted in 1983 provided
genetic resources on soybean salt tolerance at the germination stage and identified salt-
tolerant soybean landraces and varieties under controlled conditions. The researchers used
the relative injury index as a criterium to score the salt tolerance of soybean accessions from
level 1 (a relative injury index of 0–20%) to level 5 (90.1–100%) at high salinity (a 1.6% NaCl
solution) and were able to select tolerant soybean genotypes with scores of lower than 3
(a relative injury index of lower than 65%) [18]. In the Seventh Five-Year Plan of China,
a total of 10,128 soybean accessions were evaluated for salt tolerance at the germination
stage, and the results showed that 9.1% of genotypes were tolerant (based on relative injury
index levels 1–3) [19]. Parameters, such as germination percentage (G%), tissue water
content (TWC), and root length (TL), were considered useful indicators for the selection of
salt-tolerant soybean in the germination stage while exposed to 150 mM and 200 mM NaCl
stress [20]. The relative germination index (ST-GI) and relative germination rate (ST-GR)
were significantly positively correlated with each other under 150 mM NaCl stress and
could be used as indexes of salt tolerance at the germination stage [21].

2.2. Evaluation of Salt-Tolerant Soybean Accessions at Emergence Stage

Salt tolerance at the emergence stage is likely to be more important than in the germi-
nation stage because germinated seeds under certain saline conditions, like germination on
salinized filter paper, may not break through the soil crust when the soil surface is hard [22].
Salinity decreased the emergence rates of soybeans grown in soil with less than 1.0% salt
(a dry soil base), despite all soybeans achieving maximum germination rates. Differences
in relative emergence rates were observed between the different soybean varieties grown
under higher salt contents, which might be due to the effect of chloride ions [13,23]. At a
salt concentration of 330 mM, the soybean cv. Williams attained a high germination rate
(81%); however, seedling growth declined to 5%, even when exposed to a lower 220 mM
NaCl stress [23]. This suggests that soybean seeds can survive under saline conditions
during the germination stage, but the stress can be fatal at the emergence stage. Only one
soybean genotype was used in this experiment; therefore, a variety of soybean accessions
should be used to evaluate the correlations between genotypic differences at the germi-
nation and emergence stages. Variations in salt tolerance were reported in near-isogenic
lines (NILs) that differ in maturity in the background of the soybean cultivars ‘Lee’ and
‘Essex’, indicating that specific genes in the NILs of maturity groups IV or VI may related
to salt tolerance [24]. Recently, two flowering-related loci, E2 and J, were found to be
related to soybean seedling salt tolerance. Knockout of E2 generated soybean lines with
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enhanced salt tolerance and shortened maturity [25], and loss of the function of J reduced
salt tolerance and prolonged the maturity of soybean [26], indicating that flowering earlier
might help soybeans avoid salinity toxicity. However, the effects of maturity-related genes
on germination under salinity stress remain unknown. In fields salinized with sodium
chloride and calcium chloride salts, soybean emergence was significantly reduced when
the ECe reached 11 dS m−1 [24]. In order to overcome the spatial heterogeneity in saline
field trials, Liu et al. (2020) developed a method using vermiculite as a culture substrate
treated with a salt solution after soybean sowing, whereby soybeans grown under 150 mM
NaCl showed a different salt tolerance. The salt tolerance index (SI) calculated using the
relative growth of seedlings was found to be significantly related to salt tolerance and was
used for the identification of salt-tolerant soybean accessions [27].

2.3. Salt Tolerance of Soybean at Seedling Stage

The screening of salt tolerance at the different stages of soybean growth has been
conducted for more than half a century (Table 1). Much of the research has focused on
soybean seedling stages because salt tolerance increases with the progression of plant
age [18]. Much effort has been devoted to developing rapid, visual methods for the
selection of salt-tolerant accessions. One such effort categorized soybeans as “includers”
(salt-sensitive) or “excluders” (salt-tolerant). Soybeans grown under saline conditions
accumulate more chloride ions in the stems and leaves, which causes severe leaf necrosis
and even mortality, and were thus assigned as “includer” soybeans. Those soybeans that
showed no necrosis and only a moderate growth reduction were assigned as “excluder”
soybeans [28]. Three Cl excluders and four includers were grown hydroponically with
0, 40, 80, 120, and 160 mM NaCl for seven days. Includers and excluders showed the
greatest differences at the 120 mM NaCl stress level, where the average leaf Na+ and Cl−

contents were 2.64 and 1.96 times higher for includers than excluders, respectively. Thus,
the addition of 120 mM NaCl in the hydroponic system was the most effective concentration
for screening salt-tolerant soybean genotypes without chemical analysis [29]. A method
using sandy soil in plastic containers (named the PC method) was compared with the
hydroponic method by exposing 14 soybean genotypes to salt at the V2–V3 stages. The
leaf scorch scores and leaf chloride contents were comparable for both methods and salt
damage appeared approximately four days sooner in the PC method; thus, the cheaper and
less labor-intensive PC method was considered the better one that could be adopted by
soybean breeders [30]. Using two Cl includers and two excluders as materials, a pot assay
of soybean exposed to 120 mM NaCl over two weeks (for 2 h in a salt solution each day)
was recently conducted to establish a leaf scorch scale (LSS) to visually rate the level of salt
tolerance of plants. The scale ranges from one (healthy dark green leaves with no chlorosis)
to nine (necrotic leaves). The results indicate that the LSS was positively correlated with
Cl− contents in leaves (r = 0.87–0.88; p < 0.001), which suggests that the LSS and Cl−

content may be used as criteria to identify tolerant genotypes [31]. In a simple screening
method using vermiculite as a substrate, 200 mM NaCl was added to the tray every two
days over five days (totaling 600 mM NaCl) after soybean unifoliate leaves were fully
expanded, and a significant negative relationship of the leaf chlorophyll content (SPAD
value) with the leaf Na+ content and salt tolerance was observed eight days after the final
NaCl solution application [32]. This simple method was effectively used in salt tolerance
gene mapping and functional analysis [33–35]. In a pot assay, a 25 mM NaCl solution
was added to the soil every alternate day until a total concentration of 150 mM NaCl was
added to each pot. A total of 170 soybean accessions were assigned to four groups: tolerant,
moderately tolerant, moderately sensitive, and sensitive accessions. The relative total dry
weight (DW) of 30-day-old seedlings, followed by the relative shoot and petiole DW, were
considered as the more important discriminatory variables, while the relative root DW was
considered as a secondary variable used to segregate accessions into the four groups [36].
This is in agreement with a previous study that reported the shoot growth of soybeans
was more affected than the root growth under saline conditions [37]. In contrast, Lee et al.
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(2008) [30] observed that the shoot dry weight was less affected than the root dry weight.
The conflicting results may be attributed to the experimental methods and mediums as
well as genotypes used in each study. Overall, the comparisons suggest that relative dry
weight is an unreliable indicator to assess salt tolerance in plants, and screening methods
based on leaf injury have been widely used for salt tolerance evaluation at the seedling
stage. To better understand the genetic control of salt tolerance, efforts should be spent on
developing effective screening methods that mimic saline conditions in the field. Moreover,
precautions must be taken to avoid common issues in large-scale evaluations of the salt
tolerance of soybeans in the field when irrigating large fields with saline water [13,19]. For
example, soil salinity can greatly vary from the head- to the tail-ends of furrow-irrigated
fields and negatively affect the precision of evaluating plant salt tolerance [24,38].

Table 1. Evaluation and identification of salt-tolerant accessions of soybeans at different developmen-
tal stages.

Stage Stress
Condition Indicators Total

Accessions
No. of Tolerant

Accessions

Proportion of
Tolerant

Accessions
Reference

Germination 1.6% NaCl Salt damage index 10,128 924 9.1% Shao et al. (1993) [19]
Germination 2.0% NaCl Relative salt damage rate 760 141 18.5% Li et al. (1996) [39]
Germination 150 and 200 mM NaCl GR 10 3 30.0% Shelke et al. (2017) [20]
Germination 150 mM NaCl IR, GR, and GI 191 / 0.0% Kan et al. (2015) [40]
Germination 1.2% NaCl Relative salt damage rate 793 117 14.8% Jiang et al. (2012) [41]

Emergence Saline soil: 3.1–13.7 dS m−1 Relative seedling
emergence rate 6 2 33.3% Abel and MacKenzie

(1964) [13]
Emergence Saline soil: 3–6 dS m−1 GR 7 3 42.9% Wang et al. (1999) [24]
Emergence 150 mM NaCl SI 27 10 37.0% Liu et al. (2020) [27]

Seedling 5.0–10.2 dS m−1 Cl– content in leaves 6 4 66.7% Abel and MacKenzie
(1964) [13]

Seedling Saline water
(EC = 15–17 dS m−1) Green loss grade (1–5) 10,128 457 4.5% Shao et al. (1993) [19]

Seedling 25 mM to 150 mM NaCl SDW 170 18 10.6% Mannan et al. (2010) [36]
Seedling 120 mM NaCl Leaf damage 7 3 42.9% Valencia et al. (2008) [29]
Seedling 100 mM NaCl Leaf damage 14 5 35.7% Lee et al. (2008) [30]
Seedling 200 mM NaCl Leaf damage 8 4 50.0% Jiang et al. (2013) [32]
Seedling 21 ± 3 dS m−1 Salt damage index 793 41 5.17% Jiang et al. (2012) [41]
Seedling 120 mM NaCl Leaf damage 98 36 36.7% Ledesma et al. (2016) [31]

Emergence 200 mM NaCl SI 27 12 44.4% Liu et al. (2020) [27]
Whole period Saltwater irrigation Degree of salt damage 2000 7 0.4% Shao et al. (1986) [18]

Whole period Saline soil Relative salt tolerance
index 793 35 4.41% Jiang et al. (2012) [41]

2.4. Salt Tolerance Identification in Later Soybean Growing Period

Salt stress affects many agronomic traits of soybean, especially yield, mainly via the
reduction in the branch number, pod number, grain weight, and 100-grain weight, which
ultimately leads to yield reduction [42]. Screening soybeans throughout the whole growing
period in a saline field is difficult, especially for a large number of accessions, due to
salinity heterogeneity and uncontrolled environments. Saline water irrigation in field or
pot experiments was used for the identification of salt tolerance at later soybean growing
stages. Soybean accessions were planted in saline fields and irrigated with saline water
(EC = 20 to 24 dS m−1) at the flowering and podding stages, and seven tolerant varieties
like Wenfeng 7, Jindou 33, and Tiefeng 8 were identified [18]. Using salt-tolerant varieties
(Wenfeng 7, Zhongye 1, Tiefeng 8, and Zhonghuang 10) as controls, a two-year salt tolerance
evaluation of 280 soybean varieties was conducted in saline fields during the whole growth
period of soybean, the biomass and grain weight of each variety were investigated at
the maturity stage, the relative salt tolerance index was calculated, and only 35 soybean
varieties showed high tolerance in both years, in which only 3 and 11 were tolerant at
the germination and seedling stages, respectively [41]. In a potting experiment, soybean
varieties were treated with 80 mM NaCl at the V3, R2, R4, and R6 stages, respectively.
Biomass and pod weight were greatly affected in both tolerant and sensitive genotypes
when salt was applied at the R6 stage, indicating that R6 is one of the most sensitive stages
to salinity stress [43].
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3. Genetics of Salinity Tolerance in Soybeans
3.1. Genetic Control of Salt Tolerance in Soybeans

Variations in salt tolerance exist in soybeans at different developmental stages, indicat-
ing potential tolerance gene resources in soybean accessions. To understand the genetic
architecture of salt tolerance and improve selection efficiency, linkage and association analy-
ses were used to identify loci controlling salt tolerance at the germination stage. Indices (the
relative imbibition ratio (IR); the relative ratio of germination index (GI]); and the relative
germination rate (GR)) representing possible mechanisms were used, and 11 QTLs located
on chromosomes 2, 7, 8, 10, 17, and 18 underlying the complex traits were identified in an
RIL population, NJRIKY, developed from a cross between Kefeng 1 and Nannong 1138-
2 [21]. In the association analysis of natural soybean populations, 11 SNP- and 22 SSR-trait
associations were identified [21,40]. Although several candidate genes on chromosomes
8, 9, and 18 were verified in response to salt stress, no consistent loci were identified in
bi-parental segregating and natural populations [21]. The significant correlation between
different indices, such as the GI and GR, and the co-association with related markers indi-
cated that effective indices like the ratio of the germination rate under salt conditions to the
germination rate under no-salt conditions (ST–GR) can be used for future experiments. The
advantage of using the GR over the GI is that to obtain the GI, we need to manually count
the number of germinated seeds in each Petri dish daily throughout the experiment, while
to obtain the GR, we only need to count the number of germinated seeds once, at the end
of the experiment. In an association mapping study of salt-tolerance-related markers in
the emergence stage, the salt tolerance index (STI) based on the phenotypes of root length
(LR), fresh or dry root weight (FWR; DWR), the biomass of seedlings (BS), and the length of
hypocotyls (LH) were used as indices, and 19 QTLs were detected on various chromosomes,
with only 2 related to LR-STI. Additional results showed that epistatic interactions between
QTLs related to FWR-STI had strong effects (r2 > 5%) [44]. The minor effects and fewer
conserved QTLs in different populations indicated that salt tolerance at the germination
and emergence stages are likely controlled by quantitative loci.

In order to investigate the potential genetic control of salt tolerance, crosses were made
using soybean chloride includers and excluders and 30-day-old seedlings of segregating
populations grown in fields that were furrow-irrigated with saline water (an equal mixture
of NaCl and CaCl2). The F2 populations of the includers × excluders were segregated in
ratios of three non-necrotic plants (low chloride content) to one necrotic plant (very high
chloride content), indicating the likelihood of a single gene governing the inheritance of
salt tolerance. The gene symbols Ncl and ncl were proposed for the dominant (excluder)
and recessive (includer) alleles, respectively. The phenotype of individuals was primarily
sorted according to the level of leaf necrosis, while only 10 individuals were determined
by the chloride concentration [28]. More than two decades later, three salt-tolerant and
three salt-sensitive soybean cultivars were used to make crosses and evaluated for salt
tolerance inheritance. Populations were planted in saline fields and irrigated with saline
water (EC = 4.2 to 21 dS m−1, depending on current drought or non-drought conditions).
The resulting segregation of phenotypes indicated that salt tolerance in all of the three
tolerant cultivars was governed by a dominant gene [45]. In the F2:3 population derived
from the cross of Peking (salt-sensitive) and wild soybean NY36-87 (salt-tolerant), the ratio
of salt-tolerant to separation to salt-sensitive families was consistent with 1:2:1, indicating
that the seedling salt tolerance of the NY36-87 wild soybean is controlled by a dominant
single gene [46].

An F2:5 population from a cross of the salt-tolerant cultivar S-100 and the salt-sensitive
cultivar Tokyo, for the first time, was used for salt tolerance QTL mapping. The heritability
of salt tolerance was 0.85 and 0.48 in the field and greenhouse environments, respectively.
A major salt tolerance QTL was mapped on the soybean linkage group N (LG N, Chr. 03)
in a 3.6 cM interval between SSR markers Sat_091 and Satt237 based on the phenotypes
of plants grown in a field, greenhouse, and combined environments of the two [47]. This
major QTL was confirmed in several salt-tolerant soybean varieties, such as Nannong
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1138-2, Tiefeng 8, Jidou 12, Fiskeby III, and FT-Abyora [33,48–51]. The genetic and mapping
results have been described in more detail in recently published reviews [15,52–55]. The
leaf sodium (LSC) and leaf chloride (LCC) contents of the F2:3 population derived from
Williams 82 and the tolerant soybean Fiskeby III were used as physiological traits in QTL
mapping. For the LCC, only one genomic region with a high R2 (58.9%) was identified on
Chr. 03, where the major salt tolerance QTL was located. While for the LSC, except for the
locus on Chr. 03, another dominant gene (a positive allele in the sensitive parent Williams
82) was located on Chr. 13, which explained 11.5% of the observed total variation, and no
significant epistatic interactions were detected between these two loci [51]. Genome-wide
association mapping based on leaf chloride concentration and SPAD showed SNPs on Chr.
02, 03, 14, 16, and 20, and all were significantly associated with both traits. These results
suggest novel genes are involved in soybean salt tolerance at the seedling stage and the
potential application of these SNP markers in the evaluation of accessions and breeding
selection [56]. Recently, two major QTLs associated with the LSS and CCR were identified
in Williams82 × PI483460B RIL populations. qSalt_Gm03, associated with the CCR and LSS,
was located in the same region as the known salt tolerance gene GmCHX1. Another new
locus, qSalt_Gm18, significantly associated with the LSS, was mapped on Chr. 18. The salt
tolerance alleles of the two loci were both from PI483460B [57].

Salt tolerance gene mapping of wild soybeans has also obtained vital progress in
addition to that of cultivated soybeans. In F2 populations derived from soybean cultivars
and salt-tolerant wild soybeans, a major salt tolerance QTL was mapped on Chr. 03 [46,58],
indicating that the same QTL or major gene was present on Chr. 03 in wild and cultivated
soybeans (Figure 1). An F2 population of PI483463 × S-100 was used to determine the allelic
relationship of wild accession PI483463 and cultivar S-100. The population was segregated
as 15 (tolerant):1 (sensitive), indicating that the gene in wild soybean was different from that
in S-100, and the gene was assigned as Ncl2 in PI483463 [59]. However, the salt tolerance
QTL in PI483463 was mapped within a 658 kb region on Chr. 03 using an RIL population
derived from PI483463 and Hutcheson [60]. Because different sensitive parents were used
in these two studies and PI483463 showed a higher tolerance than S-100 after 30 days of
salt stress, it is difficult to rule out the possibility that PI483463 has a different salt tolerance
gene [59,60]. A new salt tolerance locus on Chr. 18, named GmSALT18, was identified in an
F2:3 population derived from the salt-sensitive variety Peking and the salt-tolerant wild
soybean NY36-87 [46]. These wild soybeans should be further investigated to clone novel
salt tolerance genes.
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3.2. Candidate Gene Contributes to Salt Tolerance in Soybean

A major salt tolerance locus qST-8 related to salt tolerance at the soybean germination
stage was mapped onto Chr. 08 using QTL mapping in the RIL population and GWAS in
the natural population. Glyma.08g102000, which belongs to the CDF (cation diffusion facili-
tator) family, was found to be the candidate gene of GmCDF1. Hairy root transformation
experiments showed that the gene negatively regulated soybean salt tolerance by maintain-
ing K+–Na+ homeostasis in shoots under salt stress. Haplotype analysis showed that two
SNPs were significantly associated with salt tolerance, and Hap2 was more salt-tolerant
than Hap1 (Table 2) [61].

The major salt tolerance QTL locus on Chr. 03 was conserved in both cultivated and
wild soybeans. The isolation of the dominant gene has been the focus of extensive research
efforts. By re-sequencing 96 RI lines derived from the salt-tolerant wild soybean W05 and
the sensitive cultivar C08, a bin map was constructed, and a salt-related QTL was mapped
in a 388 kb genomic region that overlapped with a previously mapped Ncl locus on Chr.
03. A root-specific expressed cation/H+ exchanger gene Glyma03g32900 was identified
as the candidate gene, which was named as GmCHX1. The expression of GmCHX1 in
hairy roots leads to a higher fresh root weight than the control. Moreover, transgenic
tobacco BY-2 cells showed higher survival rates under 100 mM NaCl treatment, confirming
the salt tolerance function of this candidate gene was from wild soybean (Table 2) [62].
A map-based cloning strategy was conducted for fine mapping the salt tolerance gene
GmSALT3 (a salt-tolerance-associated gene on chromosome 3) in cultivated soybean Tiefeng
8, and only Glyma03g32900, an endoplasmic-reticulum-localized gene, was predicted to
be present in a 17.5 kb candidate region according to the reference genome Williams 82
(Table 2) [34]. Salt-tolerant wild soybeans were used for the identification of a novel salt
tolerance gene, and a 7 bp InDel in the promoter region of Glyma.11G149900 (GsERD15B)
was found to be associated with salt tolerance. Genetic transformation proved that a
Hap2-type promoter enhanced hairy root growth under salt stress, and 87.5% (42 of 48) of
tolerant soybeans belong to Hap2. The average STR (salt tolerance rating) of Hap1 is 4.20,
which is significantly higher than that of Hap2 (1.64) (Table 2) [63].

In addition to forward genetics, a series of genes encoding ion transporters and
transcriptional factors were cloned from soybean via homologous cloning and functionally
evaluated in Arabidopsis, tobacco, or soybean [64–70]. Functionally verified salt tolerance
genes in soybeans have been carefully summarized in a recent review [71].

Table 2. Salt tolerance genes identified in soybean and related molecular markers.

Tolerance Gene Associated Markers Salt Tolerance Reference

GmSALT3
Pro-Ins, H2-Ins, H3-MboII,

H4-NlaIII, and H5-Del Seedling stage Guan et al. (2021) [72]

Tn-I, I-S, TGCT-D, and C-I Seedling stage Lee et al. (2018) [73]

GmCHX1
— Seedling stage Qi et al. (2014) [62]

M1, M2, M3, M4, and M5 Seedling stage Patil et al. (2016) [74]

GmCDF1 — Germination stage
Seedling stage Zhang et al. (2019) [61]

GsERD15B dCAPS-GsERD15B-promoter Seedling stage Jin et al. (2021) [63]

3.3. Dissecting Salt Tolerance Mechanisms in Soybean

Mechanisms related to the salt stress response, including signaling, osmotic stress,
and ionic homeostasis, have been reviewed in detail [71]. In this review, we focus on salt
tolerance genes cloned using forward genetics, because these genes are likely to be more
valuable in marker-assisted selection breeding. However, this does not preclude that other
genes may also contribute to salt tolerance breeding.
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Independent studies have cloned the major salt tolerance gene GmSALT3/GmCHX1/
GmNcl, which regulates salt tolerance at the soybean seedling stage [34,62,75]. GmSALT3
is an ER-localized protein regulating ions transport to shoots in a root-dependent man-
ner [34]. The salt tolerance gene Ncl can reduce Na+, K+, and Cl− accumulation in soybean
leaves under salt stress and function like cation–chloride cotransporter (CCC) genes [75].
Recently, it was proved in a heterologous system that the GmSALT3 protein contributed
Na+, K+, and Cl− transport in Xenopus laevis oocytes. Detailed analysis of three sets of
salt-tolerant NILs (NIL-GmSALT3) and salt-sensitive NILs (NIL-Gmsalt3) showed that Gm-
SALT3 mediates Na+ and Cl− exclusion from shoots via net xylem loading or phloem
re-translocation, although the exact molecular mechanism requires further study [35,76].
Transcriptomic analysis has been used to unravel the molecular mechanisms of GmSALT3,
which suggests GmSALT3 might help to detoxify ROS toxicity through the flavonoid
biosynthesis pathway [77]. Recently, it was reported that the membrane-bound NAC with
trans-membrane motif1-like (NTL) transcription factor GmNTL1 can bind to the promoter
of GmSALT3/GmCHX1/GmNcl to promote soybean salt tolerance by activating gene tran-
scription [78], while the other gene, GmERD15B, might promote soybean salt tolerance
via the up-regulation of stress-related genes, including GmbZIP1, GmP5CS, GmCAT4, and
GmSOS1 [63].

Salinity inhibits seed germination in plants by altering different growth processes
including the imbibition of water, enzyme activities, and hormonal balance [3]. GmCDF1
is the only candidate gene related to salt tolerance at the germination stage, the function
of which was proved in soybean hairy roots. Overexpression of GmCDF1 could decrease
soybean salt tolerance by affecting K+–Na+ homeostasis in soybean roots and shoots [61].
The mechanism through which GmCDF1 regulates soybean germination under salt stress
needs further exploration.

4. Salt-Tolerant Accessions and Molecular Markers in Soybean Breeding for Saline Soils
4.1. Major Genes Involved in Soybean Salt Tolerance Provide Molecular Approach to Tolerant
Soybean Screening and Breeding

An RAPD marker tightly linked to the salt tolerance gene was identified in the soybean
cultivar Jindou 33 and used for the identification of tolerant accessions [79,80]. Subsequent
sequencing of specific fragments of the RAPD marker in soybeans showed that the sequence
is part of Glyma03g32920.1, from which a sequence-characterized amplified region (SCAR)
marker was developed for the fine mapping of the salt tolerance gene [33]. Two SSR markers,
Sat_091 and Satt237, were suggested to be useful for salt-tolerant soybean breeding due to
the tight linkage of SSR markers with major QTLs on linkage group N and the association of
marker alleles with salt tolerance in soybean descendants [47]. With the cloning of the major
salt tolerance gene GmSALT3/GmCHX1/GmNcl [34,62,75], variations in the gene promoter
and coding regions were identified in diverse soybean accessions [72,74]. Taking those
haplotypes observed in more than ten soybean accessions as the main haplotypes, there
are seven main haplotypes of GmSALT3/GmCHX1/GmNcl reported in soybean (Figure 2).
Haplotype H1/Hn/SV-1 is the only conserved tolerant allele that has a functional domain.
H2/HTn/SV-2 is a salt-sensitive haplotype with a 3.78 kb Ty1/copia retrotransposon
insertion in the third exon; H5-1/Hd-2 is a sensitive haplotype with a 4 bp deletion in exon
2; and H5-2/Hd-3 has the same 4 bp deletion as that of H5-1/Hd-2, with an additional
C > G variation in exon 3. H3 and H4 are two sensitive haplotypes only observed in
Chinese soybean accessions [34,72]. SV-3 is a sensitive haplotype with a ~180 bp deletion
in exon 3, and this allele was only reported by Patil et al. [74]. SNP assays and PCR-based
markers were developed according to the variations in GmSALT3/GmCHX1 and showed
the precise identification (>90%) of salt-tolerant accessions, providing functional markers
for targeted breeding [72–74]. A new variation in the promoter region of GmCHX1 was
proved to be a conditional gene-expression-related allele that existed in four salt-tolerant
lines. It provides a new allele for salt tolerance breeding [81]. A 7 bp Indel in the promoter
region of an early responsive to dehydration 15B (GsERD15B) gene was found to be related
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to the salt tolerance rating in wild soybean (G. soja), and a dCAPS marker was designed
to distinguish the two alleles [63]. It remains unknown what the variation of GsERD15B
in cultivated soybeans is and how it can be used in soybean breeding. Ten haplotypes of
GmCDF1 were detected that control salt tolerance at the germination stage, and haplotype
Hap2 was more tolerant than Hap1 [61], while no further molecular markers related to this
gene were reported.
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4.2. Creation of Salt-Tolerant Soybean

The identification of salt tolerance loci is likely to contribute to the development of
salt-tolerant soybean varieties. To confirm the function of known tolerance genes like
GmSALT3, near-isogenic lines harboring GmSALT3 (NIL-T) or Gmsalt3 (NIL-S) were created
using a marker-assisted strategy. Each pair of NILs contained 95.6–99.3% genetic similarity
and were used to elucidate gene function in salinized soil. No yield penalty was observed
for GmSALT3 under normal field conditions, and a significantly higher 100-seed weight and
total plant seed weight were found in NIL-T lines in salinized fields [35]. Under salt stress,
NILs with the salt tolerance allele showed a yield decrease of less than 29.5%, whereas
NILs with the salt sensitivity allele experienced a more pronounced yield reduction of
44.0–55.8%, indicating the presence of the salt tolerance gene contributed to sustainable
soybean production in saline fields [75]. Commercial soybean cultivars containing Gm-
SALT3, such as Zhonghuang 30 and Zhonghuang 13, which have been approved to be
salt-tolerant, are potential resources for the breeding of salt-tolerant soybeans [72].

In addition to the introgression of GmSALT3 into soybeans via marker-assisted selec-
tion, new salt-tolerant lines have been created using transgenic approaches. Overexpression
lines with the transcription factor GmSIN1 showed rapid emergence and higher yields com-
pared with the salt-tolerant variety Wei6823 under saline conditions [64]. Soybean seedlings
with overexpression of nuclear factor Y C subunit GmNF-YC14 had higher biomass than
the wild type under salt stress [70]. Transgenic soybean lines overexpressing a class B heat
shock factor HSFB2b had higher survival rates than wild-type Jack after 7 d of 300 mM
NaCl treatment, and the variations in the promoter of HSFB2b may be useful for breeding
tolerant soybeans [68]. By introducing nuclear factor Y subunit GmNFYA into soybean Jack,
the plant height and survival rate were greatly improved under 300 mM NaCl stress [69].

5. Perspective

The salt tolerance of soybeans is the result of contributions from genetic loci involved in
different developmental stages. Full-seed germination is the initial step for plants to achieve
greater yields in saline fields, especially where the timing of sowing usually depends on
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rainfall events. Studies have shown that the genetic control of salt tolerance varies at
different growth stages in soybeans [13,35,56]. Despite these studies, there is still a gap in
knowledge on the genetic responses and underlying mechanisms involved in salt tolerance
between the germination and emergence stages. This may be partly due to difficulties in
conducting these types of studies, which are time-consuming and labor-intensive. They
require screening a large number of accessions for germination and seedling vigor to
determine maximum levels of salinity stress on plants and are inherently more difficult
under more unpredictable field conditions compared with laboratory conditions [82].
Therefore, it is necessary to develop ways to reduce these complexities and difficulties
by developing, for example, feasible selection indicators that can bridge the differences
between lab and field environments and high-throughput screening technologies to more
accurately and precisely phenotype large numbers of samples, especially when measuring
plants grown in control conditions could be avoided. WinRoots is a system recently
developed for soybean phenomics study, which made RGB (red–green–blue) images of
the roots and shoots canopy phenotype easily collected [83]. Identifying traits related to
salt stress responses at particular developmental stages using thermal sensors and RGB
imaging will lead to the identification of major QTLs on trait variation that can be applied
to breeding. The salt tolerance genes that have been genetically characterized have created
opportunities to develop salt-tolerant soybean varieties via marker-assisted selection (MAS)
using tightly linked or functional molecular markers.

Salt stress causes a reduction in growth because energetic resources must be allocated
away from photosynthetic processes to accommodate the need for osmotic adjustment [4].
The introduction of salt tolerance genes into crops, for example, Nax2 in wheat and Gm-
SATL3 in soybean, only mitigates the losses in yield due to salt stress rather than restoring
the full yield achievable in non-saline fields due to the energy used for osmotic adjust-
ment [35,51,84]. Therefore, knowing how to more effectively use salt tolerance genes or
their regulators in soybean breeding via genetic engineering, i.e., transgenic manipulation
or genomic editing, to improve yield under both saline and non-saline conditions depends
on our advances in understanding the underlying mechanisms and warrants further ex-
ploration. ‘Omics’ approaches may be useful to determine the roles of known genes and
identify the pathways and essential genes involved in salt tolerance (Figure 3).
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(b) Characterizing soybean accessions with high-throughput phenotyping methods under conditions
that mimic realistic saline field conditions and cost-effective genotyping approaches. (c) Identify-
ing target genes and functional variants for salt-tolerance-related traits. (d) Integration of single-
nucleotide variations and ‘omics’ at gene level. (e) With knowledge of key gene variations and related
pathways, MAS and other biological approaches will become the most effective way for breeding.

Although we have evaluated some genetic loci, as salt tolerance is a very complex
physiological process, the following challenges remain: (1) approaches that can be easily
used to screen the phenotypes of soybean accessions; (2) major gene(s) contributing to
specific developmental stages without a yield penalty under both saline and non-saline con-
ditions; and (3) effective ways for trait stacking to obtain salt-tolerant soybeans throughout
the whole growing period.
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