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Abstract: Chlorophyll content reflects plants’ photosynthetic capacity, growth stage, and nitrogen
status and is, therefore, of significant importance in precision agriculture. This study aims to develop
a spectral and color vegetation indices-based model to estimate the chlorophyll content in aquaponi-
cally grown lettuce. A completely open-source automated machine learning (AutoML) framework
(EvalML) was employed to develop the prediction models. The performance of AutoML along with
four other standard machine learning models (back-propagation neural network (BPNN), partial least
squares regression (PLSR), random forest (RF), and support vector machine (SVM) was compared.
The most sensitive spectral (SVIs) and color vegetation indices (CVIs) for chlorophyll content were
extracted and evaluated as reliable estimators of chlorophyll content. Using an ASD FieldSpec 4
Hi-Res spectroradiometer and a portable red, green, and blue (RGB) camera, 3600 hyperspectral
reflectance measurements and 800 RGB images were acquired from lettuce grown across a gradient
of nutrient levels. Ground measurements of leaf chlorophyll were acquired using an SPAD-502
m calibrated via laboratory chemical analyses. The results revealed a strong relationship between
chlorophyll content and SPAD-502 readings, with an R2 of 0.95 and a correlation coefficient (r) of
0.975. The developed AutoML models outperformed all traditional models, yielding the highest
values of the coefficient of determination in prediction (R2

p) for all vegetation indices (VIs). The
combination of SVIs and CVIs achieved the best prediction accuracy with the highest R2

p values
ranging from 0.89 to 0.98, respectively. This study demonstrated the feasibility of spectral and color
vegetation indices as estimators of chlorophyll content. Furthermore, the developed AutoML models
can be integrated into embedded devices to control nutrient cycles in aquaponics systems.

Keywords: aquaponics; AutoML; chlorophyll; hyperspectral reflectance; vegetation indices

1. Introduction

Aquaponics is a non-soil-based, innovative, intelligent, and sustainable agricultural
production system combining aquaculture and hydroponics in one system. In aquaponics,
plant nutrients are exclusively derived from fish excrement [1]. Briefly, fish excrete their
waste, which is instantly transformed into nutrients by nitrifying bacteria, and plants
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absorb such nutrients, as shown in Figure 1 [1]. Despite adhering to the established design
principles for aquaponics, plants frequently experience nutrient insufficiency. The restricted
nutrition in the aquaponics system affects the chlorophyll content of plant leaves and
canopies. Chlorophyll estimation provides comprehensive knowledge of plants’ nutrient
status and nitrogen content [2]. Chlorophyll is essential for precision agriculture as it is the
vital pigment in photosynthesis. Furthermore, it is a good indicator of mutations, stress,
and nutritional status [3]. Understanding the chlorophyll content of plants is crucial for
guiding plant cultivation management, such as determining the amount and timing of
fertilization [4].
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Chlorophyll is traditionally measured visually and in the laboratory (oven drying and
solvent extraction followed by spectrophotometric determination, respectively). Visual
methods of estimating chlorophyll content require much experience and may lead to suffer-
ing from misleading results among analysts [5]. The conventional laboratory procedures
for determining chlorophyll concentration are exceptionally precise. On the other hand, it
precludes tracking the dynamic changes in chlorophyll content in plant leaves during the
growing season. Moreover, these methods are destructive, time consuming, expensive, and
labor intensive [6–8]. Consequently, these methods are inappropriate in many cases such
as dynamic detection. The SPAD-502 m (soil plant analysis development) was developed
to estimate chlorophyll in a rapid, non-destructive, and real-time manner. In addition, it
enables us to track dynamic changes in chlorophyll content in plants [6]. Many scientific
contributions have established a strong positive relationship between chlorophyll content
in crops and SPAD-502 readings [8–13]. Recently, SPAD-502 m has been widely used for the
estimation of crop chlorophyll content such as lettuce [14,15], wheat [16,17], maize [18,19],
apple [20], sugarcane [21], and rice [22].

In recent years, spectral sensing and machine vision have emerged as viable options
for crop management and yield estimation [23,24]. Additionally, their potential to facilitate
high-throughput plant phenotyping endeavors has garnered significant interest [25]. Sig-
nificantly, narrowband hyperspectral assessment holds promise in providing a dependable,
expeditious, economically viable, and non-destructive method for evaluating the primary
photosynthetic pigments in foliage over a large area [26]. The spectral properties of plants
are a reliable indicator of leaf surface properties, internal structure, and biochemical prop-
erties. Several VIs have been extracted from spectral data using different mathematical
relationships (e.g., simple ratios, differences, standard differences, derivatives) to char-
acterize some vegetation features. Importantly, VIs, especially those extracted from the
visible to near-infrared (VNIR) and shortwave infrared (SWIR) regions of the electromag-
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netic spectrum, have demonstrated their worth in estimating plant biomass, physiological
properties, and biochemical components [6,27]. Furthermore, VIs are effective tools for
identifying spatial and seasonal variations in green vegetation, rendering them well suited
for implementation in precision agriculture and crop phenotyping [6].

Profiling high-throughput plant phenotyping (HTPP) based on imaging techniques
has become widely applied in the research community. Digital images (such as RGB images)
can evaluate the state of chlorophyll content in crops by measuring the intensity of reflection
in the red, green, and blue bands [18]. Zhang et al. reported that the three primary colors
(red, green, and blue) could be used to rapidly estimate chlorophyll in leaves of regenerated
crops [28]. Image-based features contain valuable information about plant morphological
and biochemical traits, which helps fill the gap between phenotype and genotype for plant
improvement [29]. Some algorithms have been developed to determine the relationship
between chlorophyll content and color features. Mahmoodi et al. photographed the leaves
of four commercial plants with a digital camera to determine chlorophyll content. The
results revealed that Kawashima index (IKAW) ((R − B)/(R + B)) is the most fit RGB model
for estimating chlorophyll content [30].

Apart from the applications of hyperspectral sensors and machine vision techniques,
to enhance the understanding of plant behavior, the tremendous development in big data
analysis combined with advances in computational power has opened innovative venues
for building new techniques for extracting information from plants [31]. Recently, machine
learning approaches have been applied, with the help of spectral and image data, as input
to develop estimation models for crop traits [32]. Applying machine learning algorithms
offers a quick, non-intrusive, and non-destructive approach to quantifying the biochemical
constituents of plants. To build a successful machine learning system, one must possess a
thorough grasp of mathematical principles and significant proficiency in choosing model
architectures [33]. The proficiency of the system relies on the optimal integration of several
components, including feature extraction, feature selection, and regression techniques [33].
Hence, finding the system that exhibits optimal performance necessitates a substantial
investment of time in trial-and-error experimentation as well as the expertise of a proficient
team to assess and evaluate various configurations and models manually. Furthermore,
it is imperative to regularly retrain the prediction model due to the substantial variations
that might occur among different crops, biochemical components, and geographies. Hence,
automatically generating a context-specific machine learning model, even by non-experts,
will be a significant difficulty.

Recently, automated machine learning (AutoML) systems have emerged to address
these issues by enabling computers to determine automatically the best-suited machine
learning path that matches a given task and dataset [33]. Lately, there has been explosive
growth in processing power and the accessibility of cloud computing resources. As a result,
AutoML has garnered substantial interest from industry and academia. AutoML is an
emerging area of research that aims to automate the development of ready-to-use end-to-
end ML models with little to no user ML knowledge [34]. AutoML offers a compelling
alternative to manual machine learning approaches by offering the potential to produce
efficient and comprehensive machine learning pipelines. These pipelines encompass
various stages, including data preparation (such as cleaning and preprocessing), feature
engineering (such as extraction, selection, and construction), model generation (including
selection and hyperparameter tuning), and model evaluation. Importantly, AutoML aims
to minimize the user effort and intervention required throughout these processes [35].
AutoML services have become standard offerings in many technology companies, for
example, Cloud ML by Google and SageMaker by Amazon.

The feasibility of AutoML has already been established. However, there remains an
unignorable domain gap between different agricultural systems. Specifically, the charac-
teristics of aquaponics plants are entirely distinct from those of other agricultural systems.
Therefore, the development of models specifically designed for aquaponics plant datasets
is imperative. Hence, this study uses SVIs and CVIs to develop and evaluate an AutoML-
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based model for chlorophyll quantification in aquaponically grown lettuce. Thereby, the
following objectives were guided in the present study. First, the SPAD-502 m was calibrated
via laboratory analysis to confirm its reliability. Then, an AutoML model leveraging the
capabilities of the completely open-source AutoML framework EvalML was developed.
Third, we focused on evaluating the reliability of spectral and CVIs, assessing them both
separately and in combination to determine their effectiveness as chlorophyll estimators.
Fourth, our research comprehensively evaluated the developed AutoML model’s per-
formance, contrasting it with traditional machine learning models. Lastly, we aimed to
identify the most effective combination of vegetation indices to achieve the highest possible
accuracy in prediction.

Furthermore, to the best of our knowledge, this paper represents the first study to
utilize an AutoML system with multispectral vegetation indices derived from an ASD
FieldSpec 4 Hi-Res spectroradiometer, alongside color indices obtained from a digital
camera, for the estimation of chlorophyll in aquaponically grown plants. Therefore, this
study provides new insights and a pathway towards automating and adopting sustainable
aquaponics systems as precision agriculture technology. The AutoML developed model
can be integrated into embedded devices to control nutrient cycles in aquaponics.

2. Materials and Methods
2.1. Design of Aquaponics System

An aquaponics system was designed and constructed according to the standard
construction standards set by Somerville, Cohen [36]. Since lettuce (romaine lettuce (var.
longifolia)) is the primary and most popular crop in aquaponics systems, it was used in
this study’s research experiments [37]. The two main units of the aquaponics system
are the 1 m3 fish tank and the plant growing unit. Common carp fish (Cyprinus carpio
L.) is one of the most popular species cultured in aquaponics systems and was therefore
selected [36]. The optimal water quality parameters for this species were provided in terms
of temperature (25–30 ◦C), total ammonia/nitrogen (<1 mg L−1), nitrite (<1 mg L−1), and
dissolved oxygen (>4 mg L−1) [36]. The nutrient film technique (NFT) was used for the
plant growing unit. Four polyvinyl chloride (PVC) pipes, each 11 cm in diameter and 4 m
long, were used as a planting unit to support the plants. Some holes were drilled in these
tubes with dimensions suitable for lettuce, and then plastic net cups were placed in these
holes, where the seedlings were transplanted. However, a clarifier was installed in the
system to purify the water’s large impurities. Additionally, a biological filter, supported
by bio-balls as a medium, was used to stimulate the growth of bacteria. Hence, the
water flows into the planting tubes, where the plants absorb and purify nutrients from
the water. Finally, the water returns to the aquariums by gravity to begin a new cycle,
etc. Notably, the fish tank was covered with a thin plastic net and not exposed to direct
sunlight, while the plant unit was fully exposed to direct sunlight [38]. Figure 1 shows
the schematic diagram of aquaponics system. All aquaponics parameters were monitored
and maintained at optimum levels for system equilibrium. A hydroponic (control) system
has been constructed and designed with Hoagland’s full-strength nutrient solution [39].
This system provided all of the optimal conditions for plant growth compared with plants
growing in the aquaponics system.

The proposed methodology followed in this study is illustrated in the diagram shown
in Figure 2. Since chlorophyll includes most plant nitrogen, different nitrogen concentra-
tions were used to prepare four different nutrition levels. The control system (A) received
a full-strength Hoagland solution. For the second system (B), 600 mg/L of NO3-N was
added to the aquaponics solution. In the third system (C), 300 mg/L of NO3-N was added
to the aquaponics solution, and the fourth system (D) is the aquaponics system (the sole
source of nutrients is fish waste). By measuring pH (6.9) and EC (0.1 dSm−1), the level of
nutrients was kept constant [1]. Systems A, B, and C were prepared using tub cultures, and
ten seedlings were placed in each system.
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2.2. Calibration of SPAD-502 Readings for Chlorophyll Assessment

Estimating chlorophyll using direct laboratory methods (solvent extraction and then
spectrophotometric estimation) is highly accurate. However, it has some limitations, such
as precluding tracking dynamic changes in the chlorophyll content of plants as well as the
lack of real-time detection. Therefore, the SPAD-502 m was used in this study to determine
chlorophyll as it is a non-destructive, user friendly, inexpensive, early detection, and instant
method in real time [40]. Several studies have revealed that SPAD-502 readings strongly
indicate the chlorophyll content in plant leaves [8–13]. Hence, it has been used in many
studies to estimate chlorophyll content in crops [14–22]. To evaluate the SPAD-502 device in
estimating chlorophyll content and to confirm the reliability of these measurements in real
time, a set of 85 plant leaves was first scanned using the SPAD-502 m. The leaves were then
picked, labeled, and transferred to the laboratory for chemical assessment of chlorophyll
content. Briefly, the sample (1 g) was ground, homogenized with 20 mL of concentrated
acetone, filtered, and adjusted to 50 mL of 80% acetone. Absorbance (A) readings were
recorded at 645 and 663 nm [9,10] using a DR 5000 UV spectrophotometer (HACH, London,
ON, Canada). Chlorophyll content was then calculated using the following equation [9]:

Total chlorophyll = (20.2 × A645) + (8.02 × A663) (1)

where A645 is the absorbance at 645 nm and A663 is the absorbance at 663 nm.
A simple correlation relationship between values resulting from SPAD-502 and those

determined from chemical assessment was built to validate the reliability of using SPAD-502
for the subsequent experiments. A total of 3600 SPAD-502 values were collected through
the growing season. All plants were measured six times during the growing season, and
three leaves were randomly selected from each plant. Five readings per leaf between the
midrib and the leaf margin and at the central point of a leaf were acquired. To reduce the
potential impact of light intensity on chloroplast mobility, SPAD-502 measurements were
conducted between 7:00 and 9:00 a.m.

2.3. Spectral Dataset Collection and Preprocessing

Using a full-range hyperspectral ASD FieldSpec 4 Hi-Res (Analytical Spectral Devices
Inc., Boulder, CO, USA) spectroradiometer, 3600 hyperspectral reflectance measurements
were acquired for lettuce under different nutrient levels. A fiber optic probe was used. The
range of the ASD device is between 350 and 2500 nm, with a resolution ranging between
3 nm below 1000 nm and 10 nm between 1000 and 2500 nm. A white barium sulfate plate
(Labsphere, Inc., North Sutton, NH, USA) was used to calibrate the device to avoid the
influence of any changes in atmospheric conditions prior to the measurement process.
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Simultaneously with spectral measurements, SPAD-502 Plus (Konica Minolta Sensing,
Osaka, Japan) was used to measure the chlorophyll content of leaves. The spectral data
obtained using ASD are in the form of an unprocessable file (.asd), and ViewSpecPro
6.02 software was used to convert the data into a Microsoft Excel values file (.csv) format.
The average spectral data (X-variable), as well as the corresponding SPAD-502 readings
(Y-variable), were stored in an Excel file to perform different preprocessing treatments, such
as standard normal variate (SNV), to reduce the data scattering in the near-infrared (NIR)
zone [41], and a Savitzky–Golay filter was used to smooth the spectral data [42]. Then, the
data were divided into training (70%) and testing (30%) sets using a random subsampling
technique to provide accurate analysis and prevent data bias.

2.4. Spectral Vegetation Indices (SVIs)

Spectral vegetation indices are derived from the establishment of a mathematical cor-
relation between two or more wavelengths. The spectral response to physical, chemical, or
biological properties differs across different plants. Consequently, these properties exhibit
distinct spectral indices compared to other plants due to their varying responsiveness
to different wavelengths [43]. The wavelengths associated with the plant’s nitrogen and
chlorophyll contents may overlap, indicating that multiple properties of the plant might
share the same wavelengths [43]. In this study, SVIs that are most sensitive to chlorophyll
content were derived, as shown in Table 1. The construction of vegetation indices combines
several sensitive bands of chlorophyll content to minimize the influence of the plant’s
environmental background (e.g., non-vegetated target soil, water body, etc.) as much
as possible.

Table 1. SVIs for estimating chlorophyll content in aquaponically grown lettuce.

No. VIs Formula Ref.

1 Normalized Difference Vegetation Index (NDVI) (R750 − R705)/(R750 + R705) [6]
2 Normalized Difference Vegetation Index-1 (NDVI1) (R750 − R680)/(R750 + R680) [6]
3 Normalized Difference Vegetation Index-3D (NDVI3D) (R780 − R715)/(R780 + R715) [6]
4 Vogelmann Red Edge Index2 (VREI 2) (R740/R720) [44]
5 Modified simple ratio of reflectance-1 (MSR1) (R750 − R445)/(R705 − R445) [6]
6 Structure insensitive pigment index (SIPI) (R800 − R445)/(R800 − R680) [2]
7 Modified Datt index (MDATT1) (R703 − R732)/(R703 − R722) [3]
8 Modified Chlorophyll Absorption Ratio Index (MCARI) [(R702 − R671) − 0.2 × (R702 − 549)] × (R702/R671)] [6]
9 Green Ratio Vegetation Index (GRVI) R872/R559 [21]
10 Photochemical Reflectance Index (PRI) (R531 − R570)/(R531 + R570) [6]
11 Visible Atmospherically Resistant Index (VARI) (R559 − R661/R559 + R661 − R488) [2]
12 Vogelmann Red Edge Index (VREI) (R740/R720) [45]
13 Simple Ratio Index (SR) (R810/R550) [6]
14 Red Edge Vegetation Stress Index (RVSI) (0.5(R722 + R763) − R733) [46]
15 Blue/Green pigment Index-1 (BGI1) (R450/R550) [6]
16 Lichtenthaler index 2 (Lic2) (R790 − R680)/(R790 + R680) [47]
17 Plant Senescence Reflectance Index (PSRI) ((R680 − R500)/R750) [6]
18 Normalized Pigment Chlorophyll Index (NPCI) (R642-R432)/(R642 + R432) [20]
19 Green chlorophyll index (CIgreen) (R780/R550) − 1 [48]

2.5. Color Vegetation Indices (CVIs)

A near portable digital camera (PowerShot SX720 HS, Canon Inc., Tokyo, Japan) was
used to acquire images from the experiment. A grand total of 800 raw digital images
were collected from all plants in conjunction with SPAD-502 readings. These images
contain a large amount of noise and non-vegetal objects; hence, they have been enhanced
and segmented to separate them from the background [49]. In this study, a robust deep
convolutional neural network architecture, SegNet, was used for the segmentation task
(Figure 3) [50]. Red, green, and blue features were extracted from the segmented image
dataset, and then the most sensitive vegetation indices for chlorophyll were derived [30].



Plants 2024, 13, 392 7 of 22

The feasibility of these indices was evaluated for modeling plant chlorophyll content and
compared with SVIs to adopt the best indices as reliable estimators of chlorophyll (Table 2).
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Table 2. The RGB vegetation indices are used to estimate the chlorophyll content.

No. RGB Index Formula Ref.

1 Normalized red index (rn) R/(R + G + B) [29]
2 Normalized green index (gn) G/(R + G + B) [29]
3 Normalized blue index (bn) B/(R + G + B) [29]
4 Green, red ratio index (GRRI) G/R [18]
5 Red, blue ratio index (RBRI) R/B [29]
6 Green, blue ratio index (GBRI) G/B [18]
7 Kawashima index (IKAW) (R − B)/(R + B) [30]
8 Normalized difference index (NDI) (rn − gn)/(rn + gn + 0.01) [29]
9 Woebbecke index (WI) (G − B)/(R − G) [18]
10 Green leaf index (GLI) (2G − R − B)/(2G + R + B) [18]

2.6. Design of AutoML Models

The concept of ‘AutoML’ pertains to automating machine learning activities, thereby
minimizing or eliminating the need for manual intervention [51]. AutoML has provided
individuals without technical or subject experience with the ability to utilize machine
learning techniques in addressing specific problems [52]. The primary objective of most
AutoML is to achieve complete automation of model selection, hyperparameter optimiza-
tion, and feature selection procedures [53]. Previously, several approaches and strategies
focused on specific aspects of the AutoML process. However, a range of fully automated
approaches have been developed in recent years [54–57]. The AutoML automated approach
encompasses sequential procedures to prepare the selected model for prediction:

Model Selection: The primary aim of model selection is to determine the ML models
that exhibit the highest level of accuracy when trained on a particular dataset [54]. AutoML
aims to identify the best-fitted model for a given dataset without any human intervention.
This is achieved by iteratively training multiple models on the same input data and picking
the model with the highest performance [55].

Hyperparameter optimization (HPO): HPO is a crucial process in machine learning
where the appropriate setting and adjustment of hyperparameters can significantly improve
the performance of a model. Furthermore, previous studies have demonstrated that careful
selection of hyperparameters significantly enhances models’ efficacy compared to default
model configurations [56].

Feature engineering: This is a crucial phase in the machine learning process that can
be effectively accomplished with AutoML. When conducted manually, this task can be
laborious and monotonous [55].
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Recently, there has been a proliferation of frameworks that aim to integrate the three
preceding steps of AutoML. Some examples of automated machine learning frameworks
are EvalML AutoKeras, AutoGluon, Auto-Weka, and Auto-PyTorch [57], among others.
EvalML is an open-source AutoML framework that facilitates the automated execution of
various tasks, such as feature selection, model selection, and hyperparameter optimization.
The EvalML routine employs a random forest classifier/regression for feature selection and
Bayesian optimization to optimize the hyperparameters of the pipeline. EvalML constructs
and optimizes machine learning pipelines based on a specified objective function parameter,
such as mean squared error (MSE), for time series prediction. It supports a range of
supervised machine learning problems, encompassing regression, classification, time series
regression, and time series classification. The problem presented in this work is to predict
the chlorophyll content of lettuce leaves grown in aquaponics systems. Therefore, EvalML
is employed to search for optimal models and optimize the acquired spectral data. It has
been proven that random searching for hyperparameters is more effective and accurate
than grid search for developing AutoML [58]. Therefore, this study used random search
to determine the model architecture, optimizer, and learning rate to obtain the highest
prediction accuracy. If the model’s accuracy is unsatisfactory, another architecture with
new hyperparameters is employed for retraining. A summary of the major components of
the AutoML pipeline is illustrated in Figure 4 [59].
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To develop a predictive model for the chlorophyll content of aquaponically grown
lettuce using AutoML, SPAD-502 readings were collected in conjunction with the acqui-
sition of the spectral and image datasets. Then, the SVIs and CVIs most closely related
to plant chlorophyll content were calculated. These indices were used as inputs to the
open-source AutoML framework (EvalML). The AutoML procedures were implemented
using Python on Google Collaboratory through its website. The datasets for SVIs and
CVIs were then loaded separately and combined. The data were cleaned using EvalML’s
DefaultDataChecks for validation, as EvalML accepts a Pandas data frame as input. The
data-checking process also includes a built-in function to validate the data by checking
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for errors and recommending preprocessing. This study suggested automated data pre-
processing using the lognormal transformation to apply the lognormal transformation to
the data as a normalization and preprocessing procedure. To divide the data into training
and testing sets, the AutoSplit function of EvalML was used, where the dataset was au-
tomatically divided into a 70% training dataset and a 30% testing dataset. The AutoML
search function of the EvalML framework was applied to allow the machine to identify the
best prediction models by passing the training data, the type of problem, and the number
of batches, which returned the top predictive models to model the data. Four predictive
models that were best for modeling all datasets for this study were given: extra trees (ETs),
LightGBM (LGBM), XGBoost (XGB), and random forest (RF). Table 3 shows the EvalML
framework’s automatically best selected hyperparameters. All the models contained an
imputer for replacing missing data.

Table 3. The EvalML framework’s automatically best selected hyperparameters.

Index Pipeline Name Hyperparameters

0 ET

{’categorical_impute_strategy’: most_frequent, ’numeric_
impute_strategy’: median, ’booleane_impute_strategy’:
most_frequent, ’categorical_fill_value’: None, ’numeric_
fill_value’: None, ’booleane_ fill_value’: None}, ‘Extra Trees
Regressor’: {’n_estimators’: 100, ‘max_features’: ‘auto’,
‘max_depth’: 6, ‘min_samples_split’: 2,
‘min_weight_fraction_leaf’: 0.0, ‘n_jobs’: −1}}

1 XGB

{’categorical_impute_strategy’: most_frequent, ’numeric_
impute_strategy’: median, ’booleane_impute_strategy’:
most_frequent, ’categorical_fill_value’: None, ’numeric_
fill_value’: None, ’booleane_ fill_value’: None}, ‘XGBoost
Regressor’: {’eta’: 0.1, ‘max_depth’: 6, ‘min_child_weight’: 1,
‘n_estimators’: 100, ‘n_jobs’: −1}}

2 LGBM

{’categorical_impute_strategy’: most_frequent, ’numeric_
impute_strategy’: median, ’booleane_impute_strategy’:
most_frequent, ’categorical_fill_value’: None, ’numeric_
fill_value’: None, ’booleane_ fill_value’: None}, ‘LightGBM
Regressor’: {boosting_type: gbdt, learning_rate: 0.1, n_estimators:
20, max_depth’: 0, ‘num_leaves’: 31, Win_child_samples’: 20,
‘n-jobs’: −1, ‘bagging_freq’: 0, ‘bagging_fraction’: 0.9}}

3 RF

{’categorical_impute_strategy’: most_frequent, ’numeric_
impute_strategy’: median, ’booleane_impute_strategy’:
most_frequent, ’categorical_fill_value’: None, ’numeric_
fill_value’: None, ’booleane_ fill_value’: None}, ‘Random Forest
Regressor’: {’n_estimators’: 482, ‘max_depth’: 25, ‘n_jobs’: −1}}

2.7. Performance Evaluation of the Regression Models

Evaluating the precision of predictive algorithms is the final stage, emphasizing the
prediction capabilities of the proposed models. Performance evaluation of the models
involves establishing a correlation between the measured and expected values and sub-
sequently calculating performance metrics. Two core metrics that highlight the model’s
predictive power are the coefficient of determination (R2) (Equation (2)) and root mean
square errors (RMSEs) (Equation (3)) for the calibration (R2

c , RMSEc) and prediction
(R2

p, RMSEp) datasets. The maximum R2 and minimum RMSE indicate the best model.
The best four machine learning algorithms—back-propagation neural network (BPNN),
partial least squares regression (PLSR), random forest (RF), and support vector machine
(SVM)—were used as a comparison benchmark and to evaluate the performance of the
AutoML system. The data split was 70% (2520 samples) for training and 30% (1080 samples)
for testing. The open-source program HSI-PP V1.2 was used to perform preprocessing,
waveband selection, and statistical analyses for BPNN, PLSR, RF, and SVM algorithms [60].
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To further investigate the performance of AutoML, the Regression Learner (Rleraner) ap-
plication built into MATLAB R2022b (The MathWorks, Inc., Natick, MA, USA) was used
to train all the traditional machine learning algorithms (29 algorithms) as a benchmark,
as well.

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − yp

)2 (2)

R2 = 1 −
∑n

j=1
(
yj − yp

)2

∑n
j=1

(
yj − ym

)2 (3)

where, yj, yp, ym are measured, predicted, and mean of measured chlorophyll content for
sample j, and n is the number of samples in the dataset.

In this study, the computed SVIs and CVIs values were taken to be the predictive
variable (X) and the SPAD-502 readings (chlorophyll content) to be the response variable
(Y). The predicted values of chlorophyll were computed with Equation (4) [61]:

Chlorophyll =
n

∑
i=1

βi Hi + C (4)

where βi is the fit model coefficient of the models, Hi is the spectrum of each pixel in the
spectral data, and C is constant.

3. Results and Discussion
3.1. Efficacy of SPAD-502 Values for Chlorophyl Content Estimation

The relationship between chlorophyll contents in plant leaves estimated by the lab-
oratory wet chemistry assessment method and those resulting from SPAD-502 values is
shown in Figure 5. High linear correlations were obtained between SPAD-502 readings
and chlorophyll content, with R2 = 0.95 and the correlation coefficient (r) = 0.975. Many
scientific contributions support this result. For instance, Mendoza-Tafolla et al. studied the
relationship between chlorophyll content and SPAD-502 values of romaine lettuce leaves,
indicating a strong relationship with R2 = 0.97 and r = 0.99 [9]. In addition, Jiang et al.
found a significant correlation between chlorophyll content readings and SPAD-502 values
for tomato leaves [10]. Uddling et al. evaluated the relationship between leaf chlorophyll
concentration and SPAD-502 m readings for birch and wheat plants and found a significant
correlation between them with an R2 of more than 0.90 [11]. Moreover, Wakiyama assessed
the relationship between SPAD-502 values and rice’s chlorophyll content, indicating a
strong correlation with R2 = 0.94 [12]. Xiong et al. also studied the relationship between
chlorophyll content and SPAD-502 readings for tomatoes and zizania, noting a strong
relationship with r of 0.90 and 0.97, respectively [13]. A strong positive relationship be-
tween SPAD-502 readings and chlorophyll content in wheat with R2 = 0.93 was reported
by Shah et al. [8]. SPAD-502 values have therefore been widely used for estimation of crop
chlorophyll content and for guidance of plant health status and topdressing [14–22]. Conse-
quently, this motivated its use in this study to estimate total chlorophyll in aquaponically
grown lettuce.

3.2. Spectral Vegetation Indices

The evaluation results of the AutoML and the comparative machine learning models
(BPNN, RF, PLSR, SVM, and Rlearner algorithm) are tabulated in Table 4. The most fitted
models have been shown in Figures 6–8, including the best-selected SVIs, coefficients of
determination (R2), and root mean square errors (RMSEs) for the calibration (R2

c , RMSEc)
and prediction (R2

p, RMSEp) datasets. A total of nineteen vegetation indices, which are
highly responsive to the chlorophyll content of plants, were chosen to create a reliable
model for predicting chlorophyll content. In general, the results showed that the AutoML
system performed better than traditional models for all vegetative indices. Of all vegetation
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indices, GRVI achieved the best prediction results and is, therefore, the best index for
modeling chlorophyll content. For GRVI, the AutoML achieved the highest predictive
accuracy with R2

p = 0.91, while RF, PLSR, BPNN, SVM, and Gaussian process regression
(RLearner) obtained R2

p of 0.89, 0.82, 0.82, 0.81, and 0.81, respectively, as shown in Table 4
and Figure 6a–c. These findings led us to conclude that the GRVI can be safely used as
an accurate estimator of the chlorophyll content of plant leaves. The superiority of the
GRVI can be attributed to its strong correlation with the nitrogen content of plants, a crucial
structural element of chlorophyll [62]. Additionally, compared to many other vegetation
indices, the GRVI has reportedly been more sensitive (red-based) to chlorophyll content [63].
These findings align with those of Maresma et al. who utilized the GRVI index to estimate
maize’s nitrogen content (as it is the main structural component of chlorophyll) which
outperformed all other vegetation indices [64].
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GRVI ET 0.91 5.50 0.89 5.81 0.82 7.40 0.82 7.40 0.81 8.81 0.81 8.81
PRI ET 0.18 18.20 0.31 17.19 0.14 15.77 0.19 15.54 0.01 17.1 0.20 15.05

VARI LGBM 0.51 10.21 0.42 13.60 0.56 11.43 0.60 10.88 0.56 11.4 0.55 10.56
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Regarding the CIgreen, it is also characterized by its close relationship with plant
chlorophyll [48]. It has been reported to be a very good estimator of the chlorophyll content
of leaves [48]. AutoML achieved a high level of predictive accuracy, with an R2

p of 0.90,
outperforming RF, PLSR, BPNN, SVM, and Gaussian process regression (RLearner), which
achieved R2

p values of 0.85, 0.82, 0.87, 0.81, and 0.83, respectively, as shown in Table 4 and
Figure 6d–f. These results are consistent with Clevers et al. (2017), who used the CIgreen
index to estimate leaf chlorophyll and achieved high predictive accuracy of R2

p ranging from
0.81 to 0.90 [48]. The advantage of GRVI and CIgreen over their counterparts as accurate
estimators of plant chlorophyll may be because the wavelengths (559–872 nm) used to
calculate these indices fall within the range of influence of nitrogen and chlorophyll [48].

NDVIs are also classified as reliable indices associated with chlorophyll content [21].
Moreover, NDVI measures an area’s greenness, indicating the leaves’ chlorophyll content.
However, it was outperformed by GRVI and CIgreen. The NDVI achieved good predictive
performance with an R2

p of 0.89, 0.84, 0.79, 0.78, 0.77, and 0.83 for AutoML, BPNN, PLSR,
RF, SVM, and Ensemble, respectively, as illustrated in Table 4 and shown in Figure 6g–i.
These results are consistent with Narmilan et al., who used NDVI and GNDVI as estimators
for chlorophyll content in Sugarcane, achieving good prediction accuracy with R2

p of 0.82
and 0.86 [21]. Hence, our study achieved higher prediction accuracy using AutoML, which
proves its superiority over traditional machine learning algorithms.

The MCARI index quantifies the extent of chlorophyll absorption and is responsive
to alterations in the structural composition of chlorophyll and fluctuations in the leaf area
index (LAI) [3]. Notably, MCARI values are not affected by the environmental lighting
conditions surrounding the plant [3]. MCARI index did well in estimating chlorophyll,
with an R2

p of 0.88, 0.85, 0.82, 0.78, and 0.84 for AutoML, BPNN, RF, PLSR, and Gaussian
process regression, respectively, as shown in Figure 7a–c. The outstanding predictive ability
of MCARI with AutoML in chlorophyll estimation is due to its sensitivity to chlorophyll
content and its ability to predict plant nitrogen content [65]. This result agrees with
Wu et al., who used the MCARI index to estimate the chlorophyll content in maize leaves,
achieving good regression accuracy with correlations R2

p of 0.88. They stated that the
MCARI index is more efficient than SR index because the latter considers the effect of the
leaf area index (LAI) [3].

The VREI results were also interesting, especially with AutoML achieving very good
predictive accuracy with an R2

p of 0.87. Moreover, it performed well with traditional
algorithms, obtaining R2

p of 0.83, 0.78, 0.77, 0.77, and 0.78 for BPNN, PLSR, RF, SVM, and
Ensemble, respectively, as illustrated in Table 4 and shown in Figure 7d–f. Our findings are
consistent with those of Velichkova and Krezhova, who estimated chlorophyll in pepper
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plants using VREI, achieving very good predictive accuracy [45]. The reliability of the VREI
as an estimator of chlorophyll is due to its sensitivity to the combined effects of foliage
chlorophyll concentration, canopy leaf area, and water content [45].

MSR1 performed well in estimating and predicting the chlorophyll content of plant
leaves, also achieving outstanding prediction accuracy using AutoML with an R2

p of 0.86,
superior to traditional methods, which obtained R2

p of 0.78, 0.73, 0.72, 0.68, and 0.73 for
BPNN, PLSR, SVM, RF, and Gaussian, respectively, as illustrated in Table 4 and shown
in Figure 7g–i. These results are in line with the study conducted by Haboudane et al.,
who used MSR to estimate chlorophyll, achieving good predictive quality with an R2

p of
0.80 [66]. Our study is also consistent with El-Hendawy et al. [46], who used MSR to
estimate chlorophyll in wheat, obtaining R2

p of 0.65 and 0.73. MSR is a good estimator
of chlorophyll because it is considered more linearly related to vegetation parameters.
In addition, MSR and SR are the most affected by chlorophyll variability, showing high
sensitivity even at high chlorophyll levels (up to 60 µg/cm2) [66].

All vegetation indices were combined into a single input dataset to further investigate
the performance of AutoML for predicting chlorophyll content using vegetation indices.
Hence, all calculated SVIs were transferred to one file to represent the predictive variables
(X-data), while the chlorophyll content estimated from the SPAD-502 device was used as
the Y variable. The combination of such indices had a stimulating effect on the prediction
efficiency of the AutoML system and the other machine learning models. In general, the
AutoML model (XGBoost Regressor) significantly outperformed the manual machine learn-
ing models by achieving very high prediction accuracy with a coefficient of determination
(R2

p) of 0.93. Manual machine learning models also achieved good prediction accuracy with
R2

p of 0.91, 0.89, 0.87, 0.85, and 0.83 for BPNN, RF, PLSR, SVM, and Ensemble, respectively,
as shown in Figure 8. These results are consistent with the study of Haboudane et al. (2004),
who combined a series of vegetation indices divided into three categories (NDVI, MSR,
and MCARI, TCARI) and the integrated forms (MCARI/OSAVI and TCARI/OSAVI)) to
estimate the chlorophyll content of winter wheat. Their study achieved high estimation
accuracy with an R2

p of 0.94 [67].

3.3. Color Vegetation Indices

The outcomes of assessing CVIs as estimators of chlorophyll are displayed in Table 5,
while the best-performed models are showcased in Figure 9. IKAW demonstrated superior
prediction performance using AutoML, confirming it as the most dependable index when
compared to other CVIs [28,30]. The IKAW index achieved good predictive accuracy with
an R2

p of 0.85, as shown in Table 5 and Figure 9a. The performance of the other models,
including RF, PLSR, BPNN, SVM, and RLearner, was comparatively inadequate when
compared to AutoML. These results agree with those reported by many scientific contribu-
tions that have proven that the IKAW ((R − B)/(R + B)) index is the most fitted function
of RGB space to estimate the chlorophyll content of leaves [28,30,68,69]. Mahmoodi et al.
used the IKAW index as an estimator of chlorophyll and demonstrated a strong correlation
between the index and leaf chlorophyll content, achieving good estimation accuracy with
a correlation coefficient of 0.87 [30]. Also, reasonable prediction accuracy (R2

p = 0.82) was
obtained for NDI under AutoML, as shown in Figure 9b. In this context, our results agree
with Manuel and Blanco, who used the NDI as an estimator for chlorophyll, achieving
good predictive quality with an R2

p of 0.9 [70]. GLI index came in third place in terms of
the quality of color vegetation indicators as estimators of chlorophyll, obtaining R2

p of 0.81
developed under AutoML modeling, as shown in Figure 9c and Table 5. This result aligns
with the findings of Saberioon et al., who employed the GLI index to assess the chloro-
phyll levels in rice plants. Their study demonstrated a reasonable correlation between GLI
and chlorophyll content with an R2

p of 0.64 [71]. The GLI’s reasonableness in estimating
chlorophyll content may be due to its association with the visible green band [71].
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Table 5. Evaluating color indices results.

VIs
AutoML RF PLSR BPNN SVM RLearner

Model R2
p RMSEp R2

p RMSEp R2
p RMSEp R2

p RMSEp R2
p RMSEp R2

p RMSEp

rn ET 0.65 8.0 0.41 13.0 0.20 18.0 0.55 9.0 0.31 12.81 0.25 13.81
gn ET 0.79 5.0 0.43 12.5 0.23 15.2 0.63 9.5 0.33 11.47 0.29 12.29
bn ET 0.59 10.0 0.39 12.9 0.19 13.6 0.51 11.5 0.27 15.9 0.23 16.4

GRRI XGB 0.49 6.20 0.42 9.05 0.33 12.8 0.44 7.83 0.35 13.94 0.20 17.10
RBRI LGBM 0.48 7.12 0.41 10.2 0.30 15.7 0.39 7.04 0.36 16.2 0.18 16.50
GBRI RF 0.45 5.50 0.35 8.5 0.18 17.01 0.44 8.01 0.18 18.1 0.15 19.50
IKAW XGB 0.85 2.05 0.35 11.85 0.32 13.29 0.49 10.56 0.13 19.08 0.19 17.88
NDI ET 0.82 3.50 0.39 8.56 0.30 10.35 0.23 17.06 0.18 20.08 0.15 21.78
WI ET 0.50 8.21 0.37 9.75 0.33 11.58 0.30 12.38 0.19 16.23 0.13 18.09
GLI ET 0.81 7.54 0.34 10.65 0.32 12.23 0.29 13.20 0.23 15.05 0.18 20.89
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Figure 9d–i displays the rn, gn, and bn indices. The findings demonstrate a strong
association between the gn index and the chlorophyll concentration. Conversely, the rn and
bn variables exhibited weak correlations with the chlorophyll concentration, suggesting
that the green band is more influential than the red and blue bands in influencing the
chlorophyll content in crops [28]. The AutoML and BPNN models achieved R2

p values
of 0.79 and 0.63, respectively, for the index ‘gn,’ as shown in Figure 9e,h. These results
agree with those outlined by Zhang et al., who used the rn, gn, and bn indices to estimate
chlorophyll in sorghum, achieving reasonable predictive quality with R2

p of 0.56, 0.64, and
0.48 for rn, gn, and bn, respectively [28]. The results revealed that for GRRI, RBRI, GBRI,
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and WI, their performance is insufficient, with R2
p ranging from 0.45 to 0.50 under AutoML

modeling, as shown in Table 5.
To further investigate the reliability of CVIs as estimators of plant chlorophyll content,

all CVIs were combined as one dataset, representing the independent variable, while chloro-
phyll content (SPAD-502 reading) defined the predictor variable. In general, combining
indices gave more promising results than using each index separately. The results displayed
in Figure 10 indicated that the developed AutoML (XGBoost Regressor) obtained the best
predictive results, with the highest values for R2

p (0.85), outperforming all other traditional
models. The BPNN model outperformed its counterparts by obtaining an R2

p of 0.78, and
the RF, PLSR, SVM, and RLearner model gave R2

p of 0.74, 0.73, 0.70, and 0.67, respectively. It
is noted from these results that combining color indices has enhanced predictive accuracy
compared to using indices individually. This is because most indices are linked to the
green band and are mutually reinforcing when combined as a single input. Furthermore,
studies have shown that CVIs associated with the green band significantly correlate with
nitrogen and chlorophyll content [72,73]. Additionally, this can be attributed to the fact
that the combination of different features and different bands provides an expanded and
complete description of the target process [74]. Moreover, it indicates that JPEG color
images captured by digital cameras with built-in enhancement functions are sensitive to
the green band [72].

Plants 2024, 13, x FOR PEER REVIEW 17 of 22 
 

 

provides an expanded and complete description of the target process [74]. Moreover, it 
indicates that JPEG color images captured by digital cameras with built-in enhancement 
functions are sensitive to the green band [72]. 

 
Figure 10. The relationship between measured and predicted values of chlorophyll content for Au-
toML (a), BPNN (b), RF (c), PLSR, (d), SVM (e), and Rlearner model (f) using the combination of CVIs 
at α = 0.05. 

3.4. Fusion of SVIs and CVIs 
This section evaluated the combination of SVIs and CVIs to predict chlorophyll con-

tent in aquaponically grown lettuce. The results indicated that the linear combination of 
SVIs and CVIs strongly correlated with chlorophyll content. Moreover, all regression 
models gave the best predictive accuracy  with highest ܴ௣ଶ values. The combination of the 
two types of vegetation indices achieved very high prediction accuracy with an ܴ௣ଶ of 0.98 
using the developed AutoML (XGBoost Regressor). In addition, all traditional models ob-
tained high ܴ௣ଶ values, estimated at 0.96, 0.94, 0.93, 0.90, and 0.89 for BPNN, RF, PLSR, 
SVM, and RLearner model, respectively, as shown in Figure 11. These results are consistent 
with the study by Zhang et al., who demonstrated that the linear combination of CVIs 
(red, green, and blue) and SVIs indicates the best predictive model for chlorophyll in sor-
ghum crops [28]. As a result of incorporating types of vegetation indices, they achieved 
high prediction accuracy with ܴ௣ଶ = 0.90. The promised results of the combination may be 
because it has created a bridge between the genotype and phenotype of plants [28]. The 
promising results of the fusion of the SVIs and CVIs can be attributed to the fact that the 
effective combination of the sensors (a digital camera and a spectroradiometer) and the 
various features may lead to the expansion of individual sensor capabilities and the pro-
vision of a robust and complete description of an environment or targeted process rather 
than using an individual source alone [74]. Color images focus more on phenotypic traits, 
while spectral data look at plant physiology. The advantage of spectroscopic measure-
ments over colored images lies in their ability to detect disturbances such as nutrient 
stress, water stress, or disease before the plant becomes symptomatic. In contrast, colored 
images cannot detect these disturbances until the plant shows visible symptoms [75]. 
Hence, the combination gave a comprehensive and reliable idea about the condition of the 
plant in general and chlorophyll in particular due to the derivation of the associated indi-
ces.  

Figure 10. The relationship between measured and predicted values of chlorophyll content for
AutoML (a), BPNN (b), RF (c), PLSR, (d), SVM (e), and Rlearner model (f) using the combination of
CVIs at α = 0.05.

3.4. Fusion of SVIs and CVIs

This section evaluated the combination of SVIs and CVIs to predict chlorophyll content
in aquaponically grown lettuce. The results indicated that the linear combination of SVIs
and CVIs strongly correlated with chlorophyll content. Moreover, all regression models
gave the best predictive accuracy with highest R2

p values. The combination of the two types
of vegetation indices achieved very high prediction accuracy with an R2

p of 0.98 using the
developed AutoML (XGBoost Regressor). In addition, all traditional models obtained high
R2

p values, estimated at 0.96, 0.94, 0.93, 0.90, and 0.89 for BPNN, RF, PLSR, SVM, and RLearner
model, respectively, as shown in Figure 11. These results are consistent with the study by
Zhang et al., who demonstrated that the linear combination of CVIs (red, green, and blue)
and SVIs indicates the best predictive model for chlorophyll in sorghum crops [28]. As a
result of incorporating types of vegetation indices, they achieved high prediction accuracy
with R2

p = 0.90. The promised results of the combination may be because it has created a
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bridge between the genotype and phenotype of plants [28]. The promising results of the
fusion of the SVIs and CVIs can be attributed to the fact that the effective combination of
the sensors (a digital camera and a spectroradiometer) and the various features may lead to
the expansion of individual sensor capabilities and the provision of a robust and complete
description of an environment or targeted process rather than using an individual source
alone [74]. Color images focus more on phenotypic traits, while spectral data look at plant
physiology. The advantage of spectroscopic measurements over colored images lies in their
ability to detect disturbances such as nutrient stress, water stress, or disease before the
plant becomes symptomatic. In contrast, colored images cannot detect these disturbances
until the plant shows visible symptoms [75]. Hence, the combination gave a comprehensive
and reliable idea about the condition of the plant in general and chlorophyll in particular
due to the derivation of the associated indices.
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Upon careful evaluation of prior research that employed conventional machine learn-
ing techniques to model chlorophyll content, we deduce that AutoML systems exhibit
superiority. In the study of Shah et al. (2019), the authors used a random forest regression
algorithm with 45 spectral VIs to predict the wheat leaves’ chlorophyll content, obtaining a
high prediction accuracy with an R2

p of 0.89 [2]. Using fifteen vegetation indices, Narmilan
et al. used machine learning regression models along with SPAD-502 measurements to find
out how much chlorophyll was in sugarcane crops. It was discovered that RF performed
better than other models, with an R2

p = 0.92 [21]. They used the algorithms before and after
selecting the optimal wavebands, with the former training them on all 24 vegetation indices
across five spectral bands and the latter training them on 15 indices. In the same context,
Ta et al. estimated the content of the apple leaves from chlorophyll using several learning
algorithms: (1) univariate linear regression (ULR); (2) multivariate linear regression (MLR);
(3) SVMR; and (4) RF using the SVIs and the readings of SPAD-502 as the response variable.
Their results demonstrated that the random forest outperformed all proposed algorithms,
achieving the highest predictive accuracy with R2

p = 0.93 and RMSE = 0.95 [20]. An et al.
proposed a predictive framework to estimate chlorophyll content in rice using regression
models (GPR, RF, SVM, and GBR). All the algorithms performed well and the random forest
surpassed the best prediction performance with RMSE = 1.54 and R2

p = 0.92 [22]. Our study
is consistent with that conducted by Yi-Cheng Huang et al. compared to AutoML, VGG-16,
ResNet-50, and MobileNet v1 for defect detection on cylindrical metal surfaces, where it
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was proven that AutoML outperformed other models by obtaining an R2
p of 0.9983 [67].

Furthermore, our results are consistent with those achieved by Borja Espejo-Garcia et al.,
where AutoML was used to distinguish between plants and weeds, achieving an iden-
tification quality of 93.8% [33]. Zhang et al. used vegetation indices derived from RGB,
hyperspectral, and fluorescence images using the PLSR model, achieving good predictive
accuracy with an R2

p that ranged from 0.67 to 0.88 when using each type independently,
while the R2

p value increased to 0.90 when combined [28]. Since chlorophyll is essential for
precision agriculture as it is the vital pigment in photosynthesis. Furthermore, it is a good
indicator of mutations, salinity, drought stress, and nutritional status [3,76]. Understanding
the chlorophyll content of plants is crucial for guiding plant cultivation management. In
this context, therefore, this study is an important scientific contribution. The superiority
of AutoML systems over manual machine learning approaches depends on the automatic
ability of these systems to select the best models and their related hyperparameters (such as
the learning rate and optimizer) and features, as well as the parameters related to the model
architecture, such as the number of layers and operation of each layer [53]. This process
is repeated automatically using many algorithms to reach the best scenarios to model
the target task with the best experimental results without or with minimal programming
knowledge of the user [67]. In contrast, traditional machine learning models, which rely on
manually selecting models and hyperparameters based on the user’s point of view and
software experience, may often be flawed, leading to low model accuracy.

4. Conclusions

This study investigated the feasibility of developing an automated machine learning
(AutoML) pipeline specifically to develop chlorophyll estimation models in aquaponically
grown lettuce using SVIs and CVIs. The AutoML and regression models (BPNN, PLSR, RF,
and SVM) were validated using 3600 hyperspectral measurements and 800 RGB images.
SVIs and CVIs were derived from spectral image datasets. The chlorophyll content was
measured using an SPAD-502 m calibrated by laboratory analysis. The results revealed a
strong positive relationship between chlorophyll content and SPAD-502 readings, with an
R2 of 0.95. Furthermore, the AutoML system generated four optimal models (extra trees,
LightGBM, XGBoost, and random forest) selected for chlorophyll modeling. The results
demonstrated that the developed AutoML models outperform all traditional models by
obtaining the highest values of R2

p for all vegetation indices. GRVI achieved the highest
predictive accuracy (R2

p of 0.91), outperforming other spectral indices. Similarly, IKAW
outperformed other color indices by obtaining an R2

p of 0.85. The combination of spectral
and color vegetation indices achieved the best predictive accuracy and the highest R2

p
values, which reached 0.98 with the developed AutoML model (XGBoost), outperforming
all traditional models. Due to the flexibility of the proposed methodology, it can also be
used with minor modifications to estimate chlorophyll content in not only greenhouse crops
but also field crops such as wheat, corn, and barley. Furthermore, our future endeavors
will focus on designing fully automated aquaponics systems, where the developed model
will be integrated and evaluated for its practical viability, thus bridging the gap between
theoretical research and real-world application.
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