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Abstract: Droughts have become more severe and frequent due to global warming. In this context, it is
widely accepted that for drought assessments, both water supply (rainfall) and demand (standardized
precipitation evapotranspiration index, SPEI) should be considered. Using SPEI, we explored the
spatial-temporal patterns of dry and wet annual and seasonal changes in five sub-regions of East Asia
during 1902–2018. These factors are linked to excess drought frequency and severity on the regional
scale, and their effect on vegetation remains an important topic for climate change studies. Our
results show that the SPEI significantly improved extreme drought and mostly affected the SPEI-06
and SPEI-12 growing seasons in East Asia during 1981–2018. The dry and wet annual SPEI trends
mostly affect the five sub-regions of East Asia. The annual SPEI had two extremely dry spells during
1936–1947 and 1978–2018. Japan, South Korea, and North Korea are wet in the summer compared
to other regions of East Asia, with drought frequency occurring at 51.4%, respectively. The mean
drought frequencies in China and Mongolia are 57.4% and 54.6%. China and Mongolia are the driest
regions in East Asia due to high drought frequency and duration. The spatial seasonal analysis of
solar radiation (SR), water vapor pressure (WVP), wind speed (WS), vegetation condition index (VCI),
temperature condition index (TCI), and vegetation health index (VHI) have confirmed that the East
Asia region suffered from maximum drought events. The seasonal variation of SPEI shows no clear
drying trends during summer and autumn seasons. During the winter and spring seasons, there was
a dry trend in East Asia region. During 1902–1990, a seasonal SPEI presented diverse characteristics,
with clear wet trends in Japan, Mongolia, and North Korea in four different growing seasons, with
dry trends in China and South Korea. During 1991–2018, seasonal SPEI presented clear dry trends
in Japan, Mongolia, and North Korea in different growing seasons, while China and South Korea
showed a wet trend during the spring, autumn, and winter seasons. This ecological and climatic
mechanism provides a good basis for the assessment of vegetation and drought-change variations
within East Asia. An understandings of long-term vegetation trends and the effects of rainfall and
SPEI on droughts of varying severity is essential for water resource management and climate change
adaptation. Based on the results, water resources will increase under global warming, which may
alleviate the water scarcity issue in the East Asia region.

Keywords: drought analysis; seasonal SPEI; dry and wet conditions; vegetation dynamics; SPEI
annual trends; climate variation; East Asia
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1. Introduction

In recent decades, droughts have become more severe and frequent in many regions
around the world [1], mainly in the East Asia region [2]. Recently, East Asia (EA) has faced
severe drought due to climate change, which is affecting water resources and agricultural
production [3]. According to the Intergovernmental Panel on Climate Change (IPCC),
the sixth assessment report states that EA is a hotspot where a warm climate creates a
risk of extreme dry climate [4]. It is often very difficult to identify, predict, and mitigate
drought due to high spatiotemporal variability and unstructured drought influence [5].
Jones and Moberg [6] report temperature increases (0.5–2.0 ◦C) over the past 150 years [7].
A simple definition of drought is a period in which water supplies do not meet water
demand [8,9]. Thus, drought is unavoidable and detrimental to ecosystems and socioe-
conomic systems [10]. Regional evapotranspiration (ET) consists of complex constraints
such as soil moisture, vegetation growth status, and meteorological conditions [11]. The ET
directly affected the water supply capacity of surface ecosystems [12]. Moreover, as climate
change and socioeconomic development have significantly altered regional water supply
and demand [13], understanding the impact of changes in water supply and demand on
drought dynamics and drought occurrence is important for drought management [14,15].

In general, the East Asian meteorological drought is mainly determined by the fail-
ure of the East Asia summer monsoon rainfall, which provided 78% of the total yearly
precipitation, which is essential for billions of people in the regions [16]. Soil moisture
storage, evapotranspiration rates, and crop yields can be linked to agricultural drought [17].
Drought risk in East Asia is changing with the recent observed and projected climate [18].
According to a report by UNICEF [19], groundwater levels have significantly decreased
as a result of this drought. Drought identifications established on a particular indicator
for drought assessment [20], and water demand-supply signs are important for studying
global warming [21]. From historical norms, numerous indicators have been developed to
recognize drought-related variables [22]. Among them, the SPEI is often used as a proxy
indicator for meteorological drought. The SPEI is usually used because it describes the
collective impact of water supply (rainfall) and demands potential evapotranspiration
(PET) rather than rainfall alone [23].

Previous findings have demonstrated that land use and climate factors such as tem-
perature, rainfall, solar radiation, wind speed, etc. [24] affect water energy availability
and lead to spatio-temporal variations in the evapotranspiration (ET) processes [25]. Pro-
longed drought and the resulting shortages of water, food, feed, and energy lead to mass
migration [26]. The drought index is known to characterize drought duration, frequency,
scale/depth, and spatial extent [27,28]. Some of the standard drought indices in earlier
research were the vegetation condition index (VCI), vegetation health index (VHI), tempera-
ture condition index (TCI), and SPEI [29]. The SPEI was developed to incorporate the effects
of climate change on drought dynamics [30]. SPEI exploits the variance between PET and
rainfall. SPEI also has the potential to recognize drought characteristics within the context
of climate change, global warming, and potential evapotranspiration (PET) [31]. The SPEI
has been shown to be more sensitive in capturing drought characteristics than the stan-
dardized precipitation index (SPI) and the scout drought index for arid regions [32]. Earlier
studies have investigated SPEI at various timescales to understand drought dynamics
under a global warming condition [33,34].

Numerous studies report the effect of climate change on the East Asia (EA) region,
providing a full understanding of potential drought risks [35]. Given the sensitivity of
drought to temperature and its variability on multiple timescales [36], SPEI has been widely
used for global and regional-scale drought monitoring and forecasting [37,38]. Lee et al. [39]
assessed the impact of climate change on drought characteristics by using SPI and SPEI
time series for North Korea from 1981 to 2100 and found that vegetation plays an important
role in annual and seasonal variability in maintaining a balanced ecosystem. Insufficient
rainfall can cause water stress, while high temperatures can cause heat stress, which affects
the vegetation health index (VHI) [40]. The vegetation index can determine the growth
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condition of vegetation in an ecosystem [41]. Gupta et al. [42] reported that a high vapor
pressure deficit and low soil moisture improved the negative effect on plant health. Several
research works have reported seasonal variations, spatial-temporal trends, and the study
of drought by using the SPEI and the new composite drought index [43]. However, an
inclusive analysis of drought evolution and the relative impact of rainfall on drought
severity from various perspectives are required for further study [44].

A comprehensive drought assessment is essential to formulating effective drought
policies and mitigation strategies. A detailed study of drought characteristics is impor-
tant for policymakers when considering the chain of environmental and socioeconomic
consequences. Here, we investigated changes in long-term drought trends from 1902 to
2018 and possible associations with vegetation and climate dynamics drivers across East
Asia and its sub-regions. This study also investigates the impact of SPEI, vapor pressure
deficit, and vegetation estimation approaches on the changing characteristics of extreme
drought (dry/wet) under various timescales. Understanding the spatio-temporal variation
of drought characteristics, such as duration, intensity, and frequency, in East Asia and
analyzing the long-term 1901–2018 drought trend at different timescales.

2. Results and Discussion
2.1. Drought Analysis of SPEI

The results suggest a consistent pattern of increasing frequency of dry events within
the East Asian region from 1981 to 2018 (Figures 1 and 2). Specifically, more drought events
occurred during the 1981–2018 SPEI-06, SPEI-09, and SPEI-12 growing seasons compared
to the 1902–1940 and 1941–1980 periods. All subregions of East Asia appear to have expe-
rienced increased levels of extreme aridity during various growing seasons from 1981 to
2018, but the most affected regions are Mongolia, South Korea, Japan, China, and North
Korea. Drought is most severe in spring and summer, when temperatures increase and pre-
cipitation decreases [45], consistent with the findings of this paper. Related studies [46,47]
show that the climate has warmed over the past 55 years and that precipitation has varied
greatly. Declining rainfall and rising temperatures are the main reasons for the increase in
droughts. For example, based on 6, 9, and 12-month SPEI values, the number of severe and
extreme drought events in these regions nearly doubled between 1981 and 2018 compared
to 1902–1940 and 1941–1980. Results showed that drought was most sensitive to longer
SPEI timescales, suggesting that drought parameters have a greater influence on longer
timescales than on shorter ones [48,49]. Improving in wet and dry events over the period
1981–2018 was significantly associated to a decrease as the percentage of rainy conditions.
These anomalies appear to have increased in Mongolia, Japan, China, and Korea during the
1981–2018 SPEI-06, SPEI-09, and SPEI-12 growing seasons compared to 1902–1940. The cu-
mulative effects of climate change could explain the increased drought associated with the
long-term SPEI downward trend across large parts throughout the country [50,51]. Mod-
erately drought events occurred in SPEI-09 and SPEI-12 during 1941–1980 and 1981–2018
period respectively over different sub regions of East Asia. In general, a more extreme
drought occurred in the northwestern region of East Asia, followed by the southwestern
region of East Asia. Results showed that drought was mostly susceptible to longer SPEI
timescales, suggesting that drought parameters have a greater impact on longer timescales
than on shorter timescales [52,53].
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2.2. Temporal Annual Average SPEI Trends across East Asia

The annual time changes of SPEI during SPEI-01, SPEI-03, SPEI-06, SPEI-09, and
SPEI-12 from 1902 to 2018 are shown in Figures 3 and 4, respectively. The frequency of
droughts has improved significantly over time, particularly since 1979. Drought events
in East Asia have regional implications based on long-term SPEI values. On different
timescales, the annual SPEI value changes significantly over time, and the change is
slightly larger after 1979, which is more sensitive to land use and land cover changes. It is
worth noting that the most extreme drought event (SPEI < −1.1, −ve) values indicate
that drought stress was observed in all different growing seasons in East Asia after 1979.
A potential reason for the increased drought trend in East Asia may be to reduce the rainfall
trends [54,55].
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A previous study found that the drought in 1966 was one of the worst droughts East
Asia suffered, and the affected area under this drought was the highest [56,57]. Accordingly,
the study also revealed that the highest spatial extent of drought, as evidence of drought
stress was shown to exceed the maximum during SPEI-01, SPEI-03, SPEI-06, SPEI-09,
and SPEI-12 (Figures 3 and 4). The research results of drought change and vegetation
response based upon the SPEI index are basically consistent with [58,59]. In addition,
there were continuous drought years of 1938–1948 and 1979–2018. Similarly, when other
timescales of SPEI are considered, such as 09 and 12 months, the number of extreme drought
events was higher during 1970–2018. The temporal variation of SPEI-06 in the summer
growing season of 1902–2018 (Figure 3) shows that East Asia experienced more drought
periods. Cumulative impacts of climate change could explain increased drought associated
with long-term SPEI downward trends over vast regions throughout the country [60,61].
Extreme drought events in East Asia based on September and December SPEI in 1938–1951,
respectively, and 1968–2018 occurred twice. However, when considering the 09-month
and 12-month SPEI, the number of extreme drought events was similar between the two
study periods. It is worth mentioning that the region has recently experienced a decrease
in precipitation and temperature warming trend [62,63]. For the rest of East Asia, the
frequency of extreme droughts in SPEI-01 and SPEI-03 was generally lower than that in
SPEI-06, SPEI-09, and SPEI-12 during 1902–2018, respectively.
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2.3. Drought Frequency (DF)

Three phases (1902–1990, 1991–2018, and 1902–2018) were examined to effectively
identify the drought evolution in various sub-regions of East Asia. By calculating the
seasonal SPEI values of countries in East Asia, the spatial distribution of drought frequency
in each season is shown in Table 1. Short-term drought is important for cultivated land,
while long-term drought can affect the hydrological cycle [64,65]. From 1902 to 1990, the
frequency of spring drought in Mongolia was 62.9%, mainly in China (59.0%); the frequency
of summer drought in Mongolia was 64.3%, mainly in China (57.7%) and Japan (55.1%); the
frequency of autumn drought in Mongolia occurred at 64.9%, mainly in Japan (56.4%); and
the frequency of winter drought in Mongolia was 59.3%, mainly in China (51.8%). From
1991 to 2018, the frequency of spring drought in China was 47.6%, mainly in South Korea
(47.0%); the frequency of summer drought in South Korea was 53.6%, the highest in China
(56.5%); the frequency of autumn drought in China was 55.4%, mainly in South Korea
(52.4%); and China’s winter drought frequency is 58.6%, mainly in Japan (48.2%). Wang
et al. [37] divided the period 1961–2015 into three phases and found that both drought
intensity and frequency increased from the first phase (1961–1996) to the second phase
(1997–2002) and then decreased in the third phase (2003–2015). From 1902 to 2018, the
frequency of spring drought in China was 56.3%, mainly in Mongolia (53.2%); the frequency
of summer drought in China was 57.4%, mainly in Mongolia (54.6%); the frequency of
autumn drought in China and Japan was 56.1%, mainly in Mongolia (53.5%); the frequency
of winter drought was 53.4%, China, and Mongolia mainly occurred in Japan (50.1%). As
mentioned above, the drought frequency in East Asia is higher in spring and summer,
with an average of 52.4% and 53.3%, and lower in winter and autumn, with an average of
51.0% and 51.4%, respectively. Due to the rollback of water-saving measures and excessive
deforestation in the early 1960s, soil erosion was severe, ecological and water circulation
systems were damaged, and rainfall decreased [66–68].

Table 1. Drought frequency (DF) of various countries of East Asia with different growing seasons at
different SPEI timescales in percentage (%).

East Asia
Region

Drought Frequency (%)

1902–1990 1991–2018 1902–2018

Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn

China 51.8 59.0 57.7 56.3 58.6 47.6 56.5 55.4 53.4 56.3 57.4 56.1
Japan 50.7 54.7 55.1 56.4 48.2 40.2 39.3 37.8 50.1 51.2 51.4 51.9

Mongolia 59.3 62.9 64.3 64.9 30.1 22.3 23.8 17.3 52.3 53.2 54.6 53.5
North Korea 51.1 53.3 52.2 51.2 45.2 40.5 47.9 44.0 49.7 50.2 51.1 49.4
South Korea 50.8 52.0 51.1 50.4 47.9 47.0 53.6 52.4 50.1 50.8 51.7 50.9

2.4. Drought Duration (DD)

Shorter DD was associated with frequent but irregularly occurring short-term drought
events, whereas longer DD indicated sustained and long-term drought events. Short-term
droughts are important for agriculture, but long-term droughts affect the water cycle [69,70].
Table 2 shows the spatial distribution of DD in each season. During 1902–1990, the DD of
the spring drought was 2.70 in Mongolia and mainly occurred in China (2.44); the DD of
the summer drought was 2.80 in Mongolia, and the mainly lowest DD occurred in South
Korea (2.05); the DD of the autumn drought was 2.85 in Mongolia and mainly occurred
in China and Japan (2.29); the DD of the winter drought was 2.46 in Mongolia, while
the significantly lowest DD occurred in Japan and South Korea (2.03). During 1991–2018,
the DD of the spring drought was 1.91 in China and South Korea, and the lowest DD
occurred in Mongolia (1.29); the maximum DD of the summer drought was 2.30 and 2.15
in China and South Korea, with the lowest value existing in Mongolia (1.29); the DD of
the drought was 2.24 and 2.10 in China and South Korea, and the lowest DD occurred in
Mongolia (1.21); the maximum DD of the winter drought was 2.42 in China, while the
lowest DD occurred in Mongolia (1.43). Yadeta et al. [61] found that drought sequences
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identified from shorter timescales were of short duration and high frequency, whereas
drought sequences identified from longer timescales were of lower frequency and longer
duration. During 1902–2018, the highest DD of the spring drought was 2.29 in China, and
the lowest occurred in North Korea (2.01); the DD of the summer drought was 2.35 in China
and mainly occurred in Japan and North Korea (2.05); the DD of the autumn drought was
2.28 in China, while the lowest DD occurred in Japan and North Korea (1.98); and the DD
of the winter drought was 2.10 in China and mainly occurred in North Korea (1.99). The
spatial distribution shows that China and Mongolia each have higher values of DD in all
four growing seasons. Moreover, the increasing trend of PET may be one of the signs of the
recent drought [71–73].

Table 2. Drought duration of various countries of East Asia with different growing seasons at different
SPEI timescales in months.

East Asia
Region

Drought Duration (Month)

1902–1990 1991–2018 1902–2018

Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn

China 2.07 2.44 2.36 2.29 2.42 1.91 2.30 2.24 2.15 2.29 2.35 2.28
Japan 2.03 2.21 2.23 2.29 1.93 1.67 1.65 1.61 2.01 2.05 2.06 2.08

Mongolia 2.46 2.70 2.80 2.85 1.43 1.29 1.31 1.21 2.10 2.14 2.20 2.15
North Korea 2.05 2.14 2.09 2.05 1.83 1.68 1.92 1.79 1.99 2.01 2.05 1.98
South Korea 2.03 2.08 2.05 2.02 1.92 1.89 2.15 2.10 2.00 2.03 2.07 2.03

2.5. Drought Intensity (DI)

Different study periods have different characteristics of spatial distribution. Table 3
shows the drought intensity for different study periods in East Asia. From 1902 to 1990,
the DI of the spring drought in North Korea and South Korea was 0.48, while the DI in
Mongolia was the lowest (0.37); the summer drought index in South Korea was 0.49, mainly
in North Korea (0.48); the maximum DI of the autumn drought in South Korea was 0.50,
while Mongolia The lowest DI (0.35). From 1991 to 2018, the highest spring drought DI
was 0.78 in Mongolia and the lowest in China (0.52); the highest summer drought index in
Mongolia was 0.76 and the lowest in China (0.43); the autumn drought index in China was
0.45, mainly in Mongolia and Japan (0.83); the lowest winter drought index in China is 0.41,
and it mainly occurs in Mongolia (0.70). From 1902 to 2018, the DI of the spring drought in
China was 0.44, which was significantly higher than 0.50 in Japan and South Korea; the
summer drought index of Japan and North Korea was 0.49, the lowest in China (0.43); the
DI of the autumn drought in China was 0.44, mainly in North Korea (0.51); and the winter
drought DI is 0.47, while Japan, South Korea, and North Korea (0.50) have significant
maximum values. From the spatial distribution, it can be seen that DI values are higher
in Japan and South Korea in spring, Japan and South Korea in summer, South Korea in
autumn, and Japan, South Korea, and North Korea in winter. Parts of the world are likely
to experience an improvement in the frequency and intensity of daily temperatures and a
decrease in extremely cold temperatures, leading to an increase in the length and intensity
of warm periods [74–76].

Table 3. Drought intensity of various countries of East Asia with different growing seasons at different
SPEI timescales.

East Asia
Region

Drought Intensity

1902–1990 1991–2018 1902–2018

Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn

China 0.48 0.41 0.42 0.44 0.41 0.52 0.43 0.45 0.47 0.44 0.43 0.44
Japan 0.49 0.45 0.45 0.44 0.52 0.60 0.61 0.62 0.50 0.49 0.49 0.48

Mongolia 0.41 0.37 0.36 0.35 0.70 0.78 0.76 0.83 0.48 0.47 0.45 0.47
North Korea 0.49 0.47 0.48 0.49 0.55 0.60 0.52 0.56 0.50 0.50 0.49 0.51
South Korea 0.49 0.48 0.49 0.50 0.52 0.53 0.46 0.48 0.50 0.49 0.48 0.49
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2.6. Seasonal Average SR, WVP, WS, VCI, TCI, and VHI Distribution Values

In order to select the most suitable drought indicator for East Asia, the performance
of three commonly used indicators, such as SR, WVP, and WS, was evaluated (Figure 5).
In addition, the seasonal averages of SR, WVP, and WS were sequentially selected to
verify the ability of drought monitoring. In addition, radiation can affect vegetation
growth [77,78]. In different growing seasons, the spatial distribution analysis of the three
different indicators was quite different. SR, WVP, and WS identified Northwest China and
its surrounding areas as arid areas with high solar radiation, high wind speed, and low
water vapor pressure. The temperature was responsible for 64% of the global change in
vegetation growth between 1982 and 2008 [79,80]. The spatial distribution pattern of SR,
WVP, and WS in East Asia is shown in Figure 5. The distribution maps of SR, WVP, and WS
show that spring, autumn, and winter are very dry seasons in East Asia. Therefore, lower
crop yields in the future will lead to higher PET due to increasing trends in crop water
requirements [81,82].
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Although the NDVI values themselves do not reflect a non-dry or dry environment,
measuring the deviation between the current NDVI and normal conditions can indicate the
severity of the drought [83,84]. In the current study, VCI values are zero, indicating low
vegetation associated with dry climates (Figure 6). These seasonally averaged VCI, TCI,
and VHI values have been identified and evaluated to classify the arid regions of East Asia.
Seasonal averages of VCI, TCI, and VHI values show general vegetation dynamics over
the period 1982–2018. These findings are consistent with those reported by [85,86]. Water
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accessibility and crop yields may decrease in the future, taking advantage of increased
temperatures and changes in precipitation [87,88]. Throughout the study period, average
VCI, TCI, and VHI were generated seasonally, indicating the extremely arid regions of East
Asia (Figures 6–8). Vegetation in southern East Asia is also on the rise. However, due to
the rapid urbanization process, the coherence in the southeastern region of East Asia is
weak [89]. Several studies have found that VCI, TCI, and VHI respond to climatic factors
such as precipitation and temperature and can be used to monitor climatic drought [90].
The spatial map shows that the East Asian Winter (DJF) is very dry. The summer (JJA)
season has the highest VCI, TCI, and VHI values. In the season from spring to summer,
the distribution values of VCI, TCI, and VHI show an upward trend, while in autumn, the
distribution values of VCI, TCI, and VHI reach their maximum values as compared with the
winter value. A gradient of surface circumstances such as temperature is caused by major
changes in LST, which can play a vital role in atmospheric variations [91]. In the months
that followed, low precipitation set in and dried up again, covering much of East Asia.
Song et al. [68] reported that East Asia was hit by severe drought in winter, and Huang
et al. [52] also reported that drought in the northwestern region was more severe than in
the southeastern region. Relatively low temperatures in the spring can also adversely affect
vegetation growth [92].
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2.7. Stage Characteristics of Seasonal Temporal SPEI in Sub-Regions of East Asia

The seasonal variation of SPEI has no obvious drying trend in summer and autumn.
However, East Asia showed a drought trend in winter and spring (Figure 9). Figure 10
shows the results from the division of SPEI seasons in various countries in East Asia. The
mutation years are 1902–1990 and 1991–2018, respectively. Results showed that drought
was most sensitive to longer SPEI timescales, suggesting that drought parameters have a
greater influence on longer timescales than on shorter ones [70,71].
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According to the mutation year and the stage characteristics of seasonal SPEI, the
study period of each subregion in East Asia was divided. From 1902 to 1990, the SPEI
in East Asian countries except South Korea indicated an increasing trend from spring to
summer, and the lowest value appeared in autumn and winter when the drought was the
most severe except in Mongolia and Japan. The seasonal SPEI from 1902 to 1990 showed
different characteristics, with obvious wetter trends in Japan, Mongolia, and Korea and
drier trends in China and Korea among the four growing seasons. During the study year
1902–1990, the SPEI values were positive in four different growing seasons in East Asia,
except for China and Korea. From 1991 to 2018, the changing trends in East Asian countries
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were inconsistent. Except for China and South Korea, the four different growing seasons in
East Asia were the most severe droughts, and the SPEI value was negative.
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From 1991 to 2018, the drought in autumn and winter was the most severe in China,
Japan, Mongolia, and North Korea, and the drought in autumn and winter in China and
South Korea was the lightest. The trend from 1902 to 1990 is quite special. Except for China
and South Korea in spring, autumn and winter, there is no drought in the four different
growing seasons in East Asia, and the SPEI value is the largest positive value. However, the
seasonal SPEI in 1991–2018 shows Japan, Mongolia, and North Korea. There is an obvious
dry trend in different growing seasons, while China and South Korea show a wet trend in
spring, autumn, and winter. Under this condition, future studies based on multi-source
climate data and actual PET and SPEI data could lower the potential for inaccuracies and
strengthen the conclusions. Our next step is to develop new methods with higher resolution
for downscaling.

3. Study Region and Data Analysis
3.1. Study Area

The East Asia region contains Mongolia, China, North Korea, South Korea, and Japan,
from 5◦ N to 55◦ N and 70◦ E to 140◦ E, with an elevation of 1103 m (3 619 feet) and a
barometric pressure of 89 kPa. The study region covers an area of about 5,125,000 km2. This
region includes a variety of climatic zones, including arid, tropical, subtropical, temperate,
continental, water, and arid regions. The main vegetation in East Asia consists of crops,
short grass, evergreen trees, deciduous trees, tall grass, evergreen shrubs, deciduous shrubs,
and mixed trees.

3.2. Datasets

We use the multi-scale SPEI matrix dataset (https://spei.csic.es/database.html) for
drought identification and assessment. SPEI has been used to monitor and assess me-
teorological droughts [45]. In the early 1980s, scientists used AVHRR-derived NDVI on
polar-orbiting satellites of the NOAA to monitor and assess terrestrial vegetation vital-

https://spei.csic.es/database.html


Plants 2024, 13, 399 14 of 20

ity [46]. Subsequent models from the GIMMS Generation 3 NDVI (bimonthly) dataset were
obtained from the AVHRR sensor at a spatial resolution of 0.08330 at 15-day intervals from
1982 to 2018. Long-term monthly mean temperature data were retrieved from the Mod-
ern Research and Applications Review Analysis (MERRA by NASA). Figures 11 and 12
show flow charts for the study area and a schematic diagram for identifying drought
events in the SPEI time series, while Figure 13 shows climate classifications in East Asia.
We obtained monthly solar radiation (kJ m−2 day−1), water vapor pressure (kPa), and
wind speed (m s−1) data at 30 s 1 km2 spatial resolution from the Worldclim 2.1 database
(https://www.worldclim.org/data/worldclim21.html). All the spatial and temporal analy-
sis and calculations were performed in GIS 10.7.
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3.3. Standardized Precipitation Evapotranspiration Index (SPEI)

Monthly SPEI (SPEI-01) can reflect slight changes in short-term drought, seasonal
SPEI (SPEI-03, SPEI-06, and SPEI-09) can reflect seasonal drought conditions, and annual
SPEI (SPEI-12) can reflect drought year-to-year variation and is characterized by multiple
timescales. In addition, SPEI takes temperature into account and addresses the effects of
changes in surface ET on drought.

3.4. Drought Characterization

Drought is mainly characterized by various parameters, such as duration, frequency,
and intensity. SPEI values below the threshold (−1) point out drought stress [45]. In this
study, SPEI values on multiple timescales, namely 1 month (SPEI-01), 3 months (SPEI-
03), 6 months (SPEI-06), 9 months (SPEI-09), and 12-month (SPEI-12), were used to study
the spatiotemporal pattern of drought. SPEI-01 and SPEI-03 help recognize short-term
droughts, while, SPEI-06, SPEI-09, and SPEI-12 can be used to assess long-term droughts
(Table 4) [47].

Table 4. Wet and dry classification scales of Standardized Precipitation Evapo-transpiration Index
(SPEI) based on the index value.

Grade Classification SPEI Values

1 Extremely wet ≥SPEI 2.0
2 Severely wet 1.5 > SPEI ≥ 2.0
3 Moderately wet 1.0 > SPEI ≥ 1.5
4 Slight wet 0.5 > SPEI ≥ 1.0
5 Normal −0.5 < SPEI ≥ 0.5
6 Mild drought −1.0 < SPEI ≤ −0.5
7 Moderate drought −1.5 < SPEI ≤ −1.0
8 Severely dry −2.0 < SPEI ≤ −1.5
9 Extremely dry SPEI ≤ −2.00
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3.5. Drought Frequency (DF)

The total number of drought events that occurred within the specified time interval
was considered the DF [48].

DF =
nm

Nm
× 100% (1)

where nm is the number of drought years, and Nm is the total number of years.

3.6. Drought Duration (DD)

DD was determined as the ratio between the total duration of the entire drought event
and the number of all drought events [49].

DD =
∑n

i=1 di

n
(2)

where di = duration of the ith drought; n = total number of drought events.

3.7. Drought Intensity (DI)

DI is defined as the cumulative shortage with a drought index less than its threshold
during a drought event [50].

DI =
∣∣∣∣ 1
n ∑n

i=1 SPEIi

∣∣∣∣ (3)

where n is the number of drought occurrences; SPEIi = cumulative SPEI value less than the
threshold.

3.8. Vegetation Condition Index (VCI)

The VCI recommends normalizing NDVI relative to the minimum and maximum
NDVI values. The VCI was calculated with the following formula [51].

VCI =
NDVI − NDVImin

NDVImax − NDVImin
(4)

where NDVImin and NDVImax are the minimum and maximum values of NDVI for each
pixel, respectively.

3.9. Temperature Condition Index (TCI)

The TCI is determined by the following equation [52].

TCI =
LSTmax − LSTi

LSTmax − LSTmin
(5)

where LSTmax and LSTmin are the values of the maximum LST and minimum LST of each
pixel, respectively, in the same month during 1982–2018.

3.10. Vegetation Health Index (VHI)

The VHI was calculated by the following equation between 1982 and 2018.

VHI = 0.5 (VCI)ijk + 0.5 (TCI)ijk (6)

where monthly VCI and TCI for each i pixel, j month, and k year. The values of VCI and
TCI were classified into five categories (Table 5).

Table 5. Classification of VCI and TCI drought index.

Drought Indices Values Drought Conditions

<0.20 Extreme drought
0.20–0.30 Severe drought
0.30–0.50 Moderate drought
0.50–0.60 Normal drought

>0.60 No drought
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4. Conclusions

Under climate change and global warming, significant improvements have been made
in drought frequency and duration. We compared several drought indices before using
the long-term SPEI to analyze drought dynamics (frequency, duration, and intensity) in
East Asia over 12 decades from 1902 to 2018. Results showed that the SPEI has significantly
increased the extreme drought in East Asia; this mostly affects the SPEI-06 and SPEI-12
growing seasons during 1981–2018. The dry and wet annual SPEI trends mostly affect
the five subregions of East Asia; the annual SPEI had two extremely dry spells from
1936 to 1947 and from 1978 to 2018. Japan, South Korea, and North Korea are wet in the
summer compared to other regions of East Asia, with drought frequency occurring at 51.4%,
respectively. The mean drought frequencies in China and Mongolia are 57.4% and 54.6%.
China and Mongolia are the driest regions in East Asia due to their high drought frequency
and duration. The spatial seasonal analysis of solar radiation (SR), water vapor pressure
(WVP), wind speed (WS), vegetation condition index (VCI), temperature condition index
(TCI), and vegetation health index (VHI) confirmed that the East Asia region suffered from
maximum drought events. The winter and spring showed a dry trend in the East Asia
region. During 1902–1990, a seasonal SPEI presented diverse characteristics, with clear wet
trends in Japan, Mongolia, and North Korea during four growing seasons and dry tends
in China and South Korea. During 1991–2018, seasonal SPEI presented clear dry trends in
Japan, Mongolia, and North Korea during four growing seasons, while China and South
Korea showed a wet trend during the spring, autumn, and winter seasons. Our results will
help to advance our understanding of climate change, the role of long-term SPEI, and its
impact on drought dynamics in East Asia.
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