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Abstract: Aruncus spp. has been used as a traditional folk medicine worldwide for its anti-inflammatory,
hemostatic, and detoxifying properties. The well-known species A. dioicus var. kamtschaticus has long
been used for multifunctional purposes in Eastern Asia. Recently, it was reported that its extract has
antioxidant and anti-diabetic effects. In this respect, it is likely that other Aruncus spp. possess various
biological activities; however, little research has been conducted thus far. The present study aims to
biologically identify active compounds against diabetes in the Korean endemic plant A. aethusifolius
and evaluate the underlying mechanisms. A. aethusifolius extract enhanced glucose uptake without
toxicity to C2C12 cells. A bioassay-guided isolation of A. aethusifolius yielded two pure compounds,
and their structures were characterized as glycolipid derivatives, gingerglycolipid A, and (2S)-3-
linolenoylglycerol-O-β-D-galactopyranoside by an interpretation of nuclear magnetic resonance and
high-resolution mass spectrometric data. Both compounds showed glucose uptake activity, and
both compounds increased the phosphorylation levels of insulin receptor substrate 1 (IRS-1) and
5′-AMP-activated protein kinase (AMPK) and protein expression of peroxisome proliferator-activated
receptor γ (PPARγ). Gingerglycolipid A docked computationally into the active site of IRS-1, AMPK1,
AMPK2, and PPARγ (−5.8, −6.9, −6.8, and −6.8 kcal/mol).

Keywords: Aruncus aethusifolius; glycolipid; glucose uptake; Korean endemic plant; molecular docking

1. Introduction

As technology has improved overall hygiene, food supply, and living standards,
age-related disorders such as cardiovascular diseases, neurodegenerative diseases, and
metabolic disorders have increased. In particular, approximately 422 million people suffer
from diabetes and 1.5 million diabetes-related deaths occur each year according to the
World Health Organization (WHO) [1]. Among them, type 2 diabetes mellitus (T2DM)
accounts for 90%, potentially putting 541 million adults at risk of developing T2DM [2].
Although glucose is a critical component of metabolism and a primary source of energy for
the body, its uptake and utilization are impaired in individuals with diabetes, resulting in
hyperglycemia. Sustained hyperglycemia can damage blood vessels, nerves, and organs,
leading to complications, such as heart disease, kidney problems, neuropathy, and blind-
ness [3]. Therefore, maintaining blood sugar levels within a healthy range by improving
glucose uptake may be an effective treatment strategy.
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Insulin produced by pancreatic β-cells plays a pivotal role in maintaining glucose
homeostasis. In general, insulin exerts its effects on target tissues such as the liver, fat, and
skeletal muscle. However, a reduced capacity of insulin to elicit increases in glucose uptake
and glycogen synthesis in target tissues is a common feature in T2DM patients [4]. This
leads to a condition in which insulin action is defective and a given concentration of insulin
fails to trigger glucose uptake signaling, referred to as insulin resistance (IR). The skeletal
muscle is the largest contributor to glucose disposal and is the major site of IR in patients
with T2DM [5]. Therefore, normal glucose uptake and metabolism in skeletal muscles are
necessary for glucose homeostasis. The main goal of this study was to identify compounds
with these related mechanisms.

Various therapeutic agents have been approved for the treatment of T2DM, with
plant-derived molecules playing a critical role. Metformin, derived from Galega officinalis,
has been used for more than 60 years [6]. To date, at least 1200 plant species have been used
in traditional medicine by various communities owing to their anti-diabetic properties [7].
Hence, it is of great significance to identify various anti-diabetic compounds from these
plants as well as their underlying mechanisms of action. Aruncus species belonging to the
Rosaceae family have long been used in traditional folk medicines worldwide for their
anti-inflammatory, hemostatic, and detoxification effects [8,9]. The well-known Aruncus
dioicus var. kamtschaticus has long been used for multifunctional purposes in Eastern Asia,
and recently, it was reported that its extract has antioxidant and anti-diabetic effects [10,11].
A. aethusifolius (H. Lev) Nakai is endemic to Korea; however, only a few studies have been
conducted on it, including plant identification and proliferation studies [9,12]. Despite
the lack of previous research on this plant, this species is also expected to have diverse
biological activities such as anti-diabetic properties like other plants of the genus Aruncus.
It may be worthwhile to look for biologically active molecules in this plant, especially
anti-diabetic compounds. Here, we report the isolation, structural characterization, and
biological evaluation of A. aethusifolius compounds.

2. Results and Discussion
2.1. Bioassay-Guided Isolation of Compounds

The 70% ethanolic extract of A. aethusifolius enhanced the glucose uptake in C2C12
cells. The biological evaluation results of the solvent-partitioned fractions suggested
that the n-butanol fraction has the potential to contain biologically active compounds.
Additional bioassay-guided fractionation showed that one subfraction significantly en-
hanced glucose uptake, and further isolation provided two biologically active compounds
(Figures 1 and 2A). The MTT assay showed that all the fractions had no toxic effects on
C2C12 cells.

2.2. Structural Elucidation of Compounds

Compound 1 was isolated as a white amorphous powder, and its molecular formula
was determined from HRESIMS data as C33H56O14, indicating six degrees of unsaturation.
The mass fragmentation patterns at m/z 515 [M − 162 + H]+ and 353 [M − 324 + H]+ sug-
gested that this compound is composed of one aglycone and two hexose units. Furthermore,
the mass fragment at m/z 261 [M − 398 − H2O + H]+ indicated the presence of a glycerol
unit and an additional functional group. The UV absorption patterns indicated that the
compound lacks chromophores. A database search using this information indicated that
the compound may be a monoacylglyceride. The NMR (Table 1) data showed the presence
of typical signals for a di-galactosyl group (δC 105.3, 100.5, 74.7, 74.6, 72.6, 72.5, 71.5, 71.1,
70.2, 70.1, 67.8, 62.7) and a glycerol group (δC 72.1, 69.7, 66.6; δH 4.15, 4.00, 3.87, 3.67). The
coupling constant of the anomeric proton suggested β-galactose moiety (J = 7.4 Hz, H-1′ ′),
but another signal of the additional anomeric proton was overlapped. The location of the
di-galactosyl group was determined by the HMBC correlations from H-1′ ′ (δH 4.25) to C-1′

(δC 72.1) and from H-1′′′ (δH 4.86) to C-6′′ (δC 67.8). The NMR data revealed a primary
methyl group at δH 0.98 and six olefinic protons at δH 5.31–5.40, consistent with the typical
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signals of the linear unsaturated fatty acid, α-linolenic acid. The downfield shift of the
proton lying on the C-3′ (δH 4.15) suggested the presence of the α-linolenic acid moiety
at C-3′. This assumption was further supported by the HMBC cross-peak between H-3′

(δH 4.15) and C-1 (δC 175.5). The interpretation of the 2D NMR data and comparison with
previous literature determined compound 1 as an sn-1 monoacylglycerol-type molecule,
gingerglycolipid A (Figure 2) [13].
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solvent-partitioned fractions, and (B) subfractions, and 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) 
amino)-2-deoxyglucose (2-NBDG), assessed by glucose uptake assay. The indicated concentration 
of gliclazide was tested as a positive control for C2C12 cells. The data represent the mean ± S.E.M., 
n = 3, * p < 0.05 compared to the control. 

Figure 1. Effects of A. aethusifolius extract, solvent-partitioned fractions, and subfractions on the
glucose uptake in C2C12 cells. Glucose uptake in C2C12 cells after 1 h incubation with (A) ex-
tract, solvent-partitioned fractions, and (B) subfractions, and 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)
amino)-2-deoxyglucose (2-NBDG), assessed by glucose uptake assay. The indicated concentration
of gliclazide was tested as a positive control for C2C12 cells. The data represent the mean ± S.E.M.,
n = 3, * p < 0.05 compared to the control.

The molecular formula of compound 2 was determined to be C27H46O9, suggesting
that this molecule lacks the monosaccharide of compound 1. The mass fragmentation
patterns at m/z 353 [M − 324 + H]+ and 261 [M − 398 − H2O + H]+ were similar to those
of compound 1, suggesting that this compound is composed of one aglycone and one
hexose unit. The UV absorption patterns revealed the lack of chromophores. The NMR
data (Table 1) showed only one anomeric signal (δC 105.3; δH 4.23) and an upfield shift of
the carbon signal at C-6′′ (δC 62.5), which suggested the galactosyl group was absent at
C-6′′. The interpretation of the 2D NMR data completed the structure and compound 2 was
determined to be an sn-1 monoacylglycerol-type molecule, (2S)-3-linolenoylglycerol-O-β-D-
galactopyranoside (Figure 2) [13].
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Figure 2. HPLC-MS analysis of active fraction of A. aethusifolius extract and the structures of isolated
monoacylglycerols. (A) HPLC-MS chemical profiling of active fraction of A. aethusifolius extract
monitored by the positive ion mode. (B) Structures of isolated monoacylglycerols.

Table 1. NMR spectroscopic data for compounds 1, 2, and 2-1 in CD3OD.

No.
1 2 2-1

δC δH δC δH δC δH

1 175.5 175.4 175.2
2 34.9 2.36, t (7.5) 34.9 2.35, t (7.4) 35.1 2.36, t (7.5)
3 26.0 1.62, m 26.0 1.62, m 26 1.61, m
4 30.7 a 1.34 * 30.7 1.34 * 30.7 a 1.34 *
5 30.2 a 1.34 * 30.2–30.3 a 1.34 * 30.2 a 1.34 *
6 30.2 a 1.34 * 30.2–30.3 a 1.34 * 30.2 a 1.34 *
7 30.3 a 1.34 * 30.2–30.3 a 1.34 * 30.3 a 1.34 *
8 28.2 2.07, m 28.2 2.09, m 28.2 2.08, m
9 131.1 5.31–5.40 * 128.3 b 5.30–5.39 * 131.3 5.31–5.37 *
10 128.9 d 5.31–5.40 * 128.9 b 5.30–5.39 * 128.9 b 5.31–5.37 *
11 26.4 2.81, m 26.4 2.81, m 26.4 2.81, m
12 129.2 d 5.31–5.40 * 129.2 b 5.30–5.39 * 129.2 b 5.31–5.37 *
13 129.2 d 5.31–5.40 * 129.2 b 5.30–5.39 * 129.2 b 5.31–5.37 *
14 26.5 2.81, m 26.5 2.81, m 26.5 2.81, m
15 128.2 d 5.31–5.40 * 131.1 b 5.30–5.39 * 128.3 b 5.31–5.37 *
16 132.7 5.31–5.40 * 132.7 5.30–5.39 * 132.7 5.31–5.37 *
17 21.5 2.09, m 21.5 2.10, m 21.5 2.09, m
18 14.7 0.98, t (7.6) 14.7 0.98, t (7.6) 14.7 0.98, t (7.5)
1′ 72.1 3.87, m 71.9 3.92, dd (10.5, 5.1) 68.8 3.97, dd (10.8, 5.5)

3.67, m 3.65, dd (10.5, 4.6) 3.75, m
2′ 69.7 4.00, m 69.6 3.99, m 74.7 5.05, p (5.5)
3′ 66.6 4.15, m 66.6 4.15, m 61.7 3.74, m
1′′ 105.3 4.25, d (7.4) 105.3 4.23, d (7.6) 105.3 4.23, d (7.4)
2′′ 72.5 b 3.53, m 72.6 3.54, m 72.4 3.52, m
3′′ 74.6 3.49, m 74.8 3.47, dd (3.4, 9.8) 74.9 3.46, dd (9.6, 3.3)
4′′ 70.1 c 3.87, m 70.3 3.82, d (3.5) 70.3 3.82, d (3.3)
5′′ 74.7 3.75, m 76.8 3.52, m 76.8 3.50, m
6′′ 67.8 3.90, m 62.5 3.75, m 62.5 3.72, m

3.67, m
1′′′ 100.5 4.86 *
2′′′ 70.2 c 3.77, m
3′′′ 71.5 3.74, m
4′′′ 71.1 3.89, m
5′′′ 72.6 b 3.86, m
6′′′ 62.7 3.71, m

* Overlapped signals. a–d Values with the same superscript may be interchanged.
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The molecular formula of compound 2-1 was the same as that of compound 2. The
NMR data (Table 1) were also superimposable to those of compound 2, except for the
NMR data pattern of the glycerol group [2: δC 71.9 (C-1′), 69.6 (C-2′), 66.6 (C-3′), δH 3.92
(1 H, dd, J = 10.5, 5.1 Hz, H-1′a), 3.65 (1 H, dd, J = 10.5, 4.6 Hz, H-1′b), 3.99 (1 H, m, H-2′),
4.15 (1 H, m, H-3′); 2-1: δC 68.8 (C-1′), 74.7 (C-2′), 61.7 (C-3′), δH 3.97 (1 H, dd, J = 10.8,
5.5 Hz, H-1′a), 3.75 (1 H, m, H-1′b), 5.05 (1 H, m, H-2′), 3.74 (1 H, m, H-3′)], suggesting that
compound 2-1 was an sn-2 monoacylglycerol-type molecule, (2S)-2-linolenoylglycerol-O-β-
D-galactopyranoside (Figure 2). This assumption was confirmed by the HMBC correlations
from H-1′ ′ (δH 4.23) to C-1′ (δC 68.8) and from H-2′ (δH 5.05) to C-1 (δC 175.2). However,
further analysis revealed that compound 2-1 rapidly interconverts with compound 2
through an acyl migration, which is a well-known reaction in monoacylglycerol. Their
kinetics and equilibria depend on the structure, solvent, temperature, and pH. In our
experiment, compound 2-1 was rapidly converted into a 90:10 mixture of 2:2-1 immediately
after measuring the NMR data (pH 7), and we concluded that it was difficult to obtain
compound 2-1 in a pure form [14]. The β-galactose moieties of compounds 1 and 2 were
determined to possess a D-form (tR 19.9 min) by comparing with standard D-galactose
(tR 19.9 min) and L-galactose (tR 20.2 min) using the HPLC method performed in the
previous study (Figure S21).

2.3. Effect of Compounds on Glucose Uptake in Skeletal Muscle Cells

Although three monoacylglycerols were identified in the effective fraction, the 1,2-
diacyl shift suggested that only two compounds (1 and 2) could be reliably tested in the
bioassay system. To evaluate the ability of compounds 1 and 2 to enhance glucose uptake, a
2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) glucose uptake
assay was performed in C2C12 skeletal muscle cells. Both compounds induced glucose up-
take at 25 and 50 µM (Figure 3A). Furthermore, both compounds did not show cytotoxicity
below the effective concentration of 50 µM (Figure 3B).
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Figure 3. Effects of compounds on the glucose uptake in C2C12 cells. (A) Glucose uptake in C2C12
cells after 1 h incubation with compounds and 2-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-
deoxyglucose (2-NBDG), assessed by glucose uptake assay. (B) MTT assay results of the cell viability
of C2C12 cells after 24 h treatment with compounds. Data represent the mean ± standard error of the
mean (S.E.M.), n = 3, * p < 0.05 compared with the control.
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2.4. Effect of Compounds on Protein Expression of p-IRS-1, IRS-1, p-AMPK, AMPK, PPARγ,
and GLUT4

The effects of compounds 1 and 2 on protein expression in the C2C12 cells were also
evaluated. Western blot analysis was performed to evaluate the effects of the compounds
on the MAPK signaling pathway in C2C12 cells. The treatment with 50 µM of compounds
1 and 2 increased the phosphorylation levels of the insulin receptor substrate-1 (IRS-1) and
5′-AMP-activated protein kinase (AMPK) and the protein expression of the peroxisome
proliferator-activated receptor γ (PPARγ) compared to untreated controls, whereas there
were no meaningful results on the protein expression of the glucose transporter type 4
(GLUT4) (Figure 4).
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IRS-1, IRS-1, p-AMPK, AMPK, PPARγ, GLUT4, and glyceraldehyde 3-phosphate dehydrogenase
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bar graph presents the densitometric quantification of Western blot bands. The data represent the
mean ± S.E.M., n = 3. * p < 0.05 compared to the control.

2.5. Molecular Docking of Compounds on IRS-1, AMPK, and PPARγ

Molecular docking simulations using the representative compound 1 were conducted
to reveal the potential protein-ligand interactions of the compound. The predicted binding
scores for IRS-1, 5′-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK1), 5′-
AMP-activated protein kinase catalytic subunit alpha-2 (AMPK2), and PPARγ were found
to be −5.8, −6.9, −6.8, and −6.8 kcal/mol, respectively. The specific interactions between
compound 1 and its targets in the docking model were as follows.

IRS-1 formed hydrogen bonds with Arg213, Cys214, His216, Gln247, and His250
(Figure 5). The primary sugar moiety formed two hydrogen bonds with Arg213 at distances
of 3.2 Å and 3.3 Å, and a single hydrogen bond with His216 at 3.0 Å. Additionally, the
secondary sugar moiety established a water-mediated hydrogen bond with Arg213 and
Cys214, and a direct hydrogen bond with His250 (2.6 Å), along with three hydrogen
bonds with His216 (2.8 Å, 2.8 Å, 3.2 Å). The hydroxy ester of compound 1 also formed a
hydrogen bond with Gln247 at a distance of 3.0 Å. In addition, hydrophobic interactions
were observed between Phe222 and Leu254. The two sugar moieties were surrounded
by hydrophobic interactions involving Gly215 and Phe222. Glu251, Leu254, and Arg258
participate in hydrophobic interactions [15]. These interactions played a pivotal role in
stabilizing ligands within the binding site.

Compound 1 formed the most stable receptor-ligand complex (AMPK1) with a Vina
score of −6.9 kcal/mol (Figure 6). Detailed structural analysis of the complex revealed that
the primary sugar moiety was involved in hydrogen bond interactions in the kinase domain
(KD) with the active-site residues Asp90 and Asn50. In addition, a single hydrogen bond was
formed with Phe29 at a distance of 3.0 Å. The secondary sugar moiety created hydrogen bonds
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with Asp108 (3.0 Å), Asn110 (3.0 Å), and Asn111 (2.7 Å) in the carbohydrate-binding module
(CBM). A shallow hydrophobic pocket formed between the CBM residue Lys31 and the KD
residues Arg83 and His109. These structural features facilitated stable interactions, enabling
the two sugar moieties to bind securely within the pocket. Similar to AMPK1, compound
1 established a stable receptor-ligand complex with a binding affinity of −6.8 kcal/mol
(Figure 6). The hydroxy ester of compound 1 formed hydrogen bonds with the active site
residue Val96 at a distance of 2.7 Å, as well as with Tyr95 (2.7 Å) and Ser97 (2.8 Å). In addition,
the two sugar moieties of the compound formed hydrogen bonds with Gly167 and Leu22.
Hydrophobic interactions were also observed between Leu146, Ala156, and Met164.
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PPARγ showed a favorable binding affinity of -6.8 kcal/mol, similar to other targets
(Figure 7). The active-site residue Arg316 formed hydrogen bonds with the two sugar
moieties of compound 1. The second active site residue, Ala327, formed hydrogen bonds
with the second sugar moiety at distances of 2.9 Å and 3.2 Å. Additionally, Glu239 (2.5 Å),
Arg371 (2.9 Å), Thr278 (3.4 Å), and Ile268 (2.4 Å) contributed further hydrogen bonds,
collectively stabilizing compound 1 within the binding site. Consistent with the crystal
structure [16], the docked complex exhibited hydrophobic interactions, which played
a crucial role in stabilizing the ligand within the active site. Hydrophobic interactions
involving Ala272, Trp305, Leu309, Ile310, Phe313, and Leu436 facilitated the stabilization of
the compound to become stable within the binding site (Figure 7).
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3. Discussion

Natural products are known to provide various health benefits, including nutritional
value, antioxidant properties, and immune system-boosting effects. Natural products play
an important role in the treatment of human diseases because plants synthesize diverse
and potent secondary metabolites [17]. Hence, traditional remedies based on indigenous
plants still dominate therapeutic practices worldwide, particularly for the treatment of
diabetes. To date, at least 1200 plant species have been used as traditional remedies by
various communities owing to their anti-diabetic properties [7]. In particular, metformin,
derived from Galega officinalis, has long been used, and it is believed that many other
undiscovered anti-diabetic molecules are present in plant sources [6]. Aruncus species
have a long history of use in traditional folk medicine worldwide, with the most well-
known being A. dioicus var. kamtschaticus, which has long been used in Eastern Asia
for multifunctional purposes [8,9]. Although little research has been conducted on A.
aethusifolius, it is expected to have important biologically active molecules, especially those
with anti-diabetic properties.

The number of people with diabetes has increased dramatically in recent years, with
type 2 diabetes accounting for 90% [2]. Hyperglycemia can damage various organs, leading to
complications. Maintaining blood sugar levels within a healthy range and improving glucose
uptake could be an effective treatment strategy. Anti-diabetic drugs comprise chemical or
biochemical agents such as biguanides, sulfonylureas, thiazolidinediones, α-glucosidase
inhibitors, glucagon-like peptide-1 receptor agonists, dopamine D2-receptor agonists, etc. [7].
However, these drugs can produce undesirable side effects such as kidney toxicity and
gastrointestinal problems, including vomiting, indigestion, and diarrhea [18,19]. Therefore,
the search for safer and more effective molecules from plant sources is highly important.

In the present study, glycolipid derivatives, gingerglycolipid A (1) and (2S)-3-linolenoy-
lglycerol-O-β-D-galactopyranoside (2) were obtained from A. aethusifolius. To the best of
our knowledge, the presence of these compounds in Aruncus species is reported for the
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first time in this work. In addition, only weak inhibitory effects of gingerglycolipid A on
the growth of HepG2, AGS, HCT-15, and A549 cells have been reported, and there have
been no reports on the anti-diabetic effects of these compounds [13]. Two compounds
increased glucose uptake, which appeared to depend on the phosphorylation of IRS-1
and AMPK and the protein expression of PPARγ. In the molecular docking, the predicted
binding scores for IRS-1, AMPK1, AMPK2, and PPARγ were found to be −5.8, −6.9,
−6.8, and −6.8 kcal/mol, respectively. Specific analysis of protein-ligand interactions
suggested that gingerglycolipid A could stably interact with these proteins within the
binding site. In general, predicted molecular docking results and experimental results
do not always agree well because a variety of factors can be involved, such as uptake,
stability, and other interactions of the compounds, but in this study, the experimental
results and molecular docking results agree well, suggesting the anti-diabetic potential
of gingerglycolipid A. The evaluation of C2C12 cell glucose uptake and the involvement
of various molecular factors, such as PPARγ, IRS-1, p-IRS-1, AMPK, and p-AMPK shed
light on the intricate regulatory mechanisms that govern glucose homeostasis in skeletal
muscle cells [20–22]. These factors play significant roles in glucose uptake and insulin
sensitivity, and their interactions with, and effects on, metabolic health are significant.
PPARγ is a transcription factor that plays an important role in adipogenesis and glucose
metabolism [23]. It also enhances insulin sensitivity in skeletal muscle cells by promoting
glucose uptake [24]. AMPK phosphorylation is a sign of activation and is often triggered
by cellular energy depletion or various signaling pathways [25]. The activated AMPK
promotes glucose uptake and maintains glucose homeostasis [26]. Although not directly
involved in skeletal muscle glucose uptake, it is critical for maintaining overall glucose
homeostasis by regulating insulin production [5]. The interactions between these factors
highlight the complexity of the regulation of glucose uptake regulation [27]. Under healthy
conditions, these molecules work together to ensure efficient glucose utilization by skeletal
muscle cells. However, disturbances in this network can lead to insulin resistance and
impaired glucose uptake, which are key features of metabolic disorders, such as T2DM.
Hence, understanding the roles of PPARγ, IRS-1, p-IRS-1, AMPK, and p-AMPK in glucose
uptake provides potential therapeutic targets for improving insulin sensitivity and glucose
metabolism. We suggest that this compound has the potential to improve insulin sensitivity,
glucose absorption, and glycemic control. Although further research is required to fully
understand the underlying mechanisms and confirm these effects, these initial findings
open exciting possibilities for the development of new approaches to manage and treat
diabetes and related metabolic conditions. Moreover, it highlights the importance of
exploring natural products that complement existing treatments for diabetes management.

4. Materials and Methods
4.1. General Experimental Procedures

Optical rotations were recorded using a PerkinElmer Model 343 polarimeter (Waltham,
MA, USA). NMR data were acquired using a Bruker 500 MHz NMR spectrometer (Billerica,
MA, USA), with chemical shifts referenced to the solvent peaks. HPLC chromatograms and
ESIMS data were obtained using an Agilent 1200 system (Santa Clara, CA, USA) connected
with a 6120 quadrupole MSD with a Phenomenex Luna C18 (2) column (5 µm, 150 × 4.6 mm,
Torrance, CA, USA). HRESI-MS data were obtained using a Thermo Q-Exactive Orbitrap
mass spectrometer via direct infusion (Waltham, MA, USA). Semi-preparative (Semi-prep)
HPLC was carried out using the Gilson 321 HPLC system with a UV/VIS-151 detector
(Middleton, WI, USA) and a YMC ODS-A column (5 µm, 250 × 20 mm, Tokyo, Japan). Flash
column chromatography was performed using YMC reversed-phase silica gel (ODS-A,
12 nm, S-150 µm) and Merck silica gel (63–200 µm, 70–230 mesh, Darmstadt, Germany).
Thin-layer chromatography (TLC) was performed using a Merck precoated silica gel F254
plate. The EZ-Cytox Cell Viability Assay Kit was obtained from ITSBIO (Seoul, Republic of
Korea). Fetal bovine serum (FBS) was purchased from Invitrogen (Carlsbad, CA, USA). The
primary antibodies for IRS-1 and GLUT4 and secondary antibodies for phosphorylated-IRS-
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1 (p-IRS-1) and AMPK, phosphorylated-AMPK (p-AMPK), and PPAR-γ were purchased
from Cell Signaling (Danvers, MA, USA). All samples used in the biological evaluation
were dissolved in dimethyl sulfoxide (DMSO).

4.2. Plant Material and Extraction

A whole A. aethusifolius plant was collected in May 2020 from the Hantaek Botanical
Garden in Yongin-si, Republic of Korea, and authenticated by Taek Joo Lee (Hantaek
Botanical Garden). A voucher specimen (HTS2020-0101) was deposited in the Herbarium
of Hantaek Botanical Garden. The dried whole plant (375 g) was ground and extracted
twice with 70% ethanol (3.8 L × 2) at 25 ◦C for 7 d to obtain a dark green extract (72.7 g).

4.3. Isolation and Structural Characterization of Compounds

The extract was dissolved in deionized water (0.8 L) and partitioned using n-hexane
(1.2 L × 3) and n-butanol (1.2 L × 2). The n-butanol layer (13.9 g) was subjected to a
silica gel column (45.0 × 5.0 cm, n-hexane/ethyl acetate/methanol, 3:1:0 to 0:1:1, each
1.8 L) to obtain 26 fractions (F1–F21). F21 (5.37 g) was subjected to flash C18 column
separation (45.0 × 5.0 cm, methanol/water, 10:90 to 100:0, each 0.9 L) to obtain ten fractions
(F21.1–F21.10). F21.9 (62.0 mg) was separated by semi-prep HPLC (acetonitrile/water,
11:14 in 120 min, flow rate 3.0 mL/min) at 210 nm to obtain gingerglycolipid A (1.9 mg,
40.2 min) and (2S)-3-linolenoylglycerol-O-β-D-galactopyranoside (1.4 mg, 108.3 min).

4.3.1. Gingerglycolipid A (1)

White amorphous powder; [α]23
D +26.7 (c 0.01, MeOH); 1H and 13C NMR data

(500 and 125 MHz, CD3OD), see Table 1; HRESIMS m/z 699.3544 [M + Na]+ (calcd for
C33H56O14Na, 699.3568).

4.3.2. (2S)-3-Linolenoylglycerol-O-β-D-Galactopyranoside (2)

White amorphous powder; [α]23
D +20.9 (c 0.01, MeOH); 1H and 13C NMR data

(500 and 125 MHz, CD3OD), see Table 1; HR-ESI-MS m/z 537.3017 [M + Na]+ (calcd for
C27H46O9Na: 537.3040).

4.4. Acid Hydrolysis

Acid hydrolysis was performed as described previously [28]. Compounds 1 and
2 (each 0.4 mg) were treated with 1 M of hydrochloric acid (400 µL) at 95 ◦C for 3 h
and then partitioned with ethyl acetate (3 × 800 µL) to obtain aglycone moiety. The
aqueous fractions were dried, evaporated to dryness, dissolved in pyridine (200 µL),
treated with L-cysteine methyl ester hydrochloride at 60 ◦C for 1.5 h, and incubated with
O-tolylisothiocyanate (25 µL) at 60 ◦C for 1.5 h. The reaction mixtures were analyzed by
HPLC. Chromatographic separation was performed using an Agilent 1200 HPLC system
equipped with a Phenomenex Luna C18 (2) column. The mobile phase consisted of water
(A) and acetonitrile (B) containing 0.05% formic acid, at a flow rate of 0.7 mL/min. The
gradient was set initially at 10% B and increased to 50% B for 30 min. The retention times
were compared with those of the reacted mixtures (tR: D-galactose 19.9 min; L-galactose,
20.2 min).

4.5. Cell Culture

A mouse C2C12 skeletal muscle cell line was used. Dulbecco’s modified Eagle’s
medium (DMEM) was supplemented with 10% FBS, antibiotics (penicillin/streptomycin),
L-glutamine, and sodium pyruvate. The cells were incubated under conditions of 5% CO2
and 37 ◦C. The cells were centrifuged, and the collected cells were placed in the medium.
The cells were then mixed and dispersed into single cells.



Plants 2024, 13, 608 11 of 13

4.6. Cell Viability Assay

The cells were seeded in a 96-well plate at a density of 1 × 104 cells/well in a volume
of 100 µL per well and incubated for 24 h. They were treated with samples at various
concentrations (6.25, 12.5, 25, and 50 µM) and incubated for 24 h. The control was treated
with medium containing 0.5% (v/v) DMSO. After 24 h, 10 µL of EZ-Cytox was added to
each well and incubated for 30 min. After the reaction, the absorbance was measured at
450 nm using a Biotek PowerWave XS microplate reader (Winooski, VT, USA). 100 µL of
the culture medium used was mixed with 10 µL of EZ-Cytox and used as a blank.

4.7. Glucose Uptake Assay

C2C12 cells were cultured in high glucose DMEM medium supplemented with 10%
fetal bovine serum and 100 µg/mL of streptomycin and penicillin at 37 ◦C in 5% CO2.
The glucose uptake assay was performed as described previously. C2C12 cells were cul-
tured in DMEM for 24 h to differentiate into myotubes, and the medium was changed
to DMEM supplemented with 2% horse serum. After 5 d, the fully differentiated cells
were treated with gliclazide or samples (6.25, 12.5, 25, and 50 µM) in serum-free high
glucose DMEM containing fluorescence. The glucose uptake activity in the C2C12 my-
otubes was examined using a 2-NBDG assay kit (Sigma-Aldrich, St. Louis, MO, USA)
according to the manufacturer’s instructions. The fluorescence intensities were measured
at Ex/Em = 475 nm/550 nm using a Tecan microplate reader (Shanghai, China). Gliclazide
was used as a positive control.

4.8. Western Blotting Analysis

The C2C12 cells (2 × 105 cells/mL) were treated with different concentrations of the
samples for 24 h, and cell extracts were prepared using radioimmunoprecipitation assay
buffer (Cell Signaling Technology, Danvers, MA, USA) supplemented with a 1× protease
inhibitor cocktail and 1 mM phenylmethylsulfonyl fluoride. Proteins (30 µg/lane) were
separated by electrophoresis, transferred to polyvinylidene fluoride membranes, and bound
to epitope-specific primary and secondary antibodies. Antibody binding was visualized
using ECL Advance Western blot detection reagents (GE Healthcare, Buckinghamshire,
UK) according to the manufacturer’s instructions and a LAS 4000 imaging system (Fujifilm,
Tokyo, Japan).

4.9. Molecular Docking Analysis

Compound 1 was minimized using the AMBER ff14SB force field with the UCSF
Chimera and converted into a pdbqt file using AutoDockTools 1.5.6 software. The three-
dimensional structures for IRS-1, AMPK1, AMPK2, and PPARγ were downloaded from
a Protein Data Bank (PDB) with PDB accession numbers 1QQG, 6C9H, 3AQV, and 1FM9,
respectively. The inhibitor bound to each target was used to define the ligand binding site
for the molecular docking using AutoDock-Vina; IRS-1—Leu208, Met209, Ile211, Arg212,
Cys214, His216, Ser217, Arg227, Ser228, and His250 [15,29], AMPK1—Phe29, Ile48, Asn50,
Arg83, and Asp90 [30], AMPK2—Lys45, Tyr95, Val96, Asp103, Met164, and Leu146 [31],
and PPARγ—Ala272, Trp305, Leu309, Phe313, Arg316, Leu326, Ala327, Val342, Cys432,
and Leu436 [16]. The grid box dimensions and center were chosen by the binding site
information with a default grid spacing of 0.375 Å. The lowest energy binding mode was
selected for each target, and the interactions between the receptor and ligand were visually
inspected using the PyMOL software (version 1.8.6.1).

5. Conclusions

A bioassay-guided isolation of A. aethusifolius led to the isolation of two glycolipid
derivatives and the structures were characterized as gingerglycolipid A (1) and (2S)-3-
linolenoylglycerol-O-β-D-galactopyranoside (2) using NMR and MS data. Both compounds
showed glucose uptake activity, and both compounds increased the phosphorylation levels
of IRS-1 and AMPK as well as protein expression of PPARγ. To verify these results in
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silico, a molecular docking simulation was performed to predict the binding orientation
and affinity of gingerglycolipid A. Gingerglycolipid A docked computationally into the
active site of IRS-1, AMPK, and PPARγ (−5.8, −6.9, −6.8, and −6.8 kcal/mol). A detailed
analysis of the interactions between ligands and receptors, specifically identifying the major
contributing factors, revealed the key residues and interaction patterns. This supports
the results of the biological evaluation and provides valuable insights into the structural
aspects of ligand binding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants13050608/s1. Figures S1–S7: The 1H, 13C, HSQC, HMBC, COSY, and DEPT NMR, and
HRMS spectra of compound 1; Figures S8–S13: The 1H, 13C, HSQC, HMBC, COSY NMR, and HRMS
spectra of compound 2; Figures S14–S20: The 1H, 13C, HSQC, HMBC, COSY, and DEPT NMR, and
HRMS spectra of compound 2-1; Figure S21: Sugar determination of compounds 1 and 2 by HPLC
analysis; Figure S22: Cytotoxicity test of fractions and compounds.
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