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Abstract: The shoot apical meristem culture has been used widely to produce virus-free plantlets
which have the advantages of strong disease resistance, high yield, and prosperous growth potential.
However, this virus-free plant will be naturally reinfected in the field. The physiological and metabolic
responses in the reinfected plant are still unknown. The flower of chrysanthemum ‘Hangju’ is a
traditional medicine which is unique to China. In this study, we found that the virus-free ‘Hangju’
(VFH) was reinfected with chrysanthemum virus B/R in the field. However, the reinfected VFH
(RVFH) exhibited an increased yield and medicinal components compared with virus-infected
‘Hangju’ (VIH). Comparative analysis of transcriptomes was performed to explore the molecular
response mechanisms of the RVFH to CVB infection. A total of 6223 differentially expressed genes
(DEGs) were identified in the RVFH vs. the VIH. KEGG enrichment and physiological analyses
indicated that treatment with the virus-free technology significantly mitigated the plants’ lipid and
galactose metabolic stress responses in the RVFH. Furthermore, GO enrichment showed that plant
viral diseases affected salicylic acid (SA)-related processes in the RVFH. Specifically, we found that
phenylalanine ammonia-lyase (PAL) genes played a major role in defense-related SA biosynthesis in
‘Hangju’. These findings provided new insights into the molecular mechanisms underlying plant
virus–host interactions and have implications for developing strategies to improve plant resistance
against viruses.

Keywords: Chrysanthemum morifolium; plant virus; ‘Hangju’; salicylic acid

1. Introduction

Chrysanthemum morifolium ‘Hangju’ cultivar is native to Tongxiang, Zhejiang Province,
China. The flowers of ‘Hangju’ can be processed into tea and are used to relieve pathogenic
heat, protect the liver, improve eyesight, and aid detoxification [1,2]. Chrysanthemum
tea is rich in a variety of secondary metabolites, such as flavonoids, alkaloids, and ter-
penoids, which are considered important active components in immune rehabilitation [2].
In chrysanthemum production, cutting is mainly used for seedling propagation, which
can quickly expand and reproduce a large number of seedlings. However, this asexual
propagation method also leads to the rapid spread of viruses, which can accumulate with
the increase in planting years, resulting in poor growth and development of flowers and
a decrease in yield and quality. Viruses in plants pose a significant threat to agricultural
production, resulting in substantial costs for growers every year [3]. The analysis of four
near-complete genome sequences representing the genetic diversity indicates that recombi-
nation might play a significant role in the evolution of the virus [4]. Up to now, all reported
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infections of chrysanthemum are RNA viruses [5], such as chrysanthemum virus B (CVB),
chrysanthemum virus R (CVR), tomato aspermy virus (TAV), chrysanthemum stunt viroid
(CSVd) [6–8]. CVB is the most common virus in ‘Hangju’, which can cause symptoms such
as leaf mosaic, mottling, or vein clearing [5]. CVB is mainly transmitted by aphids and
sap [4]. It is noteworthy that CVB, which is mainly prevalent in Zhejiang, China, belongs to
the Carlavirus genus of the Betaflexiviridae family [8,9]. Producing and applying virus-free
plants is an efficient method to reduce the losses caused by viral diseases. Various meristem
tip culture methods are widely used to obtain virus-free plantlets [10–12]. The virus-free
plants are widely planted worldwide, especially those of many vegetatively propagated
economic crops such as agricultural, horticultural, and medicinal plants [13]. Eliminating
plant viruses leads to higher yield, chlorophyll content, and enzyme activities, as well as a
lower membrane lipid peroxidation degree [14]. Meanwhile, the removal of plant viruses
can enhance plant stress resistance [15]. Nevertheless, the underlying mechanisms for the
high yield and quality of virus-free plants are not fully understood.

To successfully survive under biotic stress conditions, plants have developed highly
complex interactions among various phytohormones [16]. SA is a defense-related plant
hormone that plays a key role in resistance to different microbial pathogens, such as
viruses, bacteria, fungi, and oomycetes [17,18]. SA signaling constitutes the major defensive
pathway against viruses [19]. The recognition of viral effectors by R proteins triggers defen-
sive mechanisms, including activation of the SA and siRNA pathways, ROS production,
and the hypersensitive response (HR) [20]. Auxin opposes the SA pathway, and specific
auxin response factors (ARFs) are crucial for the replication and spread of certain viruses,
such as tobacco mosaic virus (TMV) [21,22]. Ethylene (ET) also counteracts the pathway
downstream of SA signaling, and plays a role in the development of symptoms caused by
cauliflower mosaic virus infection, the systemic movement of TMV, and the formation of
necrotic lesions following infection by other viruses [23,24]. Jasmonic acid (JA) supports
plant defense at early stages of infection, but, if it is induced or applied at later stages,
it decreases plant resistance [25,26]. Abscisic acid (ABA) plays complex roles in plant
defense: it enhances callose deposition on plasmodesmata (PD) to limit virus movement
between cells, but also opposes the SA pathway, reducing local resistance by suppressing
HR induction, decreasing ROS and SA production, and weakening distal systemic acquired
resistance (SAR) and siRNA systems [27–29]. The SA, JA, and ET signaling pathways
interact extensively [30]. Their regulatory cross-talk may have evolved to allow plants
to fine-tune the induction of their defenses in response to different plant pathogens [17].
Thus, the mediation of broad-spectrum antiviral immunity by phytohormones is important
in plants.

We previously built a virus-free system in ‘Hangju’ and increased the soil bacterial
diversity and root productivity in the field [13]. However, the mechanism behind the rein-
fection of virus-free seedlings in the field remained unknown. In this study, we determined
the transcriptomes of RVFH and VIH and provided new insight into the mechanism of
RVFH’s response to virus reinfection in the field.

2. Results
2.1. Virus Detection in RVFH and VIH

A VFH tissue culture system was established in our previous study [7]. The virus
elimination significantly improves the root growth and overall yield of ‘Hangju’ [13].
However, it is unclear whether the VFH is reinfected with viruses in the field. During
a survey of viral diseases in the field in September 2021, VFH leaves had no clear leaf
mottling and vein yellowing compared with VIH (Figure 1A). The chlorophyll contents of
the VFH significantly increased 1.2-fold compared with VIH (Figure 1B). We previously
reported that detectable viruses of VIH are CVB [13]. The reverse transcription polymerase
chain reaction (RT-PCR) results showed the mature stage of VFH leaves reinfected with
CVB in the field (Figure 1C). Consequently, we rename the reinfected VFH in the field as
RVFH. Furthermore, we generated six whole-transcriptome libraries derived from flowers,
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with three biological replicates from RVFH and three biological replicates from VIH. After
quality control, the sequences were mapped against the chrysanthemum genome to remove
sequences derived from the ‘Hangju’ host. Then, the sequences of RVFH libraries and VIH
libraries were separately assembled de novo. The assembled contigs were blasted against
the NCBI reference viral genome database with a cutoff E-value of 1 × 10−10 and a 90%
match ratio. Ten viruses were identified in VIH, including six contigs of CVB and forty-one
contigs of CVR (Figure 1D). Eleven viruses were identified in RVFH, including 80 contigs
of CVB and 313 contigs of CVR (Figure 1E). The unmatched sequences were separately
mapped into the CVB and CVR genome, producing seven virus genes with expression.
These gene expression levels all significantly decreased in RVFH vs. VIH (Figure 1F). The
semi-quantitative RT-PCR results demonstrate that TGBp2 expression levels of CVB and
CVR significantly decreased in RVFH vs. VIH (Figure 1G). However, 10 viruses reported
to infect chrysanthemums were not identified using RT-PCR (Figure S1). Thus, RVFH
was infected with CVB and CVR in the field and represses virus accumulation at the
transcript level.
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2.2. Effect of Natural Infection on RVFH Growth 

Figure 1. Detection of plant viruses in the field. (A) Leaf symptoms of VIH and VFH in the field.
Scale bar = 0.5 cm. (B) Chlorophyll content of VIH and VFH (n = 5). (C) CVB and CVR were detected
by RT-PCR (35 cycles). M, mark; N, ddH2O; H, the healthy virus-free seedling in tissue culture.
(D) The number of contigs in VIH. (E) The number of contigs in RVFH. Selected with an E-value of
1 × 10−10 and a 90% match ratio of virus sequences in NCBI viral reference genome database. (F) The
expression levels of CVB and CVR genes (n = 3). TGBp, triple gene block protein; CRP, cysteine-rich
protein; n.d., no detection. (G) The expression levels of TGBp2 were detected by semi-quantitative
RT-PCR (28 cycles). C. morifolium ACTIN (CmACTIN) was used as an internal control. Values are the
mean ± SD. Student’s t test; * p < 0.05; ** p < 0.01. The primers are listed in Table S5.

2.2. Effect of Natural Infection on RVFH Growth

The growth phenotype of the RVFH was significantly different from that of the VIH
in the field (Figure 2A). The flowers of RVFH were bigger than that of VIH (Figure 2B).
RVFH exhibited better development than VIH. The plant height, stem diameter, and
branching number significantly increased in RVFH plants by 1.8-fold, 1.3-fold, and 2.3-fold,
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respectively, compared with VIH plants (Figure 2C). Similarly, flower growth, including
flower diameter, effective bud count, and flower yield, significantly increased in RVFH
plants by 1.3-fold, 2.3-fold, and 3.5-fold, respectively, compared with VIH plants (Figure 2D).
Chlorogenic acid, luteolin, and 3,5-dicaffeoylquinic acid levels were important active
ingredients to reflect the quality of the chrysanthemum. They also significantly increased
by 1.4-fold, 1.3-fold, and 1.4-fold in RVFH vs. VIH, respectively (Figure 2E).
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Figure 2. RVFH physiological responses in the field. (A) Plant phenotypes of ‘Hangju’ of VIH
and RVFH. Bar = 10 cm. (B) Flower phenotypes of ‘Hangju’ of VIH and RVFH. Bar = 2 cm.
(C) Growth indicators of VIH and RVFH (n = 10). (D) Growth indicators of flower (n = 20).
(E) Quality-related medicine components of VIH and RVFH (n = 3). (F) Stem cross-section of
VIH and RVFH. Bar = 0.1 mm. (G) Stem cross-sectional area of VIH and RVFH (n = 50). (H) Stem
longitudinal section of VIH and RVFH. Bar = 0.1 mm. (I) Diameter of the longitudinal section of VIH
and RVFH (n = 50). Values are the mean ± SD. Student’s t test; * p < 0.05; ** p < 0.01.

The cross-section (Figure 2F) and vertical section (Figure 2H) showed growth of the
stem during the vegetative growth period of the chrysanthemum. The cross-sectional area
and longitudinal diameter (Figure 2G,I) of the stem in RVFH were significantly higher
than those in VIH, with a 1.6-fold and 1.2-fold, increase, respectively. These observations
indicated that virus-free technology was important for plant growth, flower yield, and
quality in ‘Hangju’.

2.3. KEGG Enrichment Analysis of DEGs in RVFH vs. VIH

We collected flower tissues from RVFH and VIH for transcriptomic sequencing (three
biological replicates from RVFH and three biological replicates from VIH). The raw reads
were qualified, and adapters were removed, generating 224,752,165 clean reads from VIH
libraries and 202,909,472 clean reads from RVFH libraries (Table S1). To review a summary
of the expression matrix, a principal components analysis (PCA) was performed. The PCA
results for RVFH and VIH were separated into two groups, and the reductive values of
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PC1 and PC2 were 93.85% and 3.63%, respectively (Figure 3A). A fold change (FC) > 1 and
p (adjusted value) < 0.01 were used as cutoffs to identify differentially expressed genes
(DEGs). In total, 1280 genes were upregulated and 4943 genes were downregulated in
RVFH vs. VIH, respectively (Figure 3B). KEGG enrichment analysis revealed that three
pathways were significantly enriched (p adjusted value < 0.05) in RVFH vs. VIH, including
‘Sphingolipid metabolism’, ‘Fatty acid elongation’, and ‘Galactose metabolism’ (Figure 3C).
We further identified the numbers of genes related to these three pathways, and most
of them were downregulated in RVFH vs. VIH. However, we found that two genes,
scaffold28G000114 and Cm14G001475, increased 2.5-fold in RVFH vs. VIH (Figure 3D).
Scaffold28G000114 encodes an alpha-galactosidase which is involved in galactosylceramide
synthesis. Cm14G001475 encodes a glucosylceramidase which is involved in ceramide
synthesis (Figure S2). In ‘Fatty acid elongation’, the genes that encoded for 3-ketoacyl-CoA
synthases exhibited lower expression levels in RVFH vs. VIH, except for Cm25G001904
which increased 3.3-fold in RVFH vs. VIH (Figure 3E). In ‘Galactose metabolism’, 37 genes
showed significant differences, namely 10 increased and 27 decreased in RVFH vs. VIH
(Figure 3F). These results suggested that the RVFH had significantly alleviated lipid and
galactose metabolic stress responses during virus infection.
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Figure 3. KEGG enrichment analysis of DEGs in RVFH vs. VIH plants. (A) PCA analysis of
the transcriptome. (B) Volcano plot showing DEGs in RVFH vs. VIH plants. (C) Top ten en-
riched pathways in RVFH vs. VIH plants. The color bar represents the levels of adjusted p value.
(D) Expression profiles of sphingolipid metabolism-related genes RVFH vs. VIH plants. (E) Expres-
sion profiles of fatty acid elongation-related genes RVFH vs. VIH plants. (F) Expression profiles of
galactose metabolism-related genes RVFH vs. VIH plants. The color bar represents the normalization
for log2-FPKM using the Pheatmap software package (v1.0.12).

2.4. GO Enrichment Analysis of DEGs in RVFH vs. VIH Plants

In our study, 129 GO terms were significantly enriched (adjusted p value < 0.01) in
the biological process (BP) category in RVFH vs. VIH (Figure 4A and Table S3). Moreover,
thirty GO terms and four cell wall-related GO terms were significantly enriched (adjusted
p value < 0.01) in the molecular functions (MF) category and cellular components (CC)
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category, respectively (Figure 4A and Table S3). Five phytohormone-related and superoxide-
related pathways were selected from BP, and then the selected DEGs were clustered into
two groups for comparison (Figure 4B). Four genes expression levels increased in RVFH vs.
VIH, including a 3.1-fold increase in Cm06G004022 (ABC transporter), a 2.7-fold increase
in Cm14G003264 (indole-3-pyruvate monooxygenase), a 2.5-fold increase in Cm13G001188
(zinc finger), and a 2.5-fold increase in Cm27G003733 (WD40). However, most DEGs were
downregulated in RVFH vs. VIH, including SA-responsive genes (Figure 4B). Furthermore,
we detected some physiological parameters related to antioxidant activity, including ROS
activity, malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD),
and catalase (CAT) activities (Figure 4C). These indexes were significantly higher in VIH
than those in RVFH, indicating that the level of ROS in plants infected with the virus
increased, the degree of cell damage deepened, and the activities of various antioxidant
enzymes increased accordingly.
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Figure 4. GO enrichment analysis of DEGs in RVFH vs. VIH. (A) Top eight pathways in each GO
category. The color bar represents the levels of p value. BP, biological process; MF, molecular functions;
CC, cellular components. The pathways related to phytohormones and superoxide were labeled
with arrows. (B) Expression profiles of ozone-, hormone-, and SA-related pathway in RVFH vs. VIH.
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(v1.0.12). (C) The levels of ROS, MDA, SOD, POD, and CAT in RVFH and VIH (n = 5). Values are the
mean ± SD. Student’s t test; * p < 0.05; ** p < 0.01.

2.5. Regulation of Salicylic Acid Associated with Plant Virus Elimination in RVFH vs. VIH

SA is produced from chorismate via two independent pathways in plants, including
isochorismate synthase (ICS) and phenylalanine ammonia-lyase (PAL) [31,32]. Transcrip-
tomic analysis revealed that the ‘phenylalanine ammonia-lyase activity’ term of MF was
significantly enriched (p adjusted value = 1.15 × 10−5) in RVFH vs. VIH, including eleven
PALs (Figure 4A and Table S3). Furthermore, four putative ICS genes and twenty-eight PAL
genes were identified from the C. morifolium genome. The expression patterns of all ICS
and PAL genes were investigated and almost all were downregulated in RVFH vs. VIH
(Figure 5A and Table S4). Phylogenetic analysis showed that three ICS of C. morifolium
and one ICS of C. seticuspe were classified into one clade. Cm23G000276 was separated
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from other chrysanthemum ICS (Figure 5B). No expression levels of Cm23G000276 were
detected in C. morifolium flowers (Figure 5A). A quantitative real-time RT-PCR (RT-qPCR)
was performed and three ICS and five PALs showed similar expression patterns in their
transcriptome data (Figure S3). These results suggested that ICS from C. morifolium might
play a minor role in SA-induced synthesis. Based on the phylogenetic analysis of PALs from
chrysanthemum, rice, and Arabidopsis, 48 PALs were divided into six groups, including a
core PLAs clade ‘Group a’ (Figure 5C). Similarly, multiple copies of PALs in C. morifolium
were distributed among the other five groups. These results suggested that the PALs fam-
ily was probably associated with polyploidization events in chrysanthemum evolution.
Collinearity analysis was performed on Twenty-eight PALs from C. morifolium and six PALs
from C. seticuspe. Three pairs of orthologous gene pairs were found between C. morifolium
and C. seticuspe (Figure 5D). Co-expression analysis showed there was a positive correlation
between PLAs and the SA-response pathway in eight of the pairs (Figure 5E). Moreover,
SA levels were significantly increased in VIH compared with RVFH (Figure 5F). PAL cat-
alyzed the chorismate-derived L-phenylalanine into cinnamic acid, which also provided
precursors to the flavonoid pathway. Total flavonoid levels were significantly higher in
VIH than in RVFH (Figure 5G). However, no flavonoid metabolic-related pathways were
enriched through KEGG and GO (Tables S2 and S3). These results suggested that PALs
played a major role in defense-related SA biosynthesis in C. morifolium.
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PALs. (B) Phylogenetic analysis of ICS in chrysanthemum, rice and Arabidopsis. A total of 8 ICSs were
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used to construct the unrooted maximum-likelihood phylogenies. (C) Phylogenetic analysis of PAL
in chrysanthemum, rice, and Arabidopsis. A total of 48 PALs were used to construct the unrooted
maximum-likelihood phylogenies. The 48 PALs were divided into six groups, each labeled with a
letter. At, Arabidopsis; Cm, C. morifolium; Cs, C. seticuspe; Os, Oryza sativa. (D) Collinear analysis
for the PALs between C. morifolium and C. seticuspe. (E) Co-expression analysis of PALs and SA-related
genes in RVFH vs. VIH. The solid lines represent positive correlations. The thickness of the line
is determined by a Pearson correlation coefficient > 0.9. The colors represent the correlated gene
number. SA (F) and total flavonoid (G) contents in RVFH and VIH (n = 5). Values are the mean ± SD.
Student’s t test; * p < 0.05; ** p < 0.01.

3. Discussion

Plant viruses can have a significant impact on the growth and biomass accumulation
of plants. Studies have demonstrated that healthy virus-free seedlings derived from plant
tissue culture show specific advantages over virus-infected seedlings in terms of agronomic,
physiological, and biochemical indicators, as well as yield and quality. These advantages
may include higher growth rates, healthier root systems, enhanced photosynthetic effi-
ciency, and improved quality [13,14]. Nevertheless, the studies merely concentrated on
plant virus detection during the tissue culture phase. Studies on the reinfection of virus-free
seedlings in the field are still lacking. In this study, we investigated the occurrence of virus
infections in VFH under natural conditions. Though VHF leaves have no symptoms, CVB
was detected in the VFH (Figure 1C). The transcriptome and RT-PCR analysis revealed the
expression levels of CVB and CVR significantly decreased in RVFH compared with VIH
(Figure 1F,G). We speculated that RVFH still maintains immunity against virus infection
by suppressing the expression of virus genes. Viral infections affect the physiological
activities of plants, and resistance in plants is directly related to the degree of damage.
Many studies assume that ROS production is a basic symptom of plant toxicity under
stress [33,34]. As the production of ROS increases, the phytotoxicity rises too [35]. MDA,
a product of peroxidation, has a toxic effect on cells, and its content can reflect the level
of membrane lipid peroxidation. In such toxic conditions, plant growth and metabolism
are adversely affected, resulting in lower crop productivity [35]. Our results revealed that
VIH accumulates more ROS and MDA than RVFH, resulting in a lower biomass (Figure 2).
In plants, ROS causes serious damage to the cells by inhibiting proteins, DNA, and other
metabolic pathways. Moreover, the defense system against ROS is activated in the plants
to regulate its functional activity by activating different enzymatic and non-enzymatic
antioxidant agents [35]. The activities of SOD, POD, and CAT were significantly higher
in RVFH vs. VIH (Figure 4C). In addition, the non-enzymatic defense system [36] also
responded, as indicated by a significantly higher flavonoid content in VIH than in RVFH
(Figure 5G). However, ROS production and scavenging still cannot be balanced, so the final
result was a decrease in yield and quality.

The present study provided valuable insights into RVFH response to lipid and galac-
tose metabolism, as well as SA-related processes in C. morifolium. The downregulation
of genes involved in ‘Sphingolipid metabolism’, ‘Fatty acid elongation’, and ‘Galactose
metabolism’ pathways in RVFH vs. VIH plants suggests that plant virus infection im-
poses significant metabolic stress on the host plant (Figure 2). This is consistent with
previous studies showing that viruses can manipulate the host’s metabolism to enhance
their replication and spread [37]. However, the mechanism underlying the regulation of
lipid metabolism in RVFH is largely unknown. Viral proteins interacted with peroxisomal
proteins, such as HIV’s Nef and influenza’s NS1, or used the peroxisomal membrane for
RNA replication [38]. Peroxisomes are sites of lipid biosynthesis and catabolism, reactive
oxygen metabolism, and other metabolic pathways [38]. Based on GO enrichment analysis,
‘response to ozone’ was significantly enriched in RVFH vs. VIH (Figure 4A). This pathway
contains genes that were all downregulated in RVFH vs. VIH, including superoxide dis-
mutase, lipoxygenase, and long-chain acyl-CoA synthetase (Figure 4B). ROS content and
ROS-related enzyme activity significantly decreased in RVFH vs. VIH (Figure 4C). ROS
increases are closely related to total lipids under stress conditions [39]. Peroxisomes are
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important organelles in plant cells that participate in various physiological and develop-
mental processes, such as fatty acid β-oxidation and the biosynthesis of hormones and
signal molecules [40]. Thus, plant virus reinfection led to extensive remodeling of lipid
metabolic pathways in RVFH.

The clearest role of SA is to regulate the response of plant defense mechanisms to
pathogen infection. SA is synthesized in plants by the ICS pathway and the PAL pathway.
The Arabidopsis genome contains two ICS genes, ICS1 plays a major role, whereas ICS2
plays a minor role, in pathogen-induced SA synthesis [32,41]. Only one ICS was detected
in the rice genome (Figure 5B). Basal SA levels are very low in most plants. However, rice
contains a higher basal level of SA under normal conditions. SA levels in Arabidopsis do
not greatly increase after pathogen infection [42]. These findings reveal that the regulation
of SA biosynthesis varied significantly between species. Our results also demonstrated that
plant virus reinfection affected SA signaling and accumulation in RVFH (Figures 4 and 5).
The downregulation of most SA-responsive genes in RVFH vs. VIH plants suggested that
RVFH might suppress SA-mediated defense responses (Figure 4B).

Recently, a peroxisome beta-oxidation enzyme (AMT1) was found to participate in the
regulation of the PAL pathway in rice [43]. Interestingly, our study also revealed a posi-
tive correlation between PAL genes and the SA-response pathway through co-expression
analysis (Figure 5). This suggested that PAL genes might be transcriptionally activated
by SA signaling to enhance SA synthesis during plant virus infection. Moreover, our
results showed that total flavonoid levels were significantly higher in VIH than in RVFH
(Figure 5G). Flavonoids have been implicated in various physiological processes, includ-
ing defense responses [44–46]. However, no flavonoid-related pathways were enriched
through KEGG and GO analyses in our study. Therefore, further investigation is needed to
determine the relationship between flavonoids and virus reinfection in RVFH.

4. Materials and Methods
4.1. Plant Materials and Sampling

The leaves of VIH in the field had been investigated in our previous study [13]. The
VIH seedlings were stored and propagated from cuttings in the greenhouse of Tongxiang
(N: 30◦38′, E: 120◦32′), Zhejiang, China. The shoots’ meristem tips were excised to remove
viruses, and the detailed method has been described in our previous study [7,13]. The
30-day-old VFH seedlings and VIH seedlings were separately transplanted to two adjacent
fields in March 2021 in Tongxiang. During a field survey in September 2021, we collected
VFH leaves and performed detection for virus infection. Samples of RVFH and VIH were
collected from five locations in the field, with distances ranging from 50 to 100 m apart. For
physiological index analysis, the apical third leaves and top flowers of individual plants
were collected from five locations. For transcriptome analysis, flowers of three individual
plants were separately collected from three locations. Each sample was collected in a sterile
sealed bag and then frozen immediately in liquid nitrogen and stored at −80 ◦C for RNA
extraction and other detection methods.

4.2. Microscopic Observation of Paraffin Section of Stem

The microstructure of the stems was observed by toluidine blue staining according to
Sakai’s method [47]. At the vegetative stage, stems below the apical growth point of RVFH
and VIH plants were collected and sent to Hangzhou Haoke Biotechnology Company
(Hangzhou, China) for paraffin section staining and imaging.

4.3. Determination of Reactive Oxygen Species Levels and Antioxidant Capacity

ROS was detected using the tetramethylbenzidine (TMB) chromogenic method [48].
ROS was detected using an ELISA kit (SINOBESTBIO, Beijing, China). A microplate
reader (Flexstation 3, Molecular Devices, San Jose, CA, USA) was used to measure the
absorbance at 450 nm and the sample’s activity was calculated. MDA was detected using
the thiobarbituric acid (TBA) method [49]. The MDA in lipid peroxide degradation products
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can be condensed with TBA, forming red products with a maximum absorption peak at
532 nm. MDA content was measured using test kits (Nanjing Jiancheng Bioengineering
Institute of China, Nanjing, China) following the protocols described by the manufacturers.
For protein activity detection, the tissues (0.1 g per piece) were cut into pieces and then
ground in a grinder. The grinding instrument (Jingxin, China) was precooled at 60 Hz for
10 s at an interval of 20 s 3 times to prepare 10% tissues homogenate and then centrifuged
(Centrifuge 5427R, Hamburg, Germany) at 8000 r/min at 4 ◦C for 10 min before taking the
supernatant for determination. The activity of SOD was detected by the WST-1 method [50].
The activity of POD was detected by the guaiacol chromogenic method [51]. The activity of
CAT was detected according to the method described by Guo [52].

4.4. RNA Extraction, Library Construction, and Sequencing

Total RNA was extracted using the RNA Kit (TIANGEN, Beijing, China). The methods
of RNA quantity, cDNA library preparation, and transcriptomic analysis were the same as
in our previously published work [53]. In brief, expression levels for each unigene were
calculated as the FPKM using an in-house script. The DEGs were screened based on the cri-
terion: FDR≤ 0.05, log2fold-change (FC) > 1 or log2FC <−1, and with statistical significance
(p adjusted-value < 0.05). The DEGs were also subjected to GO enrichment analysis and
KEGG pathway enrichment analysis using ClusterProfiler (v4.2.2) [54]. To identify viruses
in the chrysanthemum transcriptomes, the no-match reads were assembled de novo using
the Trinity program (https://github.com/trinityrnaseq/trinityrnaseq, accessed on 24 Febru-
ary 2024). The contigs assembled from transcriptome were blasted against NCBI’s reference
viral genome database (http://www.ncbi.nlm.nih.gov/genome/viruses/, accessed on 24
February 2024). In addition, the no-match reads were mapped into CVB and CVR genomes
(OQ335844.1, NC_040703.1, https://www.ncbi.nlm.nih.gov/datasets/genome/, accessed
on 24 February 2024) to analyze virus genes’ expression. The RNA-seq data have been sub-
mitted to the BIG Data Center of the Chinese Academy of Sciences (http://bigd.big.ac.cn,
accessed on 24 February 2024) with accession number CRA014394.

4.5. Determination of SA and Total Flavonoid Content

Using ammonium iron sulfate as the chromogenic agent, the purplish-red complex
formed by SA and Fe3+ has the maximum absorption at 472 nm. Briefly, a standard curve
was first made using the SA standard (Sinopharm Group Chemical Reagent Co., Ltd.,
Shanghai, China). The flowers were then ground into a powder, and 0.5 g of the powder
was accurately weighed in 10 mL absolute ethanol for ultrasonic extraction for 30 min.
Then, the absorbance was measured at 472 nm using ammonium iron sulfate (Shanghai
YI EN Chemical Technology Co., Ltd., Shanghai, China) as a chromogenizer. Finally,
the corresponding SA concentration was calculated from the standard curve and then
converted to a mass ratio format.

Total flavonoids were detected using the NaNO2-Al(NO3)3-NaOH chromogenic
method. A standard curve was first made using rutin standards (Solarbio, Beijing, China).
The dried samples were ground into powder, weighed out to 1 g, added to 30 mL 70%
ethanol, soaked for 24 h, and then filtered. The filtrate was treated with 5% NaNO2
(Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China), 10% Al(NO3)3 (Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China), and 4% NaOH (Sinopharm
Group Chemical Reagent Co., Ltd., Shanghai, China). The absorbance was measured at
510 nm, and the total flavonoid concentration was calculated according to the standard
curve, and finally converted to mass ratio.

4.6. Determination of Pharmacodynamic Components

The content of pharmacodynamic components is a necessary indicator of the quality of
‘Hangju’. According to Chinese Pharmacopoeia, the contents of chlorogenic acid, luteolin,
and 3, 5-O-dicafeoylquinic acid in chrysanthemum should be at least 0.20%, 0.08%, and

https://github.com/trinityrnaseq/trinityrnaseq
http://www.ncbi.nlm.nih.gov/genome/viruses/
https://www.ncbi.nlm.nih.gov/datasets/genome/
http://bigd.big.ac.cn
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0.70%, respectively. The three components use the procedures described in the Chinese
Pharmacopoeia (version 2020).

4.7. RT-PCR and RT-qPCR

Total RNA was isolated from different samples using the TransZol reagent (TransGen
Biotech, Beijing, China). RNA extracts were treated with DNaseI (NEB, Hitchin, UK) to
eliminate DNA contamination. First-strand cDNA was produced from the RNA template
by reverse transcription using the TIANscriptRTKit according to the manufacturer’s in-
structions (TransGen Biotech, Beijing, China). The RT-PCR analyses were performed as
described previously [13]. The semi-quantitative RT-PCR and RT-qPCR analyses were
performed as described previously [45]. The primers used for real-time PCR are listed in
Table S5.

4.8. Statistical Analysis

The data are displayed as means ± standard deviations (SD). Statistical analysis was
performed using the GraphPad Prism software (version 9) [55] and assessed using a one-
way analysis of variance and the least significant difference was calculated at p ≤ 0.05
using Student’s t-test. Data were also treated by hierarchical clustering with the R package
pheatmap (v.1.0.12, accessed on 7 July 2023) and by Principal Component Analysis using
the R package FactoMineR (v.1.2, accessed on 7 July 2023).

5. Conclusions

Our study provided new insights into the molecular mechanisms underlying plant
virus–host interactions and had implications for developing strategies to improve plant
resistance against viruses. The results of this study suggested that RVFH alleviates lipid and
galactose metabolic stress responses in chrysanthemum and affects SA-related processes
by modulating the expression of PAL genes involved in defense-related SA biosynthesis.
Further research is needed to fully understand the complex network of interactions between
viruses and RVFH and to develop effective strategies for controlling viral plant diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13050732/s1, Table S1: Data output quality; Table S2:
KEGG pathways analyses in VF vs. VC; Table S3: GO term analyses in VF vs. VC; Table S4: The
expression levels of PAL and ICS genes; Table S5: Primer sequence; Figure S1: The viruses reported to
infect chrysanthemums are not identified using RT-PCR (35 cycles). M, mark; N, ddH2O; H, healthy
virus-free seedling in tissue culture. The primers are listed in Table S5. Cucumber mosaic virus (CMV),
Tomato aspermy virus (TAV), Potato virus X (PVX), Potato virus Y (PVY), Sweet potato feather mottle
virus (SPFMV), Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV), Zucchini yellow
mosaic virus (ZYMV), Chrysanthemum chlorotic mottle viroid (CChMVd), Chrysanthemum stunt
viroid (CSVd); Figure S2: DEGs levels in ‘Sphingolipid metabolism’ KEGG pathway. Red indicated
upregulated genes and green indicated downregualted genes; Figure S3: The gene expression levels
were verified by RT-qPCR. Values are the mean ± SD (n = 3). n.d., no detection. The primers are
listed in Table S5.
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