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Abstract: Qinghai spruce forests, found in the Qilian mountains, are a typical type of water conser-
vation forest and play an important role in regulating the regional water balance and quantifying
the changes and controlling factors for evapotranspiration (ET) and its components, namely, tran-
spiration (T), evaporation (Es) and canopy interceptions (Ei), of the Qinghai spruce, which may
provide rich information for improving water resource management. In this study, we partitioned
ET based on the assumption that total ET equals the sum of T, Es and Ei, and then we analyzed the
environmental controls on ET, T and Es. The results show that, during the main growing seasons
of the Qinghai spruce (from May to September) in the Qilian mountains, the total ET values were
353.7 and 325.1 mm in 2019 and 2020, respectively. The monthly dynamics in the daily variations
in T/ET and Es/ET showed that T/ET increased until July and gradually decreased afterwards,
while Es/ET showed opposite trends and was mainly controlled by the amount of precipitation.
Among all the ET components, T always occupied the largest part, while the contribution of Es to ET
was minimal. Meanwhile, Ei must be considered when partitioning ET, as it accounts for a certain
percentage (greater than one-third) of the total ET values. Combining Pearson’s correlation analysis
and the boosted regression trees method, we concluded that net radiation (Rn), soil temperature (Ts)
and soil water content (SWC) were the main controlling factors for ET. T was mainly determined
by the radiation and soil hydrothermic factors (Rn, photosynthetic active radiation (PAR) and TS30),
while Es was mostly controlled by the vapor pressure deficit (VPD), atmospheric precipitation (Pa),
throughfall (Pt) and air temperature (Ta). Our study may provide further theoretical support to
improve our understanding of the responses of ET and its components to surrounding environments.

Keywords: evapotranspiration; transpiration; canopy interception; boosted regression trees; environmental
responses

1. Introduction

Evapotranspiration (ET) reflects the complex interactions of climate, vegetation, soil
and terrain [1]. It is a key component of the Earth’s hydrological system and surface
energy balance [2,3], with more than 60% of the annual global precipitation being returned
into the atmosphere [4] through plant transpiration (T) as well as evaporation from both
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soil (Es) and intercepted water from wet leaves and surfaces (Ei) [5]. Among these, T
is one of the fundamental ways in which ecosystems gather water and is currently the
primary water flux on Earth [6]. In addition, T regulates the water transport mechanism
in the soil–plant–atmosphere continuum through the stomata [7] and is also essential for
hydrological processes, the carbon cycle and the energy balance of ecosystems [8,9]; it is
strongly influenced by plants’ physiological characteristics. For Es, it is dominated by the
physical factors that result from the diffusion of water to the soil surface and the patterns
of rainfall and the structural characteristics of the vegetation stand [10]. What is more,
several climatological parameters like solar radiation, air temperature (Ta, ◦C), atmospheric
relative humidity (RH, %) and wind speed (u, m s−1) can, if not well measured or modelled,
negatively affect the assessment of Es [11–13]. Es is often regarded as ineffective water
consumption that causes waste or a low utilization rate of water resources [14]. However,
Es can keep an ecosystem cool, further supporting vegetation photosynthesis and other
functions, in some cases [15]. Ei has always been neglected due to its marginal proportion
in the ET of vegetation in extreme arid regions. However, for forest ecosystems with dense
canopies or vegetation grown in humid environmental conditions, Ei cannot be neglected, as
it usually accounts for a significant proportion of ET. In such cases, the accurate partitioning
of ET into T, Es and Ei is a critical step which yields both a comprehensive insight into
hydrological processes and better water management [16] and is essential to improve the
modeling of land–atmosphere interactions, especially by predicting the temporal response
to droughts across biomes [17,18].

There are multiple established methods for partitioning ET, ranging from simple
to complex, instantaneous to continuous and point scale to satellite pixel scale. These
methods were reviewed by Kool et al. [14] and classified into two categories: models and
measurements. The commonly used models were the Shuttleworth–Wallace model [19] and
its improved structures [20–25], the clumped model [26,27], the FAO-56 dual crop coefficient
model [28–30] and other improved dual-source models [31–33], while measurements were
mainly eddy covariance techniques [34–38] and Bowen ratio systems [39–41] (acquiring
ET), stable isotopes [42–45] (acquiring Es or T), sap flow meters [46–49] (acquiring T),
microlysimeters [50–52] (acquiring Es) and water collection tanks [53,54] (acquiring Ei).
Among these methods, the modeling approach has the advantage of its applicability
over a wide range of time scales and can be applied to the spatial scale of an entire
ecosystem [55,56], but these models always require complex parameterizations and still
require validation. For measurements, researchers usually measure three of four parameters
(ET and its components) and then calculate the last parameter based on the assumption
that ET = T + Es + Ei [10,57–60]. ET partitioning is site-specific and strongly influenced by
the availability of water and energy [61], so it is still urgent to study the partitioning of ET
across various vegetation types under changing climatic conditions.

As ET tends to display complex spatiotemporal patterns across scales due to the
complex interactions between ET and the surrounding environments [62,63], it is of critical
importance to elucidate how ET responds to a variety of environmental variables across
landscapes with varying land surface and climatic conditions [64–66]. Though a great num-
ber of studies have explored the response characteristics of ET to different environmental
factors [67–70], no unified conclusion has been reached so far [71]. For each component of
ET, the dominant environmental controlling factors are also different. The environmental
response of T has been the focus of research in the fields of water demand and supply
and the adaptation mechanism of plants to their environments [72–75]. T is generally
assumed to be affected by site hydrometeorological factors [76], such as net/shortwave
radiation (Rn/Rs, W m−2), vapor pressure deficit (VPD, kPa), atmospheric precipitation
(Pa, mm), soil water content (SWC, %), Ta and RH across temporal scales [77–80]. Among
these factors, Rn/Rs, Ta and VPD are positively correlated with T by controlling stomatal
conductance over short timescales (i.e., hourly and daily), while for longer timescales
(i.e., seasonally and interannually), SWC and Pa are responsible for most of the variation
observed in T [73,79,81]. Consequently, high T rates always correspond to high Ta, low RH
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and sufficient soil water availability [82–84]. Es, in contrast, represents the phenomenon
concerning the change in the liquid phase from water to vapor [85], which primarily de-
pends on soil and environmental factors [16,86–88] and may vary between understory and
bare soil circumstances. In conclusion, due to the different water consumption mechanisms,
ET, T and Es are likely to have different responses to changes in environmental factors.

The Qilian mountains (QLMs), located in the upper reach of the Heihe River Basin
(HRB), the second largest inland river basin in China, are an important ecological barrier in
the northwest regions. As the constructive tree species in the QLMs, Qinghai spruce (QHS)
forest is a typical type of water conservation forest and plays an important role in regulating
the regional water balance. Given the complex topography and climatic conditions, the
region’s QHS ecosystems are fragile and sensitive to climate change [89]. ET is the most
important way to consume water for the QHS; therefore, identifying the characteristics and
environmental responses of ET and its components is of great significance for the regular
growth of QHS. In this study, we quantified ET, T and Ei by direct field measurements
and calculated Es based on the assumption that total ET equals the sum of T, Es and Ei,
the latter often being neglected due to its small impact on the water balance of some areas
or simplifications used in calculations. Then, we analyzed the environmental controls on
ET, T and Es by using the boosted regression trees (BRTs) method. The purposes of our
study were to: (1) partition ET into T, Es and Ei and analyze the magnitudes and changing
characteristics of each parameter; and (2) identify the dominant environmental controlling
factors for ET, T and Es.

2. Materials and Methods
2.1. Experimental Site

This study was conducted in the Pailugou watershed (38◦31′–38◦33′ N, 100◦16′–100◦18′ E),
located in the middle part of the QLMs (36◦43′–39◦36′ N, 97◦25′–103◦46′ E). The watershed
has an area of 2.85 km2 and an elevation range between 2500 and 3800 m a.s.l. In this area,
the mean total daily Rn is 110.28 kW m−2, the mean annual Ta is 1.6 ◦C, the mean annual Pa
is 435.5 mm year−1, the mean annual RH is 60% and the mean daily u is between 0.1 and
2.8 m s−1 [90].

Our experimental site (38◦33′12.15′′, 100◦17′8.19′′, altitude 2765 m a.s.l; Figure 1) was
composed of 126 pure natural QHS trees aged between 49 and 119 years. The average tree
height was 10.5 m, the average diameter at breast height was 14.78 cm, the average sapwood
area was 33.3 cm2 and the average crown breadth of the trees was 322 cm × 357 cm. The
canopy density was 0.58, and the tree density was 1200 trees·ha−1.
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2.2. Eddy Covariance (EC) and Meteorological Measurements

A uniform open-path EC system which consisted of a 3D sonic anemometer/thermometer
(model CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open-path CO2/H2O
gas analyzer (model LI-7500, Li-COR Inc., Lincoln, NE, USA) was installed in a tower to
monitor CO2/H2O fluxes at a height of 24 m. The fetch of the EC system was approximately
1000 m in the predominant upwind direction. Signals were recorded by a datalogger (model
CR3000, Campbell Scientific, Logan, UT, USA) and block-averaged over 30 min intervals.

Meteorological instruments were installed at heights of 2, 15 and 30 m in the tower
to monitor all available meteorological variables. Among those, two sets of rain gauges
(TE525MM, Campbell Scientific Inc., Logan, UT, USA) were installed at heights of 2 m and
30 m to measure Pa and throughfall (Pt, mm). Rn/Rs and photosynthetic active radiation
(PAR; W m–2) were measured by radiometers (Li 200X, Li-COR Inc., Lincoln, NE, USA;
LI-190SA, LI-COR Inc., Lincoln, NE, USA). Ta and RH were measured by instruments
(HMP115A, Onset, Bourne, MA, USA; HMP45A, Campbell Scientific, USA), then VPD
could be calculated from Ta [91]. Soil temperature (Ts, ◦C) (109SS, Campbell Scientific,
Logan, UT, USA) and SWC (SMC300, Spectrum Technologies, Plainfield, IL, USA) were
measured at depths of 10, 20, 30, 40, 60 and 80 cm.

2.3. Sap Flow and Transpiration

Three sample trees that were representative of the surrounding stand were selected
(Table 1). For each tree, a thermal dissipation probe (TDP) (RR-8210, Rainroot Ltd., Beijing,
China) with two needles was inserted into the sapwood, with only the upper needle
continually heated and the lower one kept normal. The sensor output signal was the
difference in temperature (dt) between the two probes. Before installation, a small piece of
bark was removed with a length between 10 and 15 cm in diameter at breast height (DBH,
cm). Afterwards, two holes were drilled (the depths of which were slightly greater than
10 mm) using a drilling plate, and the probes with lengths of 10 mm were inserted into the
holes. Then, the probes were covered with foam boxes and wrapped with reflective paper
to prevent the influence of the natural environment on the measurement data. Eventually,
the probes were connected to a datalogger and set up to collect data every 2 s, and the data
were automatically averaged and stored every 10 min [92]. The sap flow velocity (Vs, cm
h–1) can be calculated according to the following formula [93]:

Vs = 0.0119
(

dtm − dt
dt

)1.231

where dt is the difference in temperature at one moment, in ◦C, and dtm is the maximum
difference in temperature in a day, in ◦C.

Table 1. Summary of biological parameters for the three selected Qinghai spruce trees.

Tree Number Height (m) DBH (cm) As (cm2)

1 11.0 14.9 111.1
2 13.5 21.0 186.5
3 15.5 37.4 525.7

Sig. (two-tailed) 0.331 0.736 0.912
Significant differences were tested by the Student’s t-test at a significance level of p = 0.05. DBH, diameter at
breast height; As, sapwood area.

Then, T can be calculated through the following formula:

T =
0.001

A

n

∑
i

Vsi Asi Ni
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where Vsi is the average sap flow velocity at i diameter class, cm h–1; Asi is the total area at i
diameter class, cm2; n is the total number of diameter classes; and Ni is the total number of
trees at i diameter class.

2.4. Stem Flow (S) and Canopy Interception

According to the distribution of the diameter class of the QHS stand, 1~3 sample
trees were chosen from each diameter class to measure S, and a total of 10 sample trees
were selected in the end. When measuring, we first made grooves by cutting several
polyethylene plastic pipes and fixed them at heights of 50~140 cm above the bases of the
trunks by using nails and glass cements; then, the stem flow was collected by importing
it into a plastic bucket with a capacity of 10 L. S could then be calculated through the
following formula:

S =
n

∑
i=1

Ci × Ni
Ast × 1000

where Ci is the volume of S at i diameter class, mL, and Ast is the area of the QHS stand, m2.
Ei can be calculated according to the following principle of water balance:

Ei = Pa − Pt − S

2.5. Flux Data Processing and Gap Fillings

CO2/H2O flux and CSAT3 data obtained from the EC system were processed using
the EddyPro software version 6.0.0 (LI-COR Biosciences, Inc., Lincoln, NE, USA). Then,
some corrections, including time lag compensation by covariance maximization (with
default), density fluctuation compensation by the use/convert feature to the mixing ratio,
block average detrending and double coordinate rotation, were made. Statistical analysis
of the raw time series data was processed according to [94], and quality check flagging was
obtained according to the CarboEurope standard.

The gaps in the ET data were filled by using different methods according to the gap
lengths. Specifically, the gaps of less than 2 h were filled through the linear interpolation
method and the gaps of less than 2 days were filled through the mean diurnal variation
method [95], while the gaps longer than 2 days were filled through the energy balance
equation [96].

2.6. Boosted Regression Trees (BRTs)

The BRTs method developed by Elith et al. [97] was used to quantify the contribution
of each environmental variable to ET, T and Es. The BRTs method combines the strengths
of regression tree algorithms and the boosting technique, which can handle different data
types and accommodate missing data, and its prediction performance is superior to most
traditional modeling methods in fitting complex nonlinear relationships [98]. In this study,
the gbm package was used to run the BRTs model in R software (version 4.3.1); the values
of the learning rate, tree complex and bag fraction were 0.01, 10 and 0.5, respectively, and
the family type was Gaussian. The output results represent the relative importance of a
single impact factor in the form of a percentage.

2.7. Statistical Analyses

The study periods we selected were from May to September (the main growing season
of QHS) in 2019 and 2020, all the measured data for which were processed to hourly values.
All the statistical analyses were performed using SPSS 19.0 and Origin 8.0.

3. Results
3.1. Variations in the Main Environmental Factors

Detailed information on the key meteorological factors (Figure 2) is essential to assess
their variations with respect to ET and its components. During the study periods in
2019 and 2020, Rn, PAR and Ta showed similar trends, and the daily values of all three
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parameters in July and August were greater than those in other months. The PAR values
were 125.9 and 124.7 Wm−2, which accounted for 74.8% and 73.3% of Rn (Figure 2a). The
average Ta values were both 11.1 ◦C (Figure 2b). The variation trends of Ts at different
depths were similar, and Ts showed more significant trends that increased first and then
decreased compared to Ta (Figure 2c). The VPD variations were rather consistent with Ta, as
VPD was calculated from the equation based on Ta. The average VPD values were 0.57 and
0.61 kPa and ranged from 0.02 to 1.38 and 0.03 to 1.44 kPa, respectively (Figure 2b). Pt
accounted for 76.8% and 89.7% of Pa, indicating that a significant proportion of precipitation
had been intercepted (Figure 2d). The variation trends in SWC were consistent with the
amounts of Pt and Pa, and this was because precipitation is the only source of water input
for the QHS ecosystem (Figure 2e). The average values for RH were 62.8% and 60.6%, and
they ranged from 23.8% to 97.1% and 16.1% to 96.7%, respectively. u remained relatively
stable (there were no significant seasonal differences), and its variation was fairly similar
each year (its average values were 0.58 and 0.59 m s−1 and ranged from 0.05 to 0.99 and
0.03 to 0.93 m s−1, respectively) (Figure 2f).
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Figure 2. Diurnal variations in environmental factors, including (a) net radiation (Rn) and photo-
synthetic active radiation (PAR), (b) air temperature (Ta) and vapor pressure deficit (VPD), (c) soil
temperature (Ts) at different depths, (d) precipitation (Pa) and throughfall (Pt), (e) soil water content
(SWC) at different depths, and (f) relative humidity (RH) and wind speed (u), in 2019 and 2020 at the
study site.

3.2. Variations in ET, T and Es

Monthly mean diurnal variations in ET and T are shown in Figure 3. Both parameters
increased rapidly from sunrise and reached a maximum at approximately midday and
then decreased (Figure 3a,b), and the maximum values of T were greater than 0.3 mm h−1.
We can also see the much lower values of T between sunset and sunrise on the next day
(Figure 3b), which confirmed the existence of nocturnal transpiration. Es and Ei values
were not analyzed at the monthly mean diurnal scale, as Ei was not measured hourly and
Es was calculated by the difference between ET and T and Ei.
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(b) transpiration (T) of the Qinghai spruce in the Qilian mountains in 2019 and 2020.

The monthly dynamics of daily variations in ET, T and Es during the main growing
season of the QHS are shown in Figure 4. The peak values for ET (4.4 and 4.3 mm) and
T (2.8 and 2.7 mm) occurred at the end of June or in July. Both parameters increased first
and then decreased during the whole study period in each year, especially for T, which
showed even more significant trends, as the period (between July and August) was the
flourishing growing stage of the QHS (Figure 4a,b). Total values between July and August
were 108.3 and 104.0 mm for T, which accounted for 57.2% and 56.0% of the total amounts
in 2019 and 2020, respectively. There were no similar variation trends for Es compared
to ET and T (Figure 4c). This is because Es was mainly controlled by the hydrothermic
condition of the soil and was not correlated with plant growth.
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Figure 4. The monthly dynamics of daily variations in (a) evapotranspiration (ET), (b) transpiration
(T) and (c) evaporation (Es) during the main growing season of the Qinghai spruce in the Qilian
mountains in 2019 and 2020.

Monthly cumulative values for ET, T and Es during the study periods in each year
are shown in Figure 5. The total amounts of ET were 353.7 mm in 2019 and 325.1 mm in
2020, and, among all the components, T was always the largest part (189.5 mm in 2019 and
185.7 mm in 2020). ET values in each month in both years were not significantly different,
except for July, during which the difference was 24.6 mm (Figure 5a), and this was mainly
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due to the significant difference in P (51.1 mm) during the period (Figure 2d), which
influenced Es rather than T (Figure 5b,c).
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3.3. Variations in T/ET, Es/ET and Ei/ET

Monthly dynamics of daily variations in T/ET and Es/ET are shown in Figure 6. T/ET
increased until July and gradually decreased afterwards, while Es/ET showed opposite
trends. The daily maximum T/ET and Es/ET values can both reach up to as high as 90%. In
each month, in both years, T/ET was nearly always the greatest among all the components,
except for June in 2019, when the T/ET (46.8%) value was slightly lower than that for
Ei/ET (48.5%), and this was mainly due to the significant amount of P (104.6 mm) in the
period. Overall, T accounted for at least one-third of the ET and Es/ET accounted for as
little as 3%, while Ei/ET was uncertain, as it was mainly controlled by the amount of P
(Figure 7). From the total amounts of T, Es and Ei, the T/ET values were always the greatest
at 53.6% in 2019 and 57.1% in 2020. Ei accounted for a certain percentage of ET (32.9% in
2019 and 31.6% in 2020), which indicated the important role of Ei in the water balance of
the Qinghai spruce forest ecosystem. The contribution of Es to ET was minimal among
all the components, which reflects the excellent water conservation function of the QHS
ecosystem (Figure 8).
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3.4. Dominant Environmental Controlling Factors for ET, T and Es

Firstly, we selected the environmental factors that were significantly related to ET, T
and Es by using Pearson’s correlation analysis. Then, we used the BRTs model to identify
the environmental factors that greatly contributed to ET, T and Es. Pearson’s correlation
analysis revealed that ET was significantly positively correlated with Rn and PAR (the
correlation coefficients were 0.75 and 0.76, respectively) and then u2 and u15 (the correlation
coefficients were 0.51 and 0.57, respectively). T was significantly positively correlated with
Ta, Rn, PAR, Ts and SWC, with correlation coefficients all greater than 0.5, and Es was
significantly positively correlated with VPD (for which the correlation coefficient was 0.51).
In addition, ET, T and Es were all negatively correlated with RH (Figure 9).

Then, we conducted a multicollinearity assessment of the environmental variables
and selected those which passed the multicollinearity test (the absolute value of the related
coefficient was lower than 0.8, and the variance inflation factor was lower than 10). Even-
tually, some of the many environmental factors were selected as the predictor variables.
The BRTs analysis showed that, among the selected predictor variables for ET, T and Es, ET
was mainly controlled by Rn, Ts30 and SWC40, with contributions at 51.0%, 15.7% and 8.5%,
respectively. T was mainly controlled by Rn and PAR, with contributions at 34.9% and
34.2%, respectively, and then Ts30 (the contribution was 13.2%). For Es, it was mainly
controlled by VPD, Pt, Ta and Pa, with contributions at 28.5%, 11.8%, 10.9% and 9.9%,
respectively (Figure 10).



Plants 2024, 13, 801 10 of 20

Plants 2024, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 8. Proportions of transpiration to evapotranspiration (T/ET), evaporation to evapotranspira-
tion (Es/ET) and canopy interception to evapotranspiration (Ei/ET) of the Qinghai spruce during the 
study periods in 2019 and 2020. 

3.4. Dominant Environmental Controlling Factors for ET, T and Es 
Firstly, we selected the environmental factors that were significantly related to ET, T 

and Es by using Pearson’s correlation analysis. Then, we used the BRTs model to identify 
the environmental factors that greatly contributed to ET, T and Es. Pearson’s correlation 
analysis revealed that ET was significantly positively correlated with Rn and PAR (the cor-
relation coefficients were 0.75 and 0.76, respectively) and then u2 and u15 (the correlation 
coefficients were 0.51 and 0.57, respectively). T was significantly positively correlated with 
Ta, Rn, PAR, Ts and SWC, with correlation coefficients all greater than 0.5, and Es was sig-
nificantly positively correlated with VPD (for which the correlation coefficient was 0.51). 
In addition, ET, T and Es were all negatively correlated with RH (Figure 9). 

 
Figure 9. Pearson’s correlation analysis between (a) evapotranspiration (ET), (b) transpiration (T), 
(c) evaporation (Es) and the environmental factors, including air temperature (Ta), relative humidity 
(RH), vapor pressure deficit (VPD), net radiation (Rn), photosynthetic active radiation (PAR), wind 
speed (u), precipitation (Pa) and throughfall (Pt). ** means significant correlation. 

Then, we conducted a multicollinearity assessment of the environmental variables 
and selected those which passed the multicollinearity test (the absolute value of the re-
lated coefficient was lower than 0.8, and the variance inflation factor was lower than 10). 
Eventually, some of the many environmental factors were selected as the predictor varia-
bles. The BRTs analysis showed that, among the selected predictor variables for ET, T and 
Es, ET was mainly controlled by Rn, Ts30 and SWC40, with contributions at 51.0%, 15.7% and 
8.5%, respectively. T was mainly controlled by Rn and PAR, with contributions at 34.9% 
and 34.2%, respectively, and then Ts30 (the contribution was 13.2%). For Es, it was mainly 
controlled by VPD, Pt, Ta and Pa, with contributions at 28.5%, 11.8%, 10.9% and 9.9%, re-
spectively (Figure 10). 
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speed (u), precipitation (Pa) and throughfall (Pt). ** means significant correlation.
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4. Discussion
4.1. Partitioning Methods for ET

Accurately partitioning ET into T, Es and Ei can not only help us better understand the
water and energy exchanges between the surface and atmosphere, but also determine the
water demand and further improve water resource management [15]. Thus, partitioning
ET is crucial for understanding water resources in the context of global climate change [99].
ET can be partitioned mainly through the methods of modeling and measuring. For
modeling, the SW model and the clumped model and their improved forms have been
widely used due to their suitable physical mechanisms. Researchers nowadays mainly
focus on optimizing the structures of the dual- or multi-source models [20,22,100–102],
but these models incorporate a large number of parameters, some of which are difficult
to parameterize [31]. The FAO-56 dual crop coefficient model is an indirect method for
calculating ET from reference crop ET and crop coefficients. Based on the basal crop
coefficient and the soil evaporation coefficient recommended by the FAO, the FAO-56 dual
crop coefficient model has been widely used in estimating crop ET and its components.
However, crop coefficients for many types of vegetations have not been provided by the
FAO. In general, though great efforts have been made and modeling accuracies have also
been improved, there are limitations to the use of these models. Moreover, modeling can
never represent the true amounts of ET and its components, and the applicability of the
models for different ecosystems still requires extensive verification. In contrast, measuring
methods can accurately quantify ET and its components. The commonly used measuring
methods include stable isotope [103–106], sap flow and microlysimeters [10,22,107,108]; the
EC high-frequency correlation approach [109–112]; and large-aperture scintillometers with
Bowen ratio systems [113–116]. Studies based on these instruments and the assumption
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that ET equals the sum of all the components have mostly focused on partitioning ET
into T and Es [60,117–123]; in fact, Ei should also be considered when it accounts for a
significant percentage.

4.2. Proportions of T and Ei on ET

Understanding the annual variation in T/ET remains a challenge and is essential to
garner a thorough understanding of plant responses to the changing environment [124].
A number of studies carried out with different methodologies have identified that there
exists a large variability (appropriately 20–90%) in T/ET across biomes or even at the global
scale [125]. For a typical inland river basin, among the various environmental conditions,
the T/ET for vegetations in arid and semi-arid climate zones in lower reaches with sufficient
water supply was between 20 and 70% [126–129], while for vegetations in high-altitude
mountains in upper reaches, the mean values of this ratio were slightly greater. For the
QHS in the QLMs in the upper reaches of the Heihe River in our study, the T/ET values
were 53.6% and 57.1% in 2019 and 2020, respectively, which were close to the results for the
QHS in the QLMs obtained by other researchers [130,131], while being lower than those
obtained for subtropical coniferous plantations, e.g., 63~68% for Wei et al. [132], 69~85% for
Zhu et al. [133] and 77.4% for Ren et al. [134]. Monthly variations in T/ET showed that
T contributed the most to the ET, especially in summer (the T/ET reached up to 75% on
July in 2020), indicating that T is the most important factor for ET consumption and that it
changes with the growing stages of the QHS.

Ei is an essential component of the forest hydrological cycles. Studies on Ei processes
have been conducted on various plants, all of which clearly indicated that it cannot be
ignored as an important component of water balance [130,135–137]. In our study, the Ei/ET
values for the QHS in the QLMs were 32.9% and 31.6% in 2019 and 2020, respectively, which
further emphasized that Ei plays an undeniable role in ET. The amount and percentage of Ei
vary between climatic regions [138], as they depend on factors such as vegetation character-
istics [139,140], meteorological conditions [141] and precipitation characteristics [142,143].
According to previous studies of the QHS in the QLMs, Ei is mainly controlled by P. Gener-
ally speaking, a low amount or intensity of P leads to small impacts on the branches and
leaves, and the rainwater can be intercepted with great probability. Furthermore, the high
values for the leaf area index (the maximum value was 3.96) of the QHS in the QLMs also
contributed to the greater Ei/ET.

Proportions of T, Es and Ei on the ET of the QHS and other coniferous forests are
summarized in Table 2.

Table 2. Summary of transpiration (T), evaporation (Es) and canopy interception (Ei) on evapotran-
spiration (ET) of Qinghai spruce and other coniferous forests.

Tree Species Coordinates Altitude (m) Study Periods T/ET Es/ET Ei/ET References

Qinghai spruce 38◦31′–38◦33′ N
100◦16′–100◦18′ E 2700 2019–2020 53.6%

57.1%
32.9%
31.6%

13.5%
11.3% This study

Qinghai spruce 38◦32′ N, 100◦15′ E 2835 2008 51.3% 16.5% 32.2% Tian et al. [127]

Qinghai spruce 38◦31′–38◦33′ N
100◦17′–100◦18′ E

2700
2900 2011 52.2–88.4% 11.6–47.8% Peng et al. [131]

Qinghai spruce 2605 2001–2002 60.9% 1.1% 38.0% Dong [144]

Qinghai spruce 36◦43′–37◦23′ N
100◦51′–101◦56′ E 2519 2019 82.6% 17.4% Wang [145]

Coniferous and
broad-leaved
mixed forest

42◦24′ N, 128◦05′ E 738 2003–2008 65.7% 19.3% 15.0%
Lu et al. [146]

Evergreen
coniferous forest 26◦44′ N, 115◦03′ E 102 2003–2008 61.4% 10.8% 27.8%

Artificial
coniferous forests 26◦44’ N, 115◦03’ E 110.8 2003–2008 65.0% 23.0% 12.0% Wei et al. [132]
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Table 2. Cont.

Tree Species Coordinates Altitude (m) Study Periods T/ET Es/ET Ei/ET References

Larch forest 35◦15′–35◦41′ N
106◦09′–106◦30′ E 2264 2012 41.6% 27.2% 31.19%

Cao et al. [147]
Pine forest 35◦15′–35◦41′ N

106◦09′–106◦30′ E 2264 2012 47.2% 17.2% 35.5%

Pinus tabuliformis
forest

35◦15′–35◦41′ N
106◦09′–106◦30′ E 2264 2012 42.4% 27.1% 30.5%

Pinus yunnanensis
forest 27◦00′ N, 100◦10′ E 3250 2019 59.0–81.0% Han et al. [148]

Coniferous
broad-leaved
mixed forest

29◦20′–30◦20′ N
101◦30′–102◦15′ E 7556 2016 48.0%

Sun et al. [149]

Evergreen
coniferous forest

29◦20′–30◦20′ N
101◦30′–102◦15′ E 7556 2016 50.0%

4.3. Environmental Controls for ET, T and Es

The role of environmental variables in controlling ET and its components is an im-
portant but not well-understood aspect in arid areas in northwestern China. In our study,
we concluded that Rn, Ts and SWC were the main controlling factors for ET, and numer-
ous previous studies reached the same conclusions [150–156]. Among these, Rn is the
primary driver of ET, as radiation is the energy source and most of the radiant energy
absorbed by the leaves is used for T [157]. SWC can not only affect the development of the
leaf area index, but also directly and positively affect surface conductance by decreasing
soil surface resistance and stomatal resistance and then increasing soil evaporation and
transpiration [146]. The effect of Ts on ET can be explained, as rising Ts can accelerate
processes of Es and T directly by promoting the roots’ absorption of water from the soil,
and the water conservation function of the QHS ensures the presence of an adequate water
resource in the soil. For T and Es, the main environmental controlling factors were different.
T was mainly determined by the radiation and soil hydrothermic factors (Rn, PAR and
TS), which was consistent with the work by Du et al. [158] and Yang et al. [152], who also
reached the same conclusion for the QHS in the QLMs, and also consistent with the work
by Chen et al. [159,160]. VPD contributed less than the radiation and soil hydrothermic
factors in our study, which was also consistent with the work by Du et al. [158], and the
reason for this is that VPD is not the most important controlling factor, but the result of
the comprehensive effect of meteorological factors to some extent [158]. Es was mostly
controlled by VPD, Pa, Pt and Ta, which was consistent with the work by Wang et al. [158],
who also reached the same conclusion for the QHS in the QLMs. The climate of the QLMs
is typically continental, and in this area, especially after spring, the Mongolia high press
reduces and the subtropical high pressure expands gradually, which results in Ta and u
increasing rapidly, thus promoting the Es process. Consequently, it is of great significance
to keep the soil moisture needed for the regular growth of the QHS and prevent spring
drought in the QLMs [161].

5. Conclusions

Identifying ET partitioning results, as well as the variations and controlling factors
for ET and its components, is essential for ensuring the regular growth of the QHS in the
QLMs. In this study, we analyzed all these aspects, and the primary results are as follows:
(1) ET increased first and then decreased during the main growing season of the QHS,
with total values of 353.7 and 325.1 mm in 2019 and 2020, respectively. (2) The monthly
dynamics of the daily variations in T/ET and Es/ET showed that T/ET increased until July
and gradually decreased afterwards, while Es/ET showed opposite trends. (3) T always
accounted for the largest part of ET and was significantly greater than Es; meanwhile, Ei
cannot be neglected, as it accounts for a certain percentage. (4) The main environmental
controlling factors for ET and its components were different. ET was mainly controlled by
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Rn, Ts and SWC; T was mainly determined by the radiation and soil hydrothermic factors
(Rn, PAR and TS30); and Es was mostly affected by VPD, Pa, Pt and Ta.
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Nomenclature

Descriptions Symbols Units
The Qilian mountains QLMs
Heihe River Basin HRB
Qinghai spruce QHS
Evapotranspiration ET mm
Transpiration T mm
Evaporation Es mm
Canopy interception Ei mm
Net radiation Rn W m−2

Shortwave radiation Rs W m−2

Photosynthetic active radiation PAR W m−2

Air temperature Ta
◦C

Soil temperature Ts
◦C

Vapor pressure deficit VPD kPa
Atmospheric precipitation Pa mm
Throughfall Pt mm
Atmospheric relative humidity RH %
Soil water content SWC %
Wind speed u m s−1

Stem flow S mm
Diameter at breast height DBH mm
Sapwood area As cm2

Boosted regression trees BRTs
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