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Abstract: Bioprospecting native Australian plants offers the potential discovery of latent and novel
bioactive compounds. The promising cytotoxic and antibacterial activity of methanolic extracts of
Pittosporum angustifolium and Terminalia ferdinandiana led to further fractionation and isolation using
our laboratory’s bioassay-guided fractionation protocol. Hence, the aim of this study was to further
evaluate the bioactivity of the fractions and subfractions and characterize bioactive compounds using
liquid chromatography mass spectroscopy (LC-MS/MS) and gas chromatography MS (GC-MS).
Compounds tentatively identified in P. angustifolium Fraction 1 using LC-ESI-QTOF-MS/MS were
chlorogenic acid and/or neochlorogenic acid, bergapten, berberine, 8′-epitanegool and rosmarinic
acid. GC-MS analysis data showed the presence of around 100 compounds, mainly comprising
carboxylic acids, sugars, sugar alcohols, amino acids and monoalkylglycerols. Furthermore, the
fractions obtained from T. ferdinandiana flesh extracts showed no cytotoxicity, except against HT29 cell
lines, and only Fraction 2 exhibited some antibacterial activity. The reduced bioactivity observed in
the T. ferdinandiana fractions could be attributed to the potential loss of synergy as compounds become
separated within the fractions. As a result, the further fractionation and separation of compounds
in these samples was not pursued. However, additional dose-dependent studies are warranted to
validate the bioactivity of T. ferdinandiana flesh fractions, particularly since this is an understudied
species. Moreover, LC-MS/GC-MS studies confirm the presence of bioactive compounds in P. an-
gustifolium Fraction 1/subfractions, which helps to explain the significant acute anticancer activity
of this plant. The screening process designed in this study has the potential to pave the way for
developing scientifically validated phytochemical/bioactivity information on ethnomedicinal plants,
thereby facilitating further bioprospecting efforts and supporting the discovery of novel drugs in
modern medicine.

Keywords: bioassay-guided fractionation; Pittosporum angustifolium; bioactive compounds; phyto-
chemicals; phenolic compounds; antioxidants; LC-MS/MS

1. Introduction

Bioprospecting involves a multidisciplinary approach that entails the systematic dis-
covery, isolation and identification of new bioactive molecules from natural biological
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reserves, such as plants. Whilst medicinal plants have been used to treat various health con-
ditions for centuries, conventional bioprospecting methods are often time-consuming and
expensive [1]. Moreover, the complexity of plant matrices and the occurrence of numerous
phytochemicals can make the separation and analysis process quite challenging.

The process of separating phytochemicals involves isolating the constituents in the
plant extracts or effective parts and purifying them into monomer compounds using physi-
cal and chemical methods [2]. Conventional isolation methods include solvent extraction,
precipitation, crystallization, fractional distillation, salting out and dialysis. More modern
techniques include column chromatography, high-performance liquid chromatography,
ultrafiltration and high-performance liquid droplet counter current chromatography. There
are several chromatographic techniques available for the identification and quantification
of phenolic compounds in plants, including thin-layer chromatography (TLC), gas chro-
matography (GC), high-performance liquid chromatography alone or coupled with mass
spectrometry (MS), capillary electrophoresis (CE) and micellar electro-kinetic chromatogra-
phy (MEKC) [3].

Phenolic compounds are a highly complex class of naturally occurring molecules
that possess a range of therapeutic properties. As a result, significant interest has been
devoted to their analysis in medicinal plants and food samples. High-performance liquid
chromatography (HPLC) is the most commonly utilized separation technique for this
purpose [4–7].

High-performance liquid chromatography equipped with a fraction collector was the
analytical tool of choice for the separation and isolation of fractions/subfractions of extracts
in this study due to its characteristic features of high efficiency, speed, and automation.
The separation of compounds is based on the principles of the adsorptive capacity of the
column stationary phase to different compounds, the molecular size of the compounds,
the difference in dissociation degrees of the chemical constituents and the difference in
partition coefficients between the stationary and mobile phase [2].

The medicinal properties of Australian native plants due to their strong expression of
special metabolites such as phenolics, alkaloids, sterols, essential oils and liginans [8] are
indictive of the potential discovery of novel prophylatic and/or therapeutic phytochemicals.
Pittosporum angustrifolium Lodd, commonly known as Gumbi gumbi, is an Australian native
shrub or tree species from the Pittoporaceae family [9]. It is as a popular traditional medicine
which was first discovered and used by Indigenous Australians for treating pathogenic
diseases [9] and has been shown to have anticancer properties; hence, it is sometimes
referred to as “Queensland’s anticancer tree” [10]. Terninalia ferdinandiana Exell, commonly
known as Kakadu plum, is a moderately sized, semi-deciduous native Australian tree
that bears fruit upon reaching maturity [11]. This fruit has been reported to contain the
highest amount of ascorbic acid, with levels as high as 6% of recorded wet weight, which is
estimated to be 900 times higher than that of blueberry (g g−1) [12,13].

Based on the findings from our previous study [14], the objective of this study was to
further fractionate Fraction 1 of P. angustifolium methanolic crude extracts into subfractions,
utilizing phase 3 of the proposed bioassay-guided fractionation protocol design (Figure 1),
and to perform LC-MS and GC-MS analysis for compound characterization. This is among
the first/few studies investigating the bioactivity of fractions from P. angustifolium. Addi-
tionally, since T. ferdinandiana flesh lyphophized extracts have also shown some therapeutic
potential, fractionation and bioassay testing on these fractions were also included.



Plants 2024, 13, 807 3 of 16
Plants 2024, 13, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Bioassay-guided fractionation protocol design [14]. 

2. Results and Discussion 
2.1. Pittosporum angustifolium Fractions and Subfractions 
2.1.1. LC-MS Analysis of P. angustifolium Fraction 1 

While the subfractions of P. angustifolium Fraction 1 did not demonstrate significant 
cytotoxic properties or contain compounds of interest, Fraction 1 was found to be effective 
in reducing cell viability in the tested cancer cell lines and had a higher selective index, 
suggesting its effectiveness in killing cancer cells while minimizing harm to normal cells 
compared to the other fractions [14]. Moreover, given the possibility of a synergistic effect 
at play in dictating the cytotoxic behavior of P. angustifolium Fraction 1, characterizing the 
potential phenolic metabolites in the fraction was considered a valuable pursuit. 

Using LC-ESI-QTOF-MS/MS, the untargeted screening and characterization of phe-
nolic compounds in Fraction 1 was performed. The obtained MS/MS spectra were com-
pared with NIST and PubMed database libraries, as well as the published literature, to 
putatively confirm the presence of phenolic metabolites (Table 1). Among ten prominent 
peaks, only peaks 1, 4 and 7–9 were tentatively identified (Figure 2) in Fraction 1. 
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2. Results and Discussion
2.1. Pittosporum angustifolium Fractions and Subfractions
2.1.1. LC-MS Analysis of P. angustifolium Fraction 1

While the subfractions of P. angustifolium Fraction 1 did not demonstrate significant
cytotoxic properties or contain compounds of interest, Fraction 1 was found to be effective
in reducing cell viability in the tested cancer cell lines and had a higher selective index,
suggesting its effectiveness in killing cancer cells while minimizing harm to normal cells
compared to the other fractions [14]. Moreover, given the possibility of a synergistic effect
at play in dictating the cytotoxic behavior of P. angustifolium Fraction 1, characterizing the
potential phenolic metabolites in the fraction was considered a valuable pursuit.

Using LC-ESI-QTOF-MS/MS, the untargeted screening and characterization of pheno-
lic compounds in Fraction 1 was performed. The obtained MS/MS spectra were compared
with NIST and PubMed database libraries, as well as the published literature, to putatively
confirm the presence of phenolic metabolites (Table 1). Among ten prominent peaks, only
peaks 1, 4 and 7–9 were tentatively identified (Figure 2) in Fraction 1.

Table 1. Tentative LC-MS characterization of compounds in Pittosporum angustifolium Fraction 1.

Peak No. Proposed
Compound

Molecular
Formula

RT
(min)

Mode of
Ionisation

Molecular
Weight
(g/mol)

Observed
Precursor

Mass (m/z)

Theoretical
Mass (m/z)

Product Ions
(m/z) Literature

1 Chlorogenic acid C16H18O9 9.13 positive 354.31 355.10 355.00 * 65.0, 188.0,
219.0, 275.8

1 Neochlorogenic
acid C16H18O9 9.13 positive 354.31 354.31 355.00 65.0, 188.0,

219.0, 275.8
Li et al., 2016

[15]

2 Unidentified Unidentified 23.29 negative Unidentified 229.10 Unidentified 157.1, 102.2
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Table 1. Cont.

Peak No. Proposed
Compound

Molecular
Formula

RT
(min)

Mode of
Ionisation

Molecular
Weight
(g/mol)

Observed
Precursor

Mass (m/z)

Theoretical
Mass (m/z)

Product Ions
(m/z) Literature

3 Unidentified Unidentified 29.15 positive Unidentified 313.10 Unidentified 223.1, 158.2,
102.2

4 Berberine C20H18NO4
+ 30.65 positive 336.4 336.20 336.12 ** 287.2 Jiao et al.,

2018 [16]

5 Unidentified Unidentified 33.09 positive Unidentified 378.2 Unidentified 102.1, 249.2

6 Unidentified Unidentified 34.11 positive Unidentified 326.9 Unidentified 102.3, 185.1,
228.3

7 Bergapten C12H8O4 36.48 positive 216.042 217.10 217.05 * 129.0, 202.0

8 Rosmarinic acid C18H16O8 44.44 positive 360.3 361.20 361.09 ** 181.05,
139.04

9 8′-epitanegool C20H24O7Na 45.07 positive 399.39 399.2 399.14 287.3, 304.2 Jiao et al.,
2018 [16]

10 Unidentified Unidentified 46.07 positive Unidentified 403.2 Unidentified 102.2, 329.2,
361

* NIST Library. ** PubChem.
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Figure 2. Proposed phenolic metabolites in Pittosporum angustifolium Fraction 1.

Compound 1 (m/z 355.10) mass spectrum data, as presented in Table 1, were identified
as either chlorogenic acid or its isomer, neochlorogenic acid, both of which belong to
the caffeoylquinic acid class of molecules. These compounds are known for their strong
antioxidant, anticancer, anti-inflammatory, and antifungal properties [16]. Previous studies
have also identified chlorogenic acid in P. angustifolium leaves [17–19]. Additionally, our
previous work has suggested the presence of chlorogenic acid in crude MeOH extracts of
P. angustifolium leaves [14,20].

Compound 4 (m/z 336.20) mass spectrum data, as presented in Table 1, were tentatively
identified as berberine (2,3-methylenedioxy-9,10-dimethoxyprotoberberine chloride), a
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benzyl tetra isoquinoline alkaloid. Berberine been previously extracted from roots of
various plants such as Berberis vulgaris, B. aristotle, B. aquifolium, Hydrastus canadensis,
Pellodendron chenins and Coptidis rhizomes [21]. Numerous authors have reported the broad-
spectrum therapeutic potential of berberine due to its action against diabetes, hypertension,
depression, obesity, inflammation and cancer [21–24]. However, this is the first study
to tentatively propose the occurrence of berberine in P. angustifolium. Therefore, further
investigation to confirm this finding is warranted.

Compound 7 (m/z 217.10) mass spectrum data, as presented in Table 1, were identified
as bergapten (5-methoxypsoralen), which belongs to the class furocoumarin. This fura-
nocoumarin derivate is commonly found in bergamot essential oil, other citrus essential
oils and grapefruit juice, as well as in a wide variety of medicinal plants from the Rutaceae
and Umbelliferae families such as figs, parsley, celery and anise [25]. Pharmacological stud-
ies have shown that bergapten has various properties, including neuroprotection, organ
protection, anticancer, anti-inflammatory, antimicrobial and antidiabetic effects [25,26].
However, this is the first study to report its potential occurrence in P. angustifolium, and
further investigations are required to confirm this claim.

Compound 8 (m/z 361.20) mass spectrum data, as presented in Table 1, were tenta-
tively identified as rosmarinic acid, which belongs to the hydroxycinnamic acid class of
phenolic acids and is commonly found in fruits, herbs and medicinal plants (Ali et al.,
2022 [27]). It is produced by Boraginaeceae and the Nepetoideae subfamily of the Lamiaceae
plant species. Initially, it was extracted as a pure compound from rosemary (Rosmarinus
officinalis) [28]. This compound has shown potent biological activities in combating human
diseases such as cancer, diabetes, neurodegenerative disorders, cardiovascular disease and
inflammatory disorders [29]. While this is the first study to tentatively report its occurrence
in P. angustifolium, further investigation is needed to confirm this finding.

Compound 9 (m/z 403.2) mass spectrum data, as presented in Table 1, were ten-
tatively identified as 8′-epitanegool, classified as phenylpropanoids. A previous study
demonstrated promising in silico antiviral results similar to the main alkaloids [30]. This
compound has been previously identified in Tinospora sinensis, a type of Chinese folk
medicine [16], and the literature on its therapeutic potential is limited or non-existent.
Additionally, this is the first study to tentatively identify this compound in P. angustifolium.

If the identities of these compounds are confirmed in Fraction 1 of P. angustifolium, then
it will not only strongly support its antioxidant and anticancer properties, as determined
in this study, but also the anecdotal claims of Indigenous Australians [18]. Furthermore,
detailed studies to confirm the identity of these compounds and/or to discover other
bioactive compounds in P. angustifolium crude, fractions and subfractions were conducted
using GC-MS.

2.1.2. GC-MS Analysis of Pittosporum angustifolium Fraction 1 and Subfractions

Targeted GC-MS/MS analysis in MRM acquisition mode identified a total of 103 com-
pounds, belonging to various classes of primary and secondary plant metabolites. The
main primary metabolites identified are classified as carbohydrates, amino acids, proteins,
lipids, purines and pyrimidines of nucleic acids. In addition, the secondary metabolites
identified were classified into the following three main groups: (a) nitrogen-containing
compounds such as alkaloids, glucosinolates and cyanogenic glycosides; (b) phenolic com-
pounds such as phenylpropanoids and flavonoids; and (c) terpenes [31]. However, only
twenty predominantly found compounds in Fraction 1 and Fraction 1 subfractions are
reported in Figure 3 and Table 2, which mainly belong to the class of carbohydrates and
amino acids.
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Table 2. Target GC-MS/MS peak area and classification of compounds identified in Pittosporum
angustifolium Fraction 1 and Fraction 1 Subfractions 1, 2 and 3.

Target Fraction 1 Subfraction 1 Subfraction 2 Subfraction 3 Compound Class

1 Citric acid-4TMS 2,971,610 87,281 124,060 23,465 Carboxylic acids
2 Glucose-meto-5TMS(1) 2,162,365 230,045 0 163,277 Carbohydrate
3 Inositol-6TMS(2) 1,194,216 141,218 1123 10,389 Carbocyclic sugar
4 2-Aminopimelic acid-3TMS 1,188,393 35,263 46,722 10,226 Amino acid
5 Hydroxylamine-3TMS 609,044 0 574,334 0 Hydroxylamine
6 Glucose-meto-5TMS(2) 423,257 49,736 3456 34,808 Carbohydrate
7 Galactose-meto-5TMS(2) 422,411 49,066 3587 38,804 Carbohydrate
8 1,5-13C2-Citric acid 412,327 13,144 16,485 3281 Carboxylic acids
9 Lactic acid-2TMS 268,289 437,458 247,071 444,661 Carboxylic acids

10 1,6-Anhydroglucose-3TMS 228,502 14,470 1080 4143 Carbohydrate
11 Alanine-2TMS 225,866 32,076 8606 14,237 Amino acid
12 Xylose-meto-4TMS(1) 178,497 31,305 4775 22,749 Carbohydrates
13 3-Aminoglutaric acid-2TMS 169,217 26,046 4177 2165 Amino acid
14 4-Aminobutyric acid-3TMS 169,048 17,510 0 6009 Amino acid
15 Arabinose-meto-4TMS 165,445 30,249 4666 19,117 Carbohydrates
16 Palmitic acid-TMS 154,588 129,131 126,973 120,981 Saturated fatty acid
17 Sarcosine-d3-2TMS 147,242 130,615 123,520 94,609 Amino acid
18 Lyxose-meto-4TMS(2) 146,571 23,892 3754 16,430 Carbohydrates
19 Proline-2TMS 144,359 37,171 3022 0 Amino acid
20 Malic acid-3TMS 135,932 12,652 2318 3148 Carboxylic acids

Inositol (Figure 4), the third most abundant compound identified in Fraction 1, was of
interest due to its previously reported anti-atherogenic, anti-oxidative, anti-inflammatory
and anticancer properties [32]. Clinical trials using inositol in pharmacological doses
have shown promising results in the management of gynecological diseases, respiratory
stress syndrome, Alzheimer’s disease, metabolic syndrome and cancer [33]. Inositol occurs
naturally in all eukaryotes and is involved in several biological processes [32]. In mammals,
inositol is produced in the liver and kidney, and myo-inositol (inositol isomer) and its
derivatives in particular are involved in biological functions which include the modulation
of glucose metabolism, calcium release in cell signaling, chromatin and CSK remodeling,
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gene transcription, proliferation, apoptosis and proper structural development [33]. In
plants, inositol is well known for acting a stress ameliorator and controls multiple aspects
of plant signaling and physiology [34]. On this premise, the cytotoxic effects of Fraction 1
may likely be due to the predominant occurrence of inositol. However, to our knowledge,
this study is the first to report the occurrence of inositol in P. angustifolium, and thus, further
investigations are required to confirm this finding.
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2.1.3. Cytotoxic Activity and HPLC Profiling

The subfractionated products obtained from P. angustifolium Fraction 1 (GGLX F1
S1-3) were subjected to an anticancer bioassay, and the results are presented in Figure 5.
There was no significant difference (p > 0.05) in the percentage cell viability between of
the treated cells and negative control for all the tested cell lines, except for the HT29 cells
(p < 0.05), where all three subfractions demonstrated some cytotoxic activity. The low
bioactivity observed in the subfractions may be attributed to the low doses of compounds
present in these subfractions, as indicated by low peak signals in the HPLC chromatograms
shown in Figure 6. Additionally, the cytotoxic effect observed in the methanolic extracts of
P. angustifolium and its fractions may be due to the synergistic action of different compounds.
On the other hand, the subfractions could contain fewer isolated compounds, which may
explain the low or no cytotoxicity observed.
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Figure 5. Percentage cell viability of cell lines treated with Pittosporum angustifolium Fraction 1 of
concentration 5340 µg mL−1 and Fraction 1 Subfractions 1, 2 and 3 with concentrations of 16.55,
12.15 and 16.15 µg mL−1, respectively. One-way ANOVA test indicated no significant difference
(p-value > 0.05) in cytotoxicity between the different subfractions for the same cell line, denoted
by the same letters on the respective bars, except in the case of HT29 cells. Negative control: cells
without treatment, positive control: cell treated with 50 ug mL−1 cisplatin (chemotherapy drug).
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Although numerous studies have identified triterpenoid saponins, terpenoids, phe-
nols, and coumarin compounds isolated from P. angustifolium as having potential anticancer
properties [10,17,18,35,36], only a few have been shown to be effective in vitro. Backer et al.
(2016) screened ten acylated saponins for their ability to inhibit human DNA-topoisomerase
I, an enzyme responsible for resolving torsional stress associated with DNA replication,
transcription, and chromatin condensation [37]. Inhibitors of DNA-topoisomerase I can in-
hibit the proliferation of cancer cells, and such agents are commonly used in chemotherapy
for their antiproliferative effects. However, their effects on the metastasis of cancer cells
remain unclear [38].

In previous work, Backer et al. (2015) isolated two new taraxastane-type triterpene
saponins, which were evaluated against four cell lines [9]. However, no cytotoxic activity
was observed up to a concentration of 130 µM. In a similar subfractionation study of
Syzygium polyanthum (Wight.), the crude methanol extract showed higher bioactivity in
terms of hypoglycemic effect compared to the fraction, subfraction, and squalene (the
major chemical compound and a triterpene isolated from S. polyanthum leaf extract) [39].
Therefore, the cytotoxic properties of P. angustifolium could possibly be due to a synergistic
effect, similar to that seen in other studies.

In addition, authentic standards of selected polyphenols (4-hydroxybenzoic acid,
caffeic acid, catechin, catechol, chlorogenic acid, gallic acid, isovanillic acid, neochlorogenic
acid, protocatechuic acid, syringic acid, tyrosol and vanillic acid) were subjected to the same
HPLC gradient elution as the subfractions, and the combined chromatograms with retention
times are shown in Figure 7. When compared to the retention times of the predominant
peaks in the chromatograms of the subfractions (Figure 6), only one peak at a retention time
of 4.412 min in Subfraction 1 could tentatively be identified as gallic acid based on it having
a similar UV spectrum to the standard. However, there were some discrepancies between
the retention time of the standard gallic acid (4.009 min) and the subfraction (4.412 min). In
Subfraction 2, none of the retention time peaks or UV spectra matched any of the authentic
standards. On the other hand, the retention time of a predominant peak at 7.768 min in
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Subfraction 3 was tentatively identified as 4-hydroxybenzoic acid, as a similar retention
time (7.775 min) and UV spectrum was evident (Figure 7).
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As the subfractions of P. angustifolium did not show any significant cytotoxic activity,
further separation and isolation was deemed impractical and hence was not pursued.

2.2. Terminalia ferdinandiana Fractions
2.2.1. Cytotoxic Activity

The lyophilized methanolic flesh extract of T. ferdinandiana was fractionated into four
fractions, as listed in Table 3. The cytotoxicity of these fractions was evaluated against
HeLa, HT29 and PH5CH8 cell lines using the concentrations given in Table 3. The results
of this experiment are presented in Figure 8.
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Figure 8. Percentage cell viability of cell lines treated with Terminalia ferdinandiana fractions. One-
way ANOVA test indicated no significant difference (p > 0.05) in cytotoxicity between the different
subfractions for the same cell line, denoted by the same letters on the respective bars, except in
the case of HT29 cells. Negative control: cells without treatment, positive control: cell treated with
50 ug mL−1 cisplatin (chemotherapy drug).
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Table 3. Terminalia ferdinandiana flesh (KPF) lyophilized fractions.

Fractions Crystal Product Obtained
(mg)

Concentrations of Fractions
Tested (mg/mL)

KPF1 38.10 0.095
KPF 2 169.00 0.423
KPF 3 77.40 0.194
KPF 4 17.60 0.044

None of the fractions showed significant (p > 0.05) cytotoxic activity against HeLa and
PH5CH8 cell lines, except for slight cytotoxicity observed against the HT29 cell line. This
cytotoxicity was significantly different from the negative control (p < 0.05). To minimize
the matrix effect, lower doses of the fractions were used in the bioassay. However, in future
studies, higher doses could be utilized to investigate potential higher toxicity.

While the previous literature [40–42] has shown cytotoxic properties of T. ferdinandiana,
there are limited studies on their fractions [43]. As such, this study is crucial in paving the
way for future fractionation studies of this species.

2.2.2. Antibacterial Activity

Considering the promising antibacterial activity demonstrated by the crude flesh
extract of T. ferdinandiana [14], the fractions were also evaluated against four bacterial
strains. The results are presented in Table 4.

Table 4. Average zone of inhibition (n = 3) of Terminalia ferdinandiana flesh fractions.

Kakadu Plum
Fractions

Concentrations
(µg/mL)

Bacterial Strain Zone of Inhibition (mm)

Gram Positive Gram Negative

S. aureus E. coli P. aeruginosa S. typhimurium

1 58.1 4.00 ± 0.71 0.00 0.00 0.00
2 169.0 4.30 ± 0.35 3.20 ± 0.10 2.10 ± 0.20 2.30 ± 0.40
3 77.9 0.00 0.00 0.00 0.00
4 17.6 4.20 ± 0.25 0.00 0.00 0.00

Positive control
(gentamicin) 10 13.67 ± 0.58 16.33 ± 0.58 13.00 ± 0.10 12.67 ± 0.58

All values are given as means ± 2 SD (n = 3).

The antibacterial activity exhibited by the fractions was relatively mild, and in some
cases (Fraction 3), no activity was observed. Fraction 2 demonstrated the highest activity
and was the only fraction that inhibited the growth of all tested bacterial strains compared
to the other fractions, possibly because it was the most concentrated fraction. Overall, even
though the flesh extracts of T. ferdinandiana fruit have previously demonstrated antibacterial
activity in several studies [11,44,45], including our previous studies [14], the low activity of
the fractions suggests that the bioactive compounds in the lyophilized extract may work
synergistically to produce its antibacterial property.

Despite the small amount of existing literature on the therapeutic potential of T. ferdi-
nandiana, this study provides the first report on the bioactivity of its fractions. However,
further rigorous testing is necessary to validate the data obtained, especially in terms of
dose-dependent anticancer and antibacterial effects. Therefore, more elaborate investigation
into this understudied native fruit is warranted.

3. Materials and Methods
3.1. Reagents

Hydrochloric acid and sodium carbonate were purchased from Chem-Supply (Gill-
man, Australia). All other reagents, including the HPLC-grade methanol, were pur-
chased from Sigma-Aldrich (Melbourne, Australia). Some reagents used in the cytotoxi-
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city analysis, which included the CellTiter 96® AQueous Assay (composed of solutions
of tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)−5-(3-carboxymethoxyphenyl)−2-
(4-sulfophenyl)−2H-tetrazolium, inner salt; MTS(a)]) and an electron-coupling reagent
(phenazine methosulfate; PMS), commonly known as MTS reagent, and fetal bovine serum
(FBS) were obtained from Promega (Madison, WI, USA) and Scientifix (Clayton, Australia),
respectively. Dulbecco’s Modified Eagle’s Medium—high glucose (DMEM) and Dulbecco’s
Phosphate Buffered Saline (DPBS) solution were kept in the dark at 4 ◦C, while the other
reagents used in the bioassays were frozen until they were required for use. All dilutions
and assay preparations used Milli-Q water. All reagents used were of analytical-grade or
higher purity.

3.2. Sample Extraction

Approximately 2.5 g of powdered plant material (leaves of P. angustifolium and fruit of
T. ferdianadiana) was extracted in 75 mL of 90% methanol as previously detailed [14]. The
supernatant obtained was filtered using 0.45 µm Advantec filter paper and evaporated
under reduced pressure at 27 ◦C to a semi-solid consistency using a rotary evaporator.
The semi-solid product was redissolved in approximately 25 mL of Milli-Q water and
freeze-dried under vacuum (Flexi-Dry Freeze-dryer, −47 ◦C, 277 mTorr) for 72 h to obtain
a fine lyophilized product, which was stored at 4 ◦C in the dark until required.

3.3. HPLC Fractionation and Subfractionation of P. angustifolium Extract

The HPLC conditions mentioned in our previous publication [14] were followed
with slight modifications. Briefly, a reversed-phase C18 column (Agilent Eclipse XDB-C18;
150 × 4.6 mm; 5 µm pore size) and guard cartridge (Gemini C18 4 × 2 mm) with an injection
volume of 30 µL and a run time of 50 min with post run time of 5 min was used for column
flushing. The time slicing feature of the Agilent fraction collector was used to collect only
Fraction 1 (0 to 12 min) from 20 mg mL−1 of P. angustifolium lyophilized product. The
volume collected after multiple runs was then rotary evaporated to a semi-solid consistency
and reconstituted in 30 mL of Milli-Q water. This was then placed at −80 ◦C overnight and
then freeze-dried for 72 h. A crystalline product with a mass of 87.9 mg was obtained. The
HPLC chromatogram of P. angustifolium Fraction 1 is depicted in Figure 9.

The crystalline product obtained from Fraction 1 was redissolved in Milli-Q water
at a concentration of 43.95 mg·mL−1 and subjected to HPLC fractionation using gradient
elution, as described in Figure 9B, and an injection volume of 30 µL. Retention time zones
showing predominant peaks were selected for time slicing, and fractions were collected
from 0–3 min (Subfraction 1), 3–6 min (Subfraction 2) and 6–11 min (Subfraction 3), as
depicted in Figure 9C.

3.4. HPLC Fractionation of T. ferdinandiana Fruit Flesh Extract

The same HPLC conditions as described above (Section 3.3) and in our previous publi-
cation [14] were followed with slight modifications to the gradient elution and injection
volume. The gradient elution described in Figure 9B was used, and a sample injection
volume of 30 µL was applied. A total run time of 50 min was allowed to ensure that all
eluents were captured in the chromatogram, and a post run time of 10 min was allowed for
column flushing.

Retention times showing predominant peaks were selected for time slicing and the
collection of fractions from 0–6 min (Fraction 1), 6–16 min (Fraction 2), 16–30 min (Fraction 3)
and 30–40 min (Fraction 4), as depicted in Figure 10.
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3.5. Cytotoxicity Assay

The cytotoxicity of the subfractions of P. angustifolium Fraction 1 and fractions of
T. ferdinandiana were assessed against HeLa (human cervical carcinoma), HT29 (human
colorectal carcinoma), HuH7 (human liver carcinoma) and PH5CH8 (human epithelial non-
neoplastic hepatocyte cell), obtained from the University of Adelaide, using the MTS assay
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previously described [14]. However, it was observed that the proliferation and general
health of the HuH7 cells were compromised, and they were nonviable for use in the cell
culture assay of T. ferdinandiana fractions in the later trials.

3.6. Antimicrobial Activity

The antimicrobial activity of T. ferdinandiana Fractions (1–4) were tested against the
four bacterial strains (Gram positive—Staphylococcus aureus and Gram negative—Escherichia
coli, Salmonella typhi and Pseudomonas aeruginosa) following the disk diffusion method [46]
with slight modifications, as described previously [14].

3.7. LC-MS/MS Analysis of P. angustifolium Fraction

The methanolic extract of P. angustifolium was analyzed for targeted phenolic com-
pounds using liquid chromatography tandem mass spectroscopy (LC-MS/MS). The analy-
sis was performed using a Nexera X2 chromatography system, which was coupled with
a Shimadzu LCMS-8040 system comprising a CBM-20A communications bus module, a
DGU-20A5R degassing unit, LC-30AD pumps, an SIL-30AC autosampler and a CTO-20AC
column oven. The analytical method used a Raptor biphenyl column (100 mm × 2.1 mm,
2.7 µm), 5 µL injection volume, 40 ◦C column temperature and a flow rate of 0.6 mL min−1.
The mobile phase comprised water (phase A) and methanol (phase B), each containing
5 mM ammonium formate and 0.1% formic acid. The eluent was directed to the electrospray
ionization (ESI) module.

A Shimadzu LCMS-8040 model triple-quadrupole mass spectrometer, equipped with
an electrospray ionization (ESI) source, was used to perform targeted tandem mass spec-
trometry on the eluting compounds. Both positive and negative ionization modes were
used depending on the ionization characteristics of each analyte. The ESI conditions used
were an interface temperature of 350 ◦C, a DL (dissolution line) temperature of 250 ◦C and
400 ◦C in the ESI source. Nitrogen was used as the nebulizing gas and drying gas at flow
rates of 3 L min−1 and 15 L min−1, respectively, and the interface voltage used was 4.50 kV.
The LC-MS/MS data were collected and analyzed in LabSolutions software version 5.99
SP2 (Shimadzu, Kyoto, Japan). The PubChem database and offline version (accessed 21
March 2023) of the National Institute of Standards and Technology (NIST) Library was
used to match the MS/MS spectra of phenolic compounds in the P. angustifolium extract.

3.8. GC-MS/MS Analysis of P. angustifolium Fraction 1 and Subfractions

All four samples were dissolved in 1 mL of chilled MS-grade water and mixed via
vortex and kept on ice throughout processing where possible. Twelve aliquots were created
for each sample. Three aliquots each of 1 µL, 10 µL, 100 µL and 200 µL were generated
by transferring the sample into glass vial inserts. The aliquots were then frozen prior to
lyophilization at 1 mbar (room temperature) for 3.5 h until dry. The sample aliquots were
then sealed in auto-sampler vials and stored at −20 ◦C until analysis.

Samples were analyzed on a Shimadzu TQ8050 NX system following automated
trimethylsilyl (TMS) derivatization using an AOC 6000 plus auto-sampler. The derivatization
was accomplished by adding 25 µL of 30 mg mL−1 methoxyamine hydrochloride in pyridine
to 10 µL of dried metabolite extract. The samples were then incubated at 37 ◦C for 2 h with
continuous agitation. Following this, 25 µL of N,O-Bis(trimethylsilyl)trifluoroacetamide
(BSTFA) was added, with further incubation at 37 ◦C for 1 hr with continuous agitation. The
derivatized sample was then incubated at room temperature for 1 hr prior to injection. One
microliter of the derivatized samples was injected onto the GC-MS/MS by the auto-sampler
at a split ratio of 5:1 and a constant flow of 1.10 mL min−1, and the oven temperature was
maintained at 100 ◦C. The samples were analyzed in Multiple Reaction Monitoring (MRM)
mode using the Shimadzu Smart Metabolite Database containing 521 MRM metabolite
targets. Prior to each sample being analyzed, four hexane blanks were analyzed to ensure
there was no carry over between samples.
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Data produced from the analysis of samples were extracted using LabSolutions Insight
software 4.25.39636.3. Metabolites that were within ± 0.1 min of the predicted retention
time and within ±25% of the relative ion ratio had their area under the curve reported for
further statistical analysis. Where metabolites did not need these criteria, the area under
the curve was not reported.

3.9. Statistical Analysis

All data were presented as means ± SEM for triplicate samples. Statistical analyses
were performed using RStudio version 2022.12.0-353 software, with a one-way analysis of
variance to determine the significance between the control and treated groups. A value of
p < 0.05 was considered statistically significant.

4. Conclusions

Whilst P. angustifolium crude leaf extracts and fractions demonstrated strong cytotoxic
activities, no significant activity was evident in the subfractions, thereby suggesting that the
bioactivity may be attributed to the synergistic effect of the phenolic compounds present.
Further testing of subfraction combinations may confirm the possibilities of compound
synergy. Moreover, LC-MS/GC-MS studies confirm the presence of bioactive compounds
in P. angustifolium Fraction 1/subfractions, which helps to explain the significant acute
anticancer activity of this plant. Compounds tentatively identified in P. angustifolium
Fraction 1 using LC-ESI-QTOF-MS/MS were chlorogenic acid and/or neochlorogenic acid,
bergapten, berberine, 8′-epitanegool and rosmarinic acid. GC-MS analysis indicated the
predominant occurrence of compound inositol in P. angustifolium Fraction 1, which may
be responsible for its anticancer properties. This is the first study to report the occurrence
of the above-mentioned compounds in P. angustifolium, and further investigations are
required to confirm these findings. Furthermore, the fractions of T. ferdinandiana flesh
extracts showed no cytotoxicity, except against HT29 cell lines, and only Fraction 2 showed
some antibacterial activity against the bacterial strains tested. The reduced bioactivity in the
T. ferdinandiana fractions may again also be due to loss of synergy as compounds become
separated in the fractions. Further dose-dependent studies to validate the bioactivity of
T. ferdinandiana flesh fractions is warranted for this understudied species. Overall, this
study successfully applied the third phase of our developed bioassay-guided fractionation
protocol (Figure 1). However, further studies and retests are warranted to confirm and
check for the reproducibility of the results obtained.
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