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Abstract: The formation of biofilms underscores the challenge of treating bacterial infections. The
study aimed to assess the antioxidant, cytotoxicity, antibacterial, anti-motility, and anti-biofilm
effects of defatted fractions from Myrothamnus flabellifolius (resurrection plant). Antioxidant activity
was assessed using DPPH radical scavenging and hydrogen peroxide assays. Cytotoxicity was
screened using a brine shrimp lethality assay. Antibacterial activity was determined using the micro-
dilution and growth curve assays. Antibiofilm potential was screened using the crystal violet and
tetrazolium reduction assay. Liquid–liquid extraction of crude extracts concentrated polyphenols
in the ethyl acetate and n-butanol fractions. Subsequently, these fractions had notable antioxidant
activity and demonstrated broad-spectrum antibacterial activity against selected Gram-negative and
Gram-positive bacteria and Mycobacterium smegmatis (MIC values < 630 µg/mL). Growth curves
showed that the bacteriostatic inhibition by the ethyl acetate fractions was through the extension of
the lag phase and/or suppression of the growth rate. The sub-inhibitory concentrations of the ethyl
acetate fractions inhibited the swarming motility of Pseudomonas aeruginosa and Klebsiella pneumoniae
by 100% and eradicated more than 50% of P. aeruginosa biofilm biomass. The polyphenolic content of
M. flabellifolius plays an important role in its antibacterial, anti-motility, and antibiofilm activity, thus
offering an additional strategy to treat biofilm-associated infections.

Keywords: medicinal plants; antioxidant; antibacterial; anti-motility; anti-biofilm

1. Introduction

Bacteria cause numerous human infections. Gram-negative bacteria (GNB) are no-
torious human pathogens that can invade the bloodstream, digestive tract, nervous, and
urinary systems [1]. On the other hand, Gram-positive bacteria (GPB) exert pressure on
public health due to their significant antibiotic resistance [2]. Recently, there has been a re-
ported increase in atypical mycobacterial infections [3]. These non-tuberculosis pathogens
are associated with skin, soft tissue, lymph nodes, and pulmonary infection [3].

The upsurge of antibiotic resistance by human pathogens has proliferated mortality
and morbidity rates across the globe [4]. This underlines the need for alternative antibac-
terial drugs that can exert different mechanisms of action. Bacteria use virulence factors
to initiate infection and evade the host’s immune defences [5]. Notable virulence factors
include biofilm, quorum sensing, motility, toxins, adherence factors, and polysaccharide
capsules [6,7]. An alternative approach to curb the increase in bacterial infections and
antibiotic resistance is anti-virulence therapy, which involves the interference of the up-
regulation and functionality of virulence factors without inhibiting bacterial growth. The
advantage of this approach is that it causes less selective pressure for the development
of resistance genes and may potentially reduce the rate of emerging antibiotic-resistant
strains [7,8]. Moreover, anti-virulence therapy may reduce the severity of infection by
enabling the host to have an effective immunity to the invading bacteria [9].
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A biofilm is a group of microorganisms that adhere to biotic or abiotic surfaces and
form microcolonies that are enclosed by an extracellular polymeric substance (EPS). The
EPS comprises macromolecules such as proteins, carbohydrates, lipids, and extracellular
deoxyribonucleic acid [10], which confer protection against ultraviolet radiation and alter-
ations in pH [11]. Mature biofilms are challenging to eliminate; thus, intervening in the
early stage of biofilm formation can be a solution [12]. A majority of chronic or persistent
bacterial infections (80%) were attributed to the formation of biofilms [13]. Conventional
antibiotics are active against planktonic cells but do not effectively sterilize the central
region of biofilms and this leads to recurring infections [14].

Myrothamnus flabellifolius Welw. (Myrothamnaceae family) is a desiccant-tolerant,
woody, and shrubby plant that has green fan-like shaped leaves that have a waxy abaxial
surface and usually fold along the stem [15]. It is common for M. flabellifolius to grow on
shallow ground; however, it can also survive on rocky slopes due to its extensive root sys-
tem extending into crevices. This allows the plant to survive dehydration for long periods
of time. The colour of the leaves during desiccation changes from green to brown [16,17].
The plant is native to southern Africa and is extensively spread out in Botswana and nu-
merous provinces in South Africa, which include the North West, Mpumalanga, Gauteng,
KwaZulu-Natal, and Limpopo [18,19]. This plant is commonly known as Umfavuke (isiNde-
bele), Uvukabafile (isiZulu), Moritela Tshwene (Setswana), and Mufandichimuka (Shona) [20].
Bapedi healers use it to treat sexually transmitted infections [21] and chest pains [22]. In
southern Zimbabwe and Botswana, locals boil ground leaves and twigs to prepare tea that
is used to treat respiratory infections [23,24]. The aerial parts of the plant have also been
used for the treatment of asthma, inflammation, epilepsy, the heart, wounds, backaches,
diabetes, kidney ailments, hypertension, haemorrhoids, gingivitis, shingles, stroke, and
skin conditions [21,25,26]. M. flabellifolius leaves have flavonoids, alkaloids, terpenoids,
proanthocyanidines, condensed tannins, flavan-3-ols, saponins, and phytosterols [27,28].
The focus of this work was to investigate the biological activities of defatted polyphenolic-
enriched sub-factions of M. flabellifolius leaves and stems. More notably, the anti-motility
and anti-biofilm activities have previously not been investigated.

2. Results and Discussion
2.1. Extraction Yield

Organic solvent and aqueous extracts of M. flabellifolius leaves have been reported
to possess various bioactive phenolic compounds [18,29]. To increase the yield of the
extraction of polyphenols, the plant material was extracted with 70% acidified acetone.
Hexane was used for defatting the crude extract by removing extremely non-polar and
interfering components such as chlorophyll, long chained fatty acids, and wax constituents.
The defatted 70% acidified acetone extracts were regarded as crude extracts. The highest
crude extract yield was obtained from the leaves (3.56 g). The stem crude extract was
significantly lower (1.73 g) than the leaves crude extract. Of the subfractions obtained from
the leaf crude extract, the n-butanol had the highest obtained mass (1.34 g), followed by the
ethyl acetate fraction (0.92 g) (Figure 1). The stem fractions generally had lower extracted
mass per the corresponding solvent. Extraction efficiency plays a crucial role in ensuring
the quality and economic viability of plant extract-based products across various industries;
therefore, the leaves can serve as a more sustainable source of bioactive phytochemicals in
M. flabellifolius than the stem parts.
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Figure 1. Extraction yield from 5 g of Myrothamnus flabellifolius leaves and stems samples. H: hexane. 
CR: 70% acidified acetone crude extract. DCM: dichloromethane. EA: ethyl acetate. BUT: butanol. 
RW: residual water. Data in the bar chart is expressed as mean ± standard deviation. Values with 
different letter superscripts in a column are significantly different (p < 0.05), and same letter repre-
sents non-significance (p > 0.05). 

2.2. Phytochemical Analysis 
The quantification of the polyphenolic compounds showed that the ethyl acetate frac-

tions (LEA and SEA) from both the leaves and stems had significantly higher total phe-
nolic and proanthocyanidin contents (Figure 2). These results were in accordance with 
those reported by Anke et al. [30], where the ethyl acetate subfraction obtained from a 
defatted acetone–water extract yielded fractions enriched with proanthocyanidins, oligo-
meric proanthocyanidins, and flavan-3-ols [30]. In addition, 2,3-di-O-galloylarbutin was 
isolated from an ethyl acetate soluble fraction of an acetone/water crude extract of M. fla-
bellifolia [31]. The total flavonol contents were detected in low amounts in the different 
fractions. The variability of the polyphenolics in M. flabellefolius was attributed to habitat 
differences [32]. Total terpenoid content was higher in the butanol fractions (LBUT and 
SBUT), followed by the ethyl acetate subfractions (LEA and SEA). Monoterpenes predom-
inantly found in M. flabellifolius are pinocarvone and trans-pinocarveol [20]. The distribu-
tion of the different phytochemical groups demonstrated that the liquid–liquid extraction 
aggregated most of the bioactive compounds in the ethyl acetate and n-butanol subfrac-
tions. Polyphenols were associated with antioxidant, anti-inflammatory, antiproliferative, 
antimicrobial, and anti-mutagenic bioactivities [33]. 
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Figure 1. Extraction yield from 5 g of Myrothamnus flabellifolius leaves and stems samples. H: hexane.
CR: 70% acidified acetone crude extract. DCM: dichloromethane. EA: ethyl acetate. BUT: butanol.
RW: residual water. Data in the bar chart is expressed as mean ± standard deviation. Values with
different letter superscripts in a column are significantly different (p < 0.05), and same letter represents
non-significance (p > 0.05).

2.2. Phytochemical Analysis

The quantification of the polyphenolic compounds showed that the ethyl acetate frac-
tions (LEA and SEA) from both the leaves and stems had significantly higher total phenolic
and proanthocyanidin contents (Figure 2). These results were in accordance with those
reported by Anke et al. [30], where the ethyl acetate subfraction obtained from a defatted
acetone–water extract yielded fractions enriched with proanthocyanidins, oligomeric proan-
thocyanidins, and flavan-3-ols [30]. In addition, 2,3-di-O-galloylarbutin was isolated from
an ethyl acetate soluble fraction of an acetone/water crude extract of M. flabellifolia [31].
The total flavonol contents were detected in low amounts in the different fractions. The
variability of the polyphenolics in M. flabellefolius was attributed to habitat differences [32].
Total terpenoid content was higher in the butanol fractions (LBUT and SBUT), followed by
the ethyl acetate subfractions (LEA and SEA). Monoterpenes predominantly found in M.
flabellifolius are pinocarvone and trans-pinocarveol [20]. The distribution of the different
phytochemical groups demonstrated that the liquid–liquid extraction aggregated most
of the bioactive compounds in the ethyl acetate and n-butanol subfractions. Polyphenols
were associated with antioxidant, anti-inflammatory, antiproliferative, antimicrobial, and
anti-mutagenic bioactivities [33].

Plants 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Extraction yield from 5 g of Myrothamnus flabellifolius leaves and stems samples. H: hexane. 
CR: 70% acidified acetone crude extract. DCM: dichloromethane. EA: ethyl acetate. BUT: butanol. 
RW: residual water. Data in the bar chart is expressed as mean ± standard deviation. Values with 
different letter superscripts in a column are significantly different (p < 0.05), and same letter repre-
sents non-significance (p > 0.05). 

2.2. Phytochemical Analysis 
The quantification of the polyphenolic compounds showed that the ethyl acetate frac-

tions (LEA and SEA) from both the leaves and stems had significantly higher total phe-
nolic and proanthocyanidin contents (Figure 2). These results were in accordance with 
those reported by Anke et al. [30], where the ethyl acetate subfraction obtained from a 
defatted acetone–water extract yielded fractions enriched with proanthocyanidins, oligo-
meric proanthocyanidins, and flavan-3-ols [30]. In addition, 2,3-di-O-galloylarbutin was 
isolated from an ethyl acetate soluble fraction of an acetone/water crude extract of M. fla-
bellifolia [31]. The total flavonol contents were detected in low amounts in the different 
fractions. The variability of the polyphenolics in M. flabellefolius was attributed to habitat 
differences [32]. Total terpenoid content was higher in the butanol fractions (LBUT and 
SBUT), followed by the ethyl acetate subfractions (LEA and SEA). Monoterpenes predom-
inantly found in M. flabellifolius are pinocarvone and trans-pinocarveol [20]. The distribu-
tion of the different phytochemical groups demonstrated that the liquid–liquid extraction 
aggregated most of the bioactive compounds in the ethyl acetate and n-butanol subfrac-
tions. Polyphenols were associated with antioxidant, anti-inflammatory, antiproliferative, 
antimicrobial, and anti-mutagenic bioactivities [33]. 

 
(A) 

Figure 2. Cont.



Plants 2024, 13, 847 4 of 17Plants 2024, 13, x FOR PEER REVIEW 4 of 19 
 

 

 
(B) 

Figure 2. Quantification of total phenolic and proanthocyanidin contents (A) and total flavonol and 
terpenoid contents (B) of Myrothanmus flabellifolius leaves and stem extracts. LH: leaf hexane. LCR: 
leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol. LRW: leaf re-
sidual water. SH: stem hexane. SCR: stem crude. SDCM: stem dichloromethane. SEA: stem ethyl 
acetate. SBUT: stem butanol. SRW: stem residual water. Data in the bar chart is expressed as mean 
± standard deviation. Values with different letter superscripts in a column are significantly different 
(p < 0.05), and same letter represents non-significance (p > 0.05). 

2.3. Antioxidant Activity 
Antioxidants are known to neutralize free radicals and have been linked to antibac-

terial and anti-biofilm formation activities [34]. The SEA and LEA subfractions had the 
lowest values EC50 values of 0.46−2.99 µg/mL and 0.13−7.57 µg/mL, respectively. This was 
significantly higher antioxidant activity than L-ascorbic acid (20.41 µg/mL) (Table 1). 
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drogen peroxide-reducing activity compared to L-ascorbic acid (364.2 ± 0.80 µg/mL). Hy-
drogen peroxide forms part of reactive oxygen species (ROS) that impair many cellular 
and mitochondrial biomolecules. The reduction of hydrogen peroxide limits the negative 
impacts of oxidative stress [37]. The high antioxidant activity appeared to be directly pro-
portional to the high polyphenolic contents.  

Table 1. Antioxidant activity of leaf and stem fractions. 

Extract DPPH Radical Scavenging Activity  
Hydrogen Peroxide Scavenging 

Activity 
 EC50 (µg/mL) 

LCR 35.46 ± 0.90 e 252.65 ± 1.41 c 

LDCM 190.40 ± 0.96 h 447.69 ± 3.02 g 

LEA 7.57 ± 0.13 b 163.19 ± 0.90 a 
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SBUT 8.54 ± 0.54 b 291.57 ± 1.15 d 

SRW 20.11 ± 0.74 d 247.98 ± 1.11 c 

Figure 2. Quantification of total phenolic and proanthocyanidin contents (A) and total flavonol
and terpenoid contents (B) of Myrothanmus flabellifolius leaves and stem extracts. LH: leaf hexane.
LCR: leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol. LRW:
leaf residual water. SH: stem hexane. SCR: stem crude. SDCM: stem dichloromethane. SEA: stem
ethyl acetate. SBUT: stem butanol. SRW: stem residual water. Data in the bar chart is expressed as
mean ± standard deviation. Values with different letter superscripts in a column are significantly
different (p < 0.05), and same letter represents non-significance (p > 0.05).

2.3. Antioxidant Activity

Antioxidants are known to neutralize free radicals and have been linked to antibac-
terial and anti-biofilm formation activities [34]. The SEA and LEA subfractions had the
lowest values EC50 values of 0.46–2.99 µg/mL and 0.13–7.57 µg/mL, respectively. This
was significantly higher antioxidant activity than L-ascorbic acid (20.41 µg/mL) (Table 1).
Aqueous–organic solvent extracts were previously reported to have notably high DPPH
scavenging and hydrogen peroxide-reducing activities [35]. In addition, Bhebhe et al. [36]
showed that aqueous extracts (herbal teas) of M. flabellefolius had significant antioxidant
properties. The LEA (163.19 ± 0.90 µg/mL) and SEA (197.97 ± 0.32 µg/mL) had better
hydrogen peroxide-reducing activity compared to L-ascorbic acid (364.2 ± 0.80 µg/mL).
Hydrogen peroxide forms part of reactive oxygen species (ROS) that impair many cellular
and mitochondrial biomolecules. The reduction of hydrogen peroxide limits the negative
impacts of oxidative stress [37]. The high antioxidant activity appeared to be directly
proportional to the high polyphenolic contents.

Table 1. Antioxidant activity of leaf and stem fractions.

Extract DPPH Radical Scavenging Activity Hydrogen Peroxide Scavenging Activity

EC50 (µg/mL)

LCR 35.46 ± 0.90 e 252.65 ± 1.41 c

LDCM 190.40 ± 0.96 h 447.69 ± 3.02 g

LEA 7.57 ± 0.13 b 163.19 ± 0.90 a

LBUT 16.85 ± 1.16 c 232.62 ± 0.58 c

LRW 75.60 ± 0.80 f 761.95 ± 96 h

SCR 33.98 ± 0.96 e 303.4 ± 1.49 d

SDCM 133.70 ± 1.10 g 853.41 ± 1.32 i

SEA 2.99 ± 0.46 a 197.97 ± 0.32 b

SBUT 8.54 ± 0.54 b 291.57 ± 1.15 d

SRW 20.11 ± 0.74 d 247.98 ± 1.11 c

Ascorbic acid 20.41 ± 0.92 c,d 364.2 ± 0.80 e

LCR: leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol. LRW: leaf residual
water. SCR: stem crude. SDCM: stem dichloromethane. SEA: stem ethyl acetate. SBUT: stem butanol. SRW: stem
residual water values expressed as mean ± standard deviation; Tukey multiple comparison post hoc: values with
different letter superscripts in a column are significantly different (p < 0.05).
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2.4. Cytotoxicity

The assessment of toxicity of the fractions was derived from the previous toxicity
profile of brine shrimps reported by Bussmann et al. [38]: where LC50 < 249 µg/mL was
considered highly toxic, LC50 values between 250 and 499 µg/mL were considered to have
moderate toxicity, LC50 values between 500 and 999 µg/mL had low toxicity, and LC50 val-
ues higher than 1000 µg/mL were non-toxic. All the extracts had LC50 > 500 µg/mL, and
LBUT had the lowest LC50 value of (529.79 ± 1.09 µg/mL) (Table 2). Therefore, all the frac-
tions had low cytotoxicity. The most non-cytotoxic fractions were the stem residual water
extract (SRW) (2157.05 ± 0.77 µg/mL), followed by its crude extract (1430 ± 1.16 µg/mL).
Polyphenol-enriched extracts of M. flabellifolius were reported to be non-cytotoxic (LC50,
50 µg/mL) against Vero cells (African green monkey kidney cells) [39]. In addition, Chuk-
wuma et al. [18] demonstrated the protective effect of M. flabellifolius polyphenols against
oxidative hepatic cell injury using Chang liver cells. These results corroborated the non-
cytotoxicity of M. flabellifolius polyphenols. The literature on in vivo toxicology evaluation
tests [40] is scarce.

Table 2. Cytotoxicity, antibacterial activity, and selectivity indices of M. flabellifolius leaves and stem
fractions against common bacterial pathogens.

Extract Cytotoxicity (Brine
Shrimp Lethality) E. coli P. aeruginosa K. pneumoniae S. aureus M. smegmatis

LC50 (µg/mL) MIC
(µg/mL) SI MIC

(µg/mL) SI MIC
(µg/mL) SI MIC

(µg/mL) SI MIC
(µg/mL) SI

LCR 1107.2 ± 1.30 f 310 3.6 310 3.6 310 3.6 630 1.8 630 1.8
LDCM 979.65 ± 1.4 g 630 1.6 630 1.6 630 1.6 2500 0.4 1250 0.8

LEA 566.57 ± 1.315 b 310 1.8 160 3.5 160 3.5 310 1.8 630 0.9
LBUT 529.79 ± 1.09 a 310 1.7 310 1.7 630 0.8 630 0.4 630 0.8
LRW 822.12 ± 0.87 c - ND 1250 0.7 - ND 2500 0.3 2500 0.3
SCR 1430 ± 1.16 h 630 2.3 310 4.6 630 2.3 1250 1.1 1250 1.1

SDCM 1148.12 ± 1.88 g 1250 0.9 630 1.8 1250 0.9 1250 0.8 2500 0.5
SEA 941.62 ± 0.57 d 310 3.0 160 5.9 310 3.0 310 3.0 630 1.5

SBUT 980.03 ± 1.02 e 310 3.2 630 1.6 630 1.6 630 1.6 630 1.6
SRW 2157.05 ± 0.77 i - ND 1250 1.7 - - - ND - ND

Gentamicin 5.56 ± 1.16 j 0.2 34.8 0.3 17.9 2.0 2.8 0.9 5.9 ND ND
Rifampicin ND ND ND ND ND 1.6 ND

LCR: leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol. LRW: leaf residual
water. SCR: stem crude. SDCM: stem dichloromethane. SEA: stem ethyl acetate. SBUT: stem butanol. SRW: stem
residual water. Cytotoxicity values expressed as mean ± standard deviation (SD) of triplicates of LC50 values;
values with different letter superscripts in a column are significantly different (p < 0.05); same letter superscript
values in a column are not significantly different (p > 0.05). (-): no detected activity at concentrations <2.5 mg/mL,
ND: not determined.

2.5. Antibacterial Activity on Planktonic Cells
2.5.1. Minimum Inhibitory Concentrations of Extracts

The essential oils of M. flabellifolius were reported to have camphor and eucalyptol
that add flavour to commonly brewed caffeine-free teas made from the leaves [40]. Corre-
spondingly, previous studies gave credence to the in vitro antioxidant activity [35,41] and the
antimicrobial potential of M. flabellufolius essential oils [42,43]. Reports on the antibacterial
and antibiofilm activities of the defatted polyphenolic fractions are not as robust. Minimum
inhibitory concentration (MIC) is the most common approach to express antibacterial activity
and represents the lowest concentration of a drug that inhibits microbial growth [44].

All the fractions from the leaves, except for the residual water subfraction (LRW), demon-
strated notable antibacterial activity, where MIC values ≤ 630 µg/mL were determined
against three GNB (Table 2). For the stem fractions, only the SDCM and residual water
(SRW) had weak antibacterial activity against GNB. On the other hand, only LCR, LEA,
SEA, and SBUT fractions had significant antibacterial activity against Staphylococcus aureus
(MIC ≤ 630 µg/mL). Gram-negative bacteria are generally known to be more drug resistant
than GPB due to the presence of an outer membrane [45]. Interestingly, our results generally
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showed that some fractions (LDCM, LBUT, and SCR) inhibited the test GPB (S. aureus) at
higher concentrations than GNB. Gram-positive bacterial cell walls are composed of a thick
peptidoglycan layer and lipoteichoic acids [46]. The MIC values of ethyl acetate and butanol
fractions (LEA, SEA, LBUT, and SBUT) were 630 µg/mL against M. smegmatis. Given that
traditional cultures around southern Africa use the plant to treat respiratory infections, the
antimycobacterial activity of the fractions requires further evaluations against Mycobacterium
tuberculosis. These results showed that the polyphenolic-enriched fractions of the stems and
leaves of M. flabellifolius had broad-spectrum antibacterial activity. Relatively low selectivity
indices (SI values) suggest that a test sample is toxic and cannot be used as a (herbal) drug,
and SI values between 1 and 10 are generally moderate to non-cytotoxic. The subfractions
generally demonstrated better selectivity of bacterial growth inhibition than brine-shrimp
nauplii cytotoxicity. The highest selectivity values were obtained with SEA (SI: 5.9) followed
by SCR (SI, 4.6) against P. aeruginosa. The lowest SI value (0.3) was obtained from LRW against
S. aureus and M. smegmatis. The subfractions from both the leaves and stem demonstrated
significant antibacterial activity with high selectivity to the bacterial cells.

2.5.2. Growth-Kinetic Curves

The growth-kinetic curve assay was conducted to investigate the kinetics involved in
the antibacterial activity of LEA and SEA. The selection of LEA and SEA was based on their
significant broad-spectrum antibacterial activity towards planktonic cells. The assessment
of growth bacterial cells over 24 h was compared to an untreated control culture. Both
LEA and SEA had concentration-dependent antibacterial activity. The treated cultures
of all the test bacteria exhibited phenotypic growth that was generally different from the
control culture in two main ways: (1) the lag phase of bacterial growth was lengthened
and/or (2) the growth rate of the planktonic culture was decreased resulting in a lower
final absorbance value (Figure 3). Similar bacterial growth-kinetic curve responses were
previously reported by Jung et al. [47], in which Caesalpinia sappan L. extracts lengthened the
lag phase of methicillin-resistant S. aureus by 2 h before the culture reached the exponential
phase. Moreover, a crude extract of Adiantum philippense was reported to have extended the
lag phase of E. coli, S. aureus, P. aeruginosa, and S. flexneri [48].

As the treatment time progressed, bacterial growth gradually recovered. This demon-
strated that the antibacterial activity of the fractions was bacteriostatic. One possible
explanation may be that the extracts exert their antibacterial activity by first entering the
cytoplasm to be metabolised before growth impairment occurs. Therefore, when the con-
centrations of the active antibacterial components in the media decrease, the cells recover
and continue with normal growth. It was further suggested that some of the antibacterial
mechanisms of action of polyphenols involve a change in bacterial metabolism through the
inhibition of enzymes such as oxidoreductases, lyases, and transfer enzymes [49].

2.6. Anti-Motility Screening

The ethyl acetate fractions were further assessed for their potential to inhibit the motil-
ity of the test pathogens. Swarming contributes to the onset of early biofilm formation; thus,
the inhibition of this motility may reduce the biofilm formation potential of bacteria [50].
The reduction of the size of the diameter at the point of inoculation by the fractions was
measured and compared to an untreated control culture (Figure 4A). The LEA fractions
inhibited 100% of P. aeruginosa, E. coli, K. pneumoniae, and S. aureus (Figure 4B). Other
authors also reported that proanthocyanidin-rich extracts (100 µg/mL) of cranberry and
pomegranate blocked the motility of P. aeruginosa [51]. The SEA generally had anti-motility
activity. M. smegmatis motility was the most resistant to both fractions. M. smegmatis can
spread on a surface by a sliding mechanism with the presence of glycopeptidolipids located
in the outermost layer of the cell wall [52]. There is a scarcity of research assessing the
anti-virulence potential of M. flabellifolius. The anti-motility potential of the LEA and SEA
may indicate their interference with the early stages of biofilm formation.
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2.7. Anti-Biofilm Screening
2.7.1. Inhibition of Mature Biofilm

Detecting and diagnosing biofilm-related infections can be more challenging due
to their resilient nature. Mature biofilms exacerbate the development of antimicrobial
resistance. Consequently, the efficacy of previously active antibiotics against planktonic
cells becomes weakened. In line with other researchers, the eradication of more than 50% of
the pre-formed biofilms was taken as notable anti-biofilm activity [53]. The mature biofilm
of P. aeruginosa was the most susceptible among the selected GNB. It was further observed
that the sub-minimum inhibitory concentrations (sub-MICs) (~1/2*MIC) of LDCM, LEA,
and SEA fractions eradicated more than 50% of P. aeruginosa biofilm (Figure 5). Similarly,
LDCM and LBUT eradicated more than 50% of E. coli biofilm at sub-MICs. This is significant
because, at concentrations superior to or near the MIC, antimicrobials behave like toxins on
susceptible bacterial cells. However, sub-MICs can induce diverse biological responses in
bacteria associated with tolerance and biofilm formation [54]. The K. pneumoniae biofilms
were the most resistant to eradication using both Gentamicin and fractions; only the
LDCM at 4MIC was able to have substantial antibiofilm activity. The stem fractions
generally showed weak activity against GNB biofilms but had significant activity against
both S. aureus and M. smegmatis at higher concentrations (4MIC and 2MIC). The use of
stem fractions to inhibit mature biofilms carries the risk of toxic side effects as higher
concentrations increase the chances of toxicity and adverse effects when ingested [55]. The
use of these stem fractions may be relevant to topical application against M. smegmatis and S.



Plants 2024, 13, 847 9 of 17

aureus infections involving the skin and wounds. Indeed, the potential use of polyphenols
of M. flabellifolius for cosmetic and skin care was reported [39,43].
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Figure 5. Antibiofilm activities of M. flabellifolius leaf and stem fractions by eradication of mature
biofilms. LCR: leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol.
SCR: stem crude. SDCM: stem dichloromethane. SEA: stem ethyl acetate. SBUT: stem butanol.
Values expressed as mean ± standard deviation (SD) of triplicates; ns: not significant. (*): p < 0.05.
(**): p < 0.01. (***): p < 0.001. (****): p < 0.0001.

2.7.2. Metabolic Activity of Mature Biofilms

One of the main drawbacks of the crystal violet assay is that the used dye has non-
specific staining of the biofilm biomass. Therefore, there is no differentiation between viable
cells, dead cells, and their associated EPS layer. An alternative approach to determine
antibiofilm activity is to evaluate the metabolic activity commonly using tetrazolium salts.
The MTT and resazurin were previously used to evaluate the extent of microbial growth in
biofilms, where metabolically active cells reduce tetrazolium salt to a quantifiable purple
formazan [56,57]. In this study, antibiofilm active extracts were assessed for their effect on
the metabolic activity of the biofilms using INT. Like the eradication of mature biofilms, all
the fractions had a concentration-dependent inhibition of the biofilm metabolic activities
(Figure 6). In a different study, it was shown that gallic acid (phenolic acid) reduced the
metabolic activity tested biofilms of P. aeruginosa, S. aureus, L. monocytogenes, and E. coli [57].
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The inhibition of the metabolic activity by the polyphenolic-enriched fractions suggested
that they were able to interact with the bacteria within the biofilms. Accordingly, it was
reported that phenolic compounds can inhibit biofilms by interfering with regulatory
pathways without significantly suppressing bacterial growth [58]. However, our results
indicated that the mature biofilms of the test bacteria were eradicated by M. flabellifolius
polyphenols by interfering with the biomass structure and inactivation of metabolic activity,
making this plant a good source of antibiofilm compounds.
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Figure 6. The effect of antibiofilm fractions on the metabolic activity of the biofilm biomass. LCR:
leaf crude. LDCM: leaf dichloromethane. LEA: leaf ethyl acetate. LBUT: leaf butanol. SCR: stem
crude. SDCM: stem dichloromethane. SEA: stem ethyl acetate. SBUT: stem butanol. Values expressed
as mean ± standard deviation (SD) of triplicates. ns: not significant. (*): p < 0.05. (**): p < 0.01.
(***): p < 0.001. (****): p < 0.0001.

3. Materials and Methods
3.1. Plant Collection, Drying and Storage

The plant was collected from the Makgeng area (23.9416◦ S, 29.8254◦ E) in the Limpopo
Province, South Africa, in March 2023 and identified by Dr. E. Bronwyn of the Larry Leach
herbarium at the University of Limpopo (Voucher, SS 111). The leaves were separated from
the stems and separately dried at ambient temperatures in an open laboratory environment
with low humidity levels. The material was ground, and the fine powders (1.18 mm sieve
used) were kept inside airtight glass jars.
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3.2. Extraction

The leaves and stem powdered material (5 g) was extracted using 70% acidified
acetone and hexane simultaneously. To make up the 70% acidified acetone, 70 mL of
acetone (Merk, Johannesburg, South Africa, Cas no. 67-64-1), 28 mL of water, and 2 mL
of acetic acid (Merk, Johannesburg, South Africa, Cas no. 64-19-7) were mixed (70/28/2).
The mixture of the plant material, 70% acidified acetone, and hexane (Merk, Johannesburg,
South Africa, Cas no. 110-54-3) were shaken at 200 rpm for 24 h at an ambient temperature.
After the 24 h extraction, the hexane fraction was decanted from the 70% acidified acetone
fraction. Subsequently, the 70% acetone extract was partitioned into two portions, A and
B. Portion A of the 70% acidified acetone fraction was dried and designated as the crude
extract, and portion B was consecutively fractionated using liquid–liquid extraction with
solvents of increasing polarity, namely, dichloromethane, ethyl acetate, and butanol [59].
The extraction flowchart is represented in Figure 7.
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3.3. Phytochemical Screening
3.3.1. Determination of Phenolic Content

The Folin–Ciocalteu reagent (Merk, Johannesburg, South Africa, Cas no. F9252)
method described by Tambe and Bhambar [60] was adopted to determine the total phenolic
contents of different fractions from the leaves and stems. Gallic acid (0.08–1.25 mg/mL)
(Merk, Johannesburg, South Africa, Cas no. 149-91-7) was used as a standard for the
quantification. The results were expressed as milligrams of gallic acid equivalence/gram of
extract (mg GAE/g extract).

3.3.2. Determination of Total Flavonol Content

The aluminium chloride method detailed by Iqbal et al. [61] was followed to determine
total flavonol content. Quercetin (Merk, Johannesburg, South Africa, Cas no. 117-39-5) was
used as a standard using different concentrations (16–250 µg/mL). Results were expressed
as mg quercetin equivalent per gram of extract (mg QE/g).
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3.3.3. Determination of Total Proanthocyanidin Content

Total proanthocyanidin content was quantified by following the procedure described
by Sun et al. [62]. Gallic acid (Merk, Johannesburg, South Africa, Cas no. 149-91-7) was
used as a standard control, and concentrations between 250 and 16 µg/mL were used to
construct a standard curve. Total proanthocyanidin content was expressed as milligram
gallic acid equivalence/gram of extract (mg GAE/g).

3.3.4. Quantification of Total Terpenoid Content

The total terpenoid content (TTC) of the fractions was determined by the method
detailed by Truong et al. [63]. Linalool (Merk, Johannesburg, South Africa, Cas no. 78-70-6)
was used to construct a standard curve. The TTC of the extracts was calculated as mg of
linalool per gram of extract.

3.4. Antioxidant Screening
3.4.1. Free Radical (DPPH) Scavenging Assay

Free radical scavenging activity of the fractions was determined using 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) method [64]. Different concentrations of the fractions
(15.63–250 µg/mL) were prepared. L-ascorbic acid (Merk, Johannesburg, South Africa,
Cas no. 50-81-7) was used as a standard control. To solutions with the fractions, 0.2 mM
DPPH (Inqaba biotec, Tshwane, South Africa, Cas no GLS GX8745) was added, and the
mixtures were allowed to react in the dark for 30 mins. The solutions were analysed at
517 nm with a UV/VIS spectrophotometer (Thermo Scientific, CAT:840-209800, Waltham,
MA, USA, Genesys 10S UV-VIS, Menlo Park, CA, USA).

3.4.2. Hydrogen Peroxide Assay

A solution of hydrogen peroxide (40 mM) (Merk, Johannesburg, South Africa, Cas no.
7722-84-1) was prepared in 0.43 mM phosphate buffer (pH 7.4). Different concentrations
(15.63–250 µg/mL) of the fractions (or L-ascorbic acid) were added to a hydrogen peroxide
solution (0.6 mL, 40 mM). The absorbance of hydrogen peroxide at 230 nm was determined
after 10 min against a blank solution containing phosphate buffer without hydrogen
peroxide [65].

3.5. Antibacterial Activity
3.5.1. Bacterial Pathogens and Maintenance

Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), Escherichia coli
(ATCC 28922), Pseudomonas aeruginosa (ATCC 27853), and Mycobacterium smegmatis (ATCC
1441) were used to assess the antibacterial, anti-motility, and anti-biofilm activities. All the
bacterial cultures were grown at 37 ◦C. The Gram-negative and Gram-positive bacteria
were cultured in nutrient broth (Merk, Johannesburg, South Africa, Cas no. 70122). M.
smegmatis was cultured in Middlebrook 7H9 base (Merk, Johannesburg, South Africa, Cas
no. M0178) mixed with glycerol (Inqaba biotec, Tshwane, South Africa, Cas no. 56-81-5)
and oleic albumin dextrose catalase (OADC) growth supplement (Merk, Johannesburg,
South Africa, Cas no. M0678).

3.5.2. Broth Micro-Dilution Assay

The antibacterial activity of the fractions was evaluated using the broth micro-dilution
assay described by Eloff [66]. The stock cultures were grown at 37 ◦C overnight, and, using
standards, working concentrations were adjusted such that Escherichia coli (2 × 1010 cfu/mL),
Staphylococcus aureus (2 × 108 cfu/mL), Mycobacterium smegmatis (2 × 105 cfu/mL), Ente-
rococcus faecalis (3 × 108 cfu/mL), and P. aeruginosa (3 × 109 cfu/mL) were used for the
bioassay. Sterile distilled water (100 µL) was added to each well of a 96-well microtitre plate.
The extracts (10 mg/mL) were serially diluted with distilled water in the 96 well microtitre
plates to achieve a concentration of 2.5–0.02 mg/mL in 100 µL of volume. The test bacterial
culture (100 µL) was added to respective wells. The microtitre plates were incubated
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for 24 h at 37 ◦C. Following incubation, 40 µL of 0.2 mg/mL of p-iodonitrotetrazolium
chloride (INT) (Inqaba biotec, Tshwane, South Africa, Cas no. GLS GC3113) was added
and incubated for 30 min. Gentamicin (Inqaba biotec, Tshwane, South Africa, Cas no. GLS
GA7939) and rifampicin (Inqaba biotec, Tshwane, South Africa, Cas no. GLS GA1853) were
used as positive controls for respective bacterial strains. Sterile distilled water was used
as the negative control. A visible colour change to pink/red was indicative of viable cells,
and the lowest concentration of the fractions that lead to unchanged wells was defined as
the MIC.

3.5.3. Growth-Kinetic Curves

The effect of the fractions on the kinetics of bacterial growth was investigated by
inoculating overnight cultures of P. aeruginosa, E. coli, K. pneumoniae, S. aureus into 20 mL of
nutrient broth (Merk, Johannesburg, South Africa, Cas no. 70122), and M. smegmatis into
OADC supplemented Middlebrook 7H9 broth base. The inoculum was inoculated such
that the start OD600 at t = 0 is 0.02. Different concentrations (4MIC, 2MIC, MIC, 0.5MIC)
of the extracts were added to the flasks. Flasks with the culture only served as a positive
control, flasks without both the fractions and culture served as a negative control, and
flasks with the fractions and media only served as colour controls for reading absorbance
at 660 nm (OD600 nm). Readings were taken at 3, 6, 9, 18, 24 h intervals [67].

3.6. Anti-Biofilm Screening
3.6.1. Inhibition of Development of Pre-Formed Biofilms

The ability of the fractions to eradicate mature biofilms and prevent further biofilm
formation was evaluated. Standardised cultures (OD600 = 0.02) of M. smegmatis, S. aureus,
P. aeruginosa, K. pneumoniae, and E. coli were added into 96-well plates and incubated at
37 ◦C for 48 h at static conditions at final volumes of 100 µL. Following incubation, the
biofilms were aspirated with fresh media, and the fractions (100 µL) were added to give
final concentrations corresponding with multiples of their respective MICs (4MIC, 2MIC,
MIC, 0.5MIC). The plates were further incubated at 37 ◦C for 24 h. Gentamicin (Inqaba
biotec, Tshwane, South Africa, Cas no. GLS GA7939) was used as a positive control, and
sterile distilled water was used as negative control [53].

3.6.2. Crystal Violet Staining Assay

To quantify the inhibition of mature biofilms, the treatment plates were washed three
times with sterile distilled water and oven-dried at 60 ◦C for 45 min. The wells were then
stained with 100 µL of 0.1% crystal violet (Inqaba biotec, Tshwane, South Africa, Cas no.
GA9809) and incubated at room temperature for 15 min. The plates were washed three
times with sterile distilled water to remove unabsorbed stains. The crystal violet was
solubilised by adding 125 µL of ethanol (Merk, Johannesburg, South Africa, Cas no. 64-17-
5), and the solution was transferred to a new plate. The absorbance was measured at 590 nm
using a microplate reader (Thermo Scientific, CAT:1530, Multiskan sky, Singapore) [68].

3.6.3. Metabolic Activity of Biofilms

The anti-metabolic activity of the fractions was quantified as described by Mohsenipour
and Hassanshahian [69]. The 48 h formed biofilms were washed three times with 1×
phosphate-buffered saline. Different concentrations of selected fractions were added mi-
croplate was incubated for 24 h at 37 ◦C. Subsequently, 50 µL of INT (Inqaba biotec,
Tshwane, South Africa, Cas no. GLS GC3113) solution was added to each well and incu-
bated in the dark at 37 ◦C for 30 min. Absorbance was measured at 490 nm with a microplate
reader (Thermo Scientific, CAT:1530, Multiskan sky, Singapore). The percentages of reduced
biofilm metabolic activity of the treated and untreated biofilms were determined.
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3.7. Anti-Motility Assay

The swarming motility assay was conducted following the protocol described by
Kuchma et al. [70], with slight modifications. A bacteriological agar solution with a concen-
tration of 0.5% was added with nutrient broth, dissolved in distilled water. Bacteriological
agar (Merk, Johannesburg, South Africa, Cas no. 9002-18-0) was then mixed with plant
extracts at different concentrations (4MIC, MIC, 0.5MIC) and was poured into sterile petri
dishes and allowed to solidify. Overnight cultures (10 µL) were inoculated at the centre
of the soft-agar plates and incubated at 37 ◦C for 24 h. Plates without plant extracts were
used as a positive control (untreated cultures). Motility was observed as an increase in the
diameter of the circle from the point of inoculation after incubation and images were taken.

3.8. Cytotoxicity on Artemia Salina

The eggs of brine shrimps were hatched in a laboratory at room temperature. Briefly,
1 g of brine shrimp eggs were added to 1 L of saline water. The saline water was prepared
by dissolving 33 g of non-iodised salt in 1 L of distilled water. The pH of the saline water
was adjusted to 8.5 using 0.5 M sodium hydroxide (NaOH) (Merk, Johannesburg, South
Africa, Cas no. 1310-73-2). The eggs were incubated for 48 h at ambient temperatures. The
hatchery apparatus was illuminated during the incubation with a 40 W electric bulb. For
the test, plant extracts were serially diluted in freshly prepared saline water to obtain a
concentration ranging between 1 µg/mL and 1000 µg/mL up to a volume of 1 mL. The
incubation duration was set to 24 h at room temperature. The live brine shrimps were
counted visually. The IC50 (µg/mL) and selectivity indices were determined [71]. The
procedure was carried out in triplicate. The selectivity index values were calculated by
dividing cytotoxicity LC50 values by the MIC values of the test bacteria in the same units
(SI = LC50/MIC). Selectivity index values greater than one suggest that extracts are less
toxic to the host cell than the bacteria [72].

3.9. Statistical Analysis

Results were expressed as means ± standard deviation of triplicate determinations.
Statistical analysis was performed by IBM Statistical Package for the Social Sciences (SPSS)
(version 22, Johannesburg, South Africa) by a two-way analysis of variance (ANOVA)
followed by Tukey multiple comparison post hoc test. The significant difference was
considered when p < 0.05, and conversely, non-significance was indicated when p > 0.05.

4. Conclusions

Myrothamnus flabellifolius plays an important role in ethnomedicine to treat various
ailments, including infectious diseases. Here, we report on the antioxidant, cytotoxicity,
antibacterial, anti-motility, and anti-biofilm activities of M. flabellifolius polyphenols from
the leaves and stem parts. The study revealed that the ethyl acetate fractions from both
the stem and leaves had comparable antioxidant activity to L-ascorbic acid and broad-
spectrum antibacterial activity at non-cytotoxic concentrations. Moreover, these ethyl
acetate fractions demonstrated notable anti-motility and anti-biofilm activity that involved
eradicating biofilm biomass and inactivating metabolic activity and highlighted the need to
broaden our current knowledge of the effects of sub-MICs on biofilm formation. Molecular
investigation is required to explore the exact mechanisms of the antibacterial and anti-
virulence action and functions of M. flabellifolius polyphenols.
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