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Abstract: Drought-induced stress poses a significant challenge to wheat throughout its growth,
underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for en-
hancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along
with their drought tolerance indices, in a recombinant inbred line population derived from the
XC7 × XC21 cross. These evaluations were conducted under both non-stress and drought-stress
conditions. Drought stress significantly reduced grain weight per spike and grain yield per plot.
Genotyping the recombinant inbred line population using the wheat 90K single nucleotide polymor-
phism array resulted in the identification of 131 QTLs associated with the 18 traits. Drought stress
also exerted negative impacts on grain formation and filling, directly leading to reductions in grain
weight per spike and grain yield per plot. Among the identified QTLs, 43 were specifically associated
with drought tolerance across the 18 traits, with 6 showing direct linkages to drought tolerance in
wheat. These results provide valuable insights into the genetic mechanisms governing wheat growth
and development, as well as the traits contributing to the drought tolerance index. Moreover, they
serve as a theoretical foundation for the development of new wheat cultivars having exceptional
drought tolerance and high yield potentials under both drought-prone and drought-free conditions.

Keywords: quantitative trait locus; agronomic traits; drought tolerance; wheat; yield stability

1. Introduction

Wheat (Triticum aestivum L.) is an important staple crop, because it feeds more than
35% of the world’s population [1]. To meet the associated rising food demand, it is esti-
mated that crop production needs to grow by at least 2.4% annually [2]. Thus, improving
the grain yield potential is still a major task in wheat breeding, and it can be realized by
improvements in the three main grain yield components, i.e., spike number per unit area,
grain number per spike (GNPS) and thousand-grain weight (TGW) [3]. Moreover, other
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agronomic traits also play important roles in the determination of wheat yield, such as
plant height (PH), spike length (SL), grain weight per spike (GWPS), grain length (GL) and
grain width (GW) [4].

Potential yield is closely associated with plant photosynthesis [5]. Genetic improve-
ment of grain yield components and physiological traits can certainly increase total yield.
Quantitative trait loci (QTLs) mapping is a key approach for understanding the genetic
architecture of yield components and physiological traits in wheat [6]. Previously, QTL map-
ping using various segregating populations was conducted for plant height, spike length,
spike number per unit area, grain number per spike and thousand-grain weight [7–11].
However, QTLs were defined by relatively large genetic distances due to the limited num-
bers of markers. In addition, QTLs for physiological traits were rarely reported, except a
few association studies for Soil and Plant Analyzer Development (SPAD) values of chloro-
phyll content, normalized differential vegetation index (NDVI) and canopy temperature
(CT) in spring wheat [12–14].

However, climate stress and depleting fresh water for agricultural irrigation have
severely affected wheat production, and drought stress is a major threat to wheat yield [15].
Wheat is particularly susceptible to drought-induced stress throughout the growth pe-
riod; therefore, mining drought-stable QTLs is vital for increasing wheat yield. The
drought susceptibility index (DSI) is used to measure yield stability in wheat genotypes
that captures the changes in both drought stress and non-stress environments [16], whereas
DSI values of <1 indicate tolerance to drought stress [17]. Genotypes with high yield
stability index [18] and relative drought index [19] values are generally regarded as sta-
ble under stress and non-stress conditions. Similarly, the stress tolerance index [20] and
geometric mean productivity [21] are useful indices for the identification of stable geno-
types, which produce high yields under drought stress and higher or optimum yields
under non-stress conditions.

QTLs have been detected for grain yield-related drought-tolerance indices traits in
wheat [12,22,23]. However, research on the identification of QTLs associated with drought-
tolerance indices of traits other than grain yield is scarce. For instance, the QTLs associated
with drought indices calculated from total yield (TY), thousand-grain weight and grain
number in durum wheat have been identified [24]. Similarly, the QTL-rich regions asso-
ciated with drought indices derived from grain yield, thousand-grain weight and grain
number per spike in bread wheat were identified [25].

In this research, a consensus genetic map was constructed using one bi-parental
population of RILs in wheat to screen the genotypic variations in the agronomic index and
drought tolerance index (DI) under different water-stress conditions. The main goal was
to identify growth and development, as well as drought-tolerant, relevant QTLs in wheat.
The findings will improve the understanding of the genetic mechanisms of wheat growth
and development, as well as drought-tolerance index, traits and will provide new genetic
loci for breeding new high-yielding and stress-tolerance wheat varieties.

2. Results
2.1. Phenotypic Data Analysis

In total, 18 yield-related agronomic traits and physiological traits of the RILs and
parents were investigated in the field under non-stress and drought-stress conditions,
and they displayed a continuous distribution (Figure S1), indicating that these traits were
controlled by multiple genes in this population. The differences between non-stress and
drought-stress conditions reached a significant level (p < 0.01) for all the traits, except
the heading date (HD) (Figure S1, Table 1). Therefore, the wheat in the drought-stress
trials was subjected to drought stress for almost the entire growth period that affected
each trait examined. In particular, grain weight per spike (GWPS) and total yield (TY)
exhibited the most significant decreases under drought-stress conditions (−16.8% and
−14.1%, respectively, p < 0.01), but the number of basal sterile spikelet (BSS) was most
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significantly increased (26.9%, p < 0.01) (Table 1), indicating that the key factors directly
limiting yield were particularly sensitive to drought stress.

Table 1. The descriptive statistics on agronomic traits of 188 wheat RILs in two treatments.

Traits
Adequate Irrigation Drought Stress

Range Mean SD CV (%) Range Mean SD CV (%)

HD 38.00–59.00 50.44 4.47 3.79 39.00–59.00 50.28 4.53 3.01
PH 66.90–130.00 102.88 11.41 8.37 63.70–122.00 96.11 10.23 8.48

GNPS 32.30–59.84 44.09 4.98 11.29 28.62–56.30 39.43 4.43 11.22
GF 2.00–8.00 4.78 1.19 12.39 2.00–8.00 4.28 1 11.81
BSS 0.00–4.00 1.41 0.69 34.55 0.00–5.20 1.79 0.86 33.01

TGW 23.20–58.40 40.09 6.38 8.04 20.40–53.60 37.65 5.83 8.06
GWPS 0.38–3.66 1.76 0.5 12.69 0.40–3.32 1.47 0.4 11.11

TY 2.21–12.03 6.75 1.91 8.82 2.29–10.39 5.8 1.53 7.81
HD-CT 13.90–26.90 20.11 1.97 2.55 16.70–31.00 23.42 2.48 2.66
EF-CT 20.85–27.10 23.55 0.91 1.57 22.53–32.57 27.98 1.68 2.29
MF-CT 20.58–32.10 25.06 2.46 1.91 23.20–31.00 27.33 1.66 1.43

HD-SPAD 38.90–69.30 49.26 2.79 3.63 42.40–61.10 51.8 2.45 3.17
EF-SPAD 41.90–60.00 50.82 2.54 3.5 43.40–62.40 53.86 2.52 3.09
MF-SPAD 7.40–63.80 40.16 16.97 4.51 5.10–64.20 43.29 15.57 8.25
ES-NDVI 0.13–0.65 0.31 0.13 9.96 0.11–0.65 0.33 0.14 12.01
HD-NDVI 0.44–0.93 0.85 0.05 2.93 0.63–0.93 0.84 0.04 2.71
EF-NDVI 0.48–0.92 0.79 0.05 3.43 0.38–0.91 0.68 0.11 5.96
MF-NDVI 0.29–0.88 0.68 0.11 7.45 0.18–0.83 0.49 0.13 11.72

SD, standard deviation; CV, coefficient of variation; HD, heading date; PH, plant height; GNPS, grain number per
spike; GF, grain fullness; BSS, number of basal sterile spikelet; TGW, thousand-grain weight; GWPS, grain weight
per spike; TY, total yield; CT, canopy temperature; SPAD, chlorophyll content; NDVI, normalized differential
vegetation index; EF, early filling stage; MF, middle filling stage; ES, elongation stage.

Pearson’s coefficients of correlation for all the traits were analyzed under different
conditions. Compared with the non-stress condition, total yield was significantly negatively
correlated with grain number per spike, early filling stage canopy temperature (EF-CT)
and middle filling stage canopy temperature (MF-CT) under drought-stress conditions,
but there was no significant correlation between total yield and plant height, heading
date chlorophyll content (HD-SPAD), EF-SPAD, elongation stage normalized differential
vegetation index (ES-NDVI), HD-NDVI and MF-NDVI (Figure 1). Drought stress may
change the relationships between yield and other traits in wheat.

2.2. QTL Analysis of Agronomic Traits

A total of 1027 SNP markers established on all the chromosomes (except 4D) were used
for linkage map construction, producing a total map length of 2188.35 cM. The A, B and D
sub-genomes harbored different numbers of SNPs, the 462 (0.63 per cM), 471 (0.51 per cM)
and 114 SNP (0.22 per cM), respectively. The genetic map was used to identify significant
associations between SNP markers and agronomic traits (Table 2).

QTL mapping was performed for all 18 yield-related agronomic traits and physiologi-
cal traits under non-stress and drought-stress conditions. In total, 131 QTLs for the 18 traits
were identified across the non-stress and drought-stress conditions, and they explained
0.25–45.11% of the phenotypic variances (Table S2). Among them, 28 repetitive QTLs in
more than two environments were defined as reliable loci (Table 3).



Plants 2024, 13, 898 4 of 13

Plants 2024, 13, x FOR PEER REVIEW 4 of 14 
 

 

Pearson’s coefficients of correlation for all the traits were analyzed under different 
conditions. Compared with the non-stress condition, total yield was significantly nega-
tively correlated with grain number per spike, early filling stage canopy temperature (EF-
CT) and middle filling stage  canopy temperature (MF-CT) under drought-stress condi-
tions, but there was no significant correlation between total yield and plant height, head-
ing date chlorophyll content (HD-SPAD), EF-SPAD, elongation stage normalized differ-
ential vegetation index (ES-NDVI), HD-NDVI and MF-NDVI (Figure 1). Drought stress 
may change the relationships between yield and other traits in wheat. 

 
Figure 1. The correlation analysis between total yield and agronomic traits under different treatment 
conditions. (A) The correlation analysis between total yield and agronomic traits with adequate ir-
rigation treatments. (B) The correlation analysis between total yield and agronomic traits under 
drought-stress conditions. TY, total yield; HD, heading date; PH, plant height; GNPS, grain number 
per spike; GF, grain fullness; BSS, number of basal sterile spikelet; TGW, thousand-grain weight; 
GWPS, grain weight per spike; HD-CT, canopy temperature measured in heading stage; EF-CT, 
canopy temperature measured in early filling stage; MF-CT, canopy temperature measured in mid-
dle filling stage; HD-SPAD, chlorophyll content measured in heading stage; EF-SPAD, chlorophyll 
content measured in early filling stage; MF-SPAD, chlorophyll content measured in middle filling 
stage; ES-NDVI, normalized differential vegetation index measured in elongation stage; HD-NDVI, 
normalized differential vegetation index measured in heading stage; EF-NDVI, normalized differ-
ential vegetation index measured in early filling stage; MF-NDVI, normalized differential vegetation 
index measured in middle filling stage. Red lines indicate positive correlations, and gray lines indi-
cate negative correlations. The correlations were analyzed by “corrplot” in the R package using the 
average values presented in Table S1. 

2.2. QTL Analysis of Agronomic Traits 
A total of 1027 SNP markers established on all the chromosomes (except 4D) were 

used for linkage map construction, producing a total map length of 2188.35 cM. The A, B 
and D sub-genomes harbored different numbers of SNPs, the 462 (0.63 per cM), 471 (0.51 
per cM) and 114 SNP (0.22 per cM), respectively. The genetic map was used to identify 
significant associations between SNP markers and agronomic traits (Table 2). 

  

Figure 1. The correlation analysis between total yield and agronomic traits under different treatment
conditions. (A) The correlation analysis between total yield and agronomic traits with adequate
irrigation treatments. (B) The correlation analysis between total yield and agronomic traits under
drought-stress conditions. TY, total yield; HD, heading date; PH, plant height; GNPS, grain number
per spike; GF, grain fullness; BSS, number of basal sterile spikelet; TGW, thousand-grain weight;
GWPS, grain weight per spike; HD-CT, canopy temperature measured in heading stage; EF-CT,
canopy temperature measured in early filling stage; MF-CT, canopy temperature measured in middle
filling stage; HD-SPAD, chlorophyll content measured in heading stage; EF-SPAD, chlorophyll content
measured in early filling stage; MF-SPAD, chlorophyll content measured in middle filling stage; ES-
NDVI, normalized differential vegetation index measured in elongation stage; HD-NDVI, normalized
differential vegetation index measured in heading stage; EF-NDVI, normalized differential vegetation
index measured in early filling stage; MF-NDVI, normalized differential vegetation index measured
in middle filling stage. Red lines indicate positive correlations, and gray lines indicate negative
correlations. The correlations were analyzed by “corrplot” in the R package using the average values
presented in Table S1.

Table 2. Summary of chromosome assignment, number of SNP marker, map length, marker density
and Max Gap of the SNP genetic map.

Chromosome No. of Markers Map Distance (cM) Map Density (marker/cM) Max Gap (cM) Gap < 5 cM

1A 88 75.18 1.17 18.44 97.73%
2A 43 134.94 0.32 34.93 90.70%
3A 114 182.13 0.63 44.00 94.74%
4A 85 58.01 1.47 6.88 98.82%
5A 47 107.93 0.44 16.37 89.36%
6A 26 82.94 0.31 28.59 84.62%
7A 59 90.93 0.65 14.48 94.92%
1B 66 170.98 0.39 31.86 90.91%
2B 88 128.31 0.69 34.66 93.18%
3B 88 157.46 0.56 29.13 92.05%
4B 14 148.68 0.09 47.48 64.29%
5B 71 170.78 0.42 35.00 90.14%
6B 34 42.49 0.80 16.02 97.06%
7B 110 109.54 1.00 12.68 96.36%
1D 37 150.87 0.25 39.70 83.78%
2D 19 102.39 0.19 37.67 84.21%
3D 20 73.74 0.27 29.91 80.00%
5D 11 58.68 0.19 58.12 90.91%
6D 15 26.40 0.57 10.54 86.67%
7D 12 115.97 0.10 41.63 58.33%

A genome 462 732.06 0.63 44.00 94.59%
B genome 471 928.24 0.51 47.78 92.36%
D genome 114 528.05 0.22 58.12 81.58%

Total 1047 2188.35 0.48 29.40 92.17%
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Table 3. The environmentally stable QTLs of 18 agronomic traits.

Trait QTLs Chr Left Marker Right Marker LOD PVE (%) Add Environment

HD QHD-2A.1 2A BS00068196_51 BobWhite_c1611_1685 13.23–13.56 11.77–11.83 0.73 NE1, NE4
QHD-2A.2 2A BS00076693_51 BS00068139_51 6.96–9.94 5.53–7.93 −0.55 NE1, NE4

QHD-2B 2B wsnp_Ex_c16144_24583060 RAC875_c35399_497 4.23–9.30 7.41–11.32 −0.61 NE1, NE4,
D3, D4

QHD-3D 3D Excalibur_c27702_282 wsnp_Ra_rep_c116793_96612614 2.71–5.95 0.44–12.6 0.44
NE1, NE2, NE3,

NE4, DE1,
DE2, DE4

QHD-5B.1 5B wsnp_BJ224975A_Ta_2_2 wsnp_Ex_c8543_14357051 5.43–19.87 1.80–34.62 −0.91
NE1, NE2, NE3,

NE4, DE2,
DE3, DE4

QHD-5B.2 5B TA001900-1836 Tdurum_contig49576_75 5.12–5.58 4.36–7.61 −0.54 NE2, NE3,
NE4, DE4

QHD-5B.3 5B Tdurum_contig44343_1039 wsnp_Ku_c21275_31007309 6.96–7.14 0.73–11.7 −0.55 NE1, DE1, DE2
QHD-6A 6A TA004558-1018 tplb0028p11_1104 2.88–4.01 3.04–4.15 0.39 NE3, NE4, DE4

PH QPH-4B 4B wsnp_Ex_c26807_36031771 RAC875_rep_c72961_977 3.37–4.74 8.27–9.66 −2.8
NE2, NE3, NE4,

DE1, DE2,
DE3, DE4

QPH-5B 5B wsnp_RFL_Contig3939_4369467 BS00072155_51 2.51–4.47 5.47–10.3 2.5 NE1, NE2, NE4,
DE1, DE4

GF QGF-4B 4B wsnp_Ex_c26807_36031771 RAC875_rep_c72961_977 3.41–4.95 8.91–10.41 −0.19 NE3, NE4

QGF-1A 1A IACX662 BS00012283_51 2.99–4.34 7.73–10.26 0.16 NE4, DE1,
DE3, DE4

BSS QBSS-1A 1A RAC875_c50864_1921 wsnp_Ex_c57322_59083238 4.69–5.63 9.54–10.45 −0.18 NE3, NE4
QBSS-5B 5B wsnp_Ex_c8543_14357051 IAAV619 3.31–4.35 6.40–9.93 −0.16 DE3, NE3, NE4

TGW QTGW-1A 1A wsnp_Ex_c33246_41764093_2 wsnp_Ku_c18923_28319203_2 17.14–18.69 8.34–8.38 −2.25 NE2, NE4
QTGW-2B 2B Jagger_c1059_300 TA003703-0582 2.54–30.4 4.66–16.2 −2.29 NE2, NE3, NE4
QTGW-4B 4B wsnp_Ex_c26807_36031771 RAC875_rep_c72961_977 3.01–5.47 1.75–10.39 −1.08 NE1, NE3, NE4

TY QTY-1A 1A BS00022698_51 RAC875_c400_3378 3.15–3.18 7.90–7.96 0.18 NE4, DE1, DE4

HD-SPAD QHD-SPAD-
4B 4B wsnp_Ex_c26807_36031771 RAC875_rep_c72961_977 3.01–6.00 4.76–14.67 0.61

NE2, NE3, NE4,
DE1, DE2,
DE3, DE4

QHD-SPAD-
5B 5B Excalibur_rep_c111129_125 RAC875_c30566_230 4.61–6.11 8.82–8.87 0.67 NE3, NE4

EF-SPAD QEF-SPAD-
5B.1 5B wsnp_Ra_c13_24911 wsnp_Ex_rep_c68515_67349904_2 2.74–4.72 5.61–8.44 0.50 DE2, DE3, DE4

QEF-SPAD-
5B.2 5B Excalibur_c6279_381 Kukri_c52049_277 3.25–6.06 6.41–11.2 −0.54 NE4, DE2, DE4

MF-SPAD QMF-SPAD-
3D 3D RAC875_c35873_1828 Excalibur_c9472_217 3.50–4.28 8.58–8.80 −0.59 NE1, NE4

QMF-SPAD-
5B 5B Tdurum_contig44343_1039 wsnp_Ku_c21275_31007309 5.77–8.18 9.75–18.92 −2.40 DE3, DE4

ES-NDVI QES-NDVI-
1A.3 1A Tdurum_contig10036_474 BS00067525_51 6.09–6.59 11.45–14.21 0.13 NE4, DE3, DE4

HD-
NDVI

QHD-NDVI-
5B 5B wsnp_Ex_c8543_14357051 IAAV619 3.64–9.44 8.42–19.79 −0.01 NE3, NE4, DE2,

DE3, DE4

EF-NDVI QEF-NDVI-
5B.1 5B wsnp_BJ224975A_Ta_2_2 wsnp_Ex_c8543_14357051 3.28–8.24 7.60–19.72 −0.01 NE3, NE4,

DE2, DE4
QEF-NDVI-

5B.2 5B BS00003944_51 BS00049719_51 2.59–2.65 3.61–6.36 −0.01 DE3, DE4

Chr: Chromosome; PVE: phenotypic variation explained [26]. NE1, NE2, NE3 and NE4 indicate non-stress
condition in 2014, 2015, 2016 and the average values, respectively; DE1, DE2, DE3 and DE4 indicate drought stress
condition in 2014, 2015, 2016 and the average values, respectively.

2.3. Drought Tolerance Evaluation

The drought tolerance index (DI) was used to assess the drought tolerance of the RIL
population based on non-stress and drought-stress conditions (Figure 2, Table S3). For
yield-related agronomic traits, the DIs of grain weight per spike (GWPS) (0.85) and total
yield (TY) (0.87) were the lowest, confirming that they were the most vulnerable traits to
drought stress, resulting in severe adverse effects on wheat yield (Figure 2). The DI of
number of basal sterile spikelet (BSS) (1.36) was higher than those of other yield-related
traits, indicating that BSS was greatly affected by drought stress and phenotypic varied
greatlyunder different conditions (e.g., no-stress/drought-stress and different years). For
physiological traits, the DIs of NDVI in filling stage were significantly difference from other
physiological traits, especially in the MF (only 0.73), indicating that the drought tolerance
of NDVI in the filling stage was the weakest. Thus, drought stress appears to negatively



Plants 2024, 13, 898 6 of 13

affect grain development, especially grain formation and grain filling, directly leading to
decreases in grain weight per spike (GWPS) and total yield (TY).
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2.4. QTL Analysis of the DI

The annual values of the DI of each trait were calculated by combining the phenotypic
data from 3 years, and these were then used for QTL detection. There were 20 QTLs related
to drought tolerance among yield-related agronomy traits and 23 QTLs related to drought
tolerance among yield-related physiological traits. They explained 5.62–53.65% of the
phenotypic variances (Figure 3 and Table S4).
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Six QTLs were identified as being directly related to drought tolerance in wheat
(Figure 4). To verify the drought tolerance roles of these vital QTLs, we performed a
polymorphic characterization of the associated SNP markers in the RIL population and ex-
amined whether the differences in phenotypic values grouped by polymorphism exceeded
a critical threshold (p < 0.05). We identified superior alleles as those associated with high
DIs of thousand-grain weight, grain weight per spike and total yield, and inferior alleles
as those having the opposite effects. Accessions with superior alleles for DIs of thousand-
grain weight, grain weight per spike and total yield at these QTLs showed significantly
higher than those with inferior alleles (Figure 5), indicating that the superior alleles of these
QTLs could maintain the stability of thousand-grain weight, grain weight per spike and
total yield under drought-stress conditions. In conclusion, the superior alleles of these
loci could be integrated into wheat cultivars by marker-assisted selection for breeding to
improve the drought tolerance and increase the stability of yield-associated traits under
drought-stress conditions.
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3. Discussion

Owing to climate change, the occurrence of drought stress during crop growth is
becoming a major obstacle to yield improvement [27,28]. Thus, it is crucial to assess
the adaptability of wheat to drought stress under future climate conditions [29,30]. This
study found that drought stress significantly reduced the yield-related agronomic and
physiological traits of wheat, especially total yield and yield components, such as thousand-
grain weight and grain weight per spike, compared with under non-stress conditions
(Table S1). The greatest impact of drought on total yield may be partly due to the cumu-
lative effects it exerts on the yield-related traits, as well as on the flowering and grain
filling stages [31,32]. For instance, drought stress caused a significant reduction in tiller
number, ovary pollination and spike size [33,34]. Thus, drought stress also changed the
relationship between wheat yield and other traits, especially the correlation between yield
and physiological traits [35]. Consequently, improving the tolerance of yield component-
related traits to drought stress is the basis for maintaining wheat yield levels under extreme
weather conditions.

Genetic mapping is an important method to analyze the genetic mechanisms of wheat
traits. Here, we used 1047 polymorphic SNP markers from a 90K SNP assay [36] and
constructed a high-density genetic map for an RIL population. The average density of
the map was 2.09 cM/marker, representing a considerable improvement over previously
reported maps [37,38]. In total, 131 QTLs were identified for 18 yield-related agronomic
and physiological traits. There were 67 QTLs (51.1%) located on the A genome, 44 QTLs
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(33.6%) located on the B genome, and 20 QTLs (15.3%) located on the D genome, which
was basically consistent with the distribution of markers on the genetic marker map. Many
QTLs are pleiotropic [39,40], which was corroborated in the present study, with 27 QTLs
being associated with more than two traits. These findings improve our understanding of
the genetic mechanisms of wheat growth and development, and they provide a basis for
further genetic analysis of wheat yield and physiological traits.

From the experimental procedures under both non-stress and drought-stress con-
ditions, the traits used to calculate the drought tolerance index (DI) were significantly
different among wheat materials and treatments. This illustrates the broad genetic diversity
present in the materials used to promote drought tolerance in general [40]. This relationship
provides the basis for utilizing DIs as means to explain phenotypic variation. In this study,
the DIs of grain weight per spike and total yield, the most susceptible yield traits to drought
stress, were only 0.85 and 0.87, respectively. The DI-NDVI was only 0.73 at middle filling
stage, indicating that drought stress at this stage had an adverse effect on grain formation
and grain filling, which directly contributed to drought-induced decreases in grain weight
per spike and total yield.

Increasing the tolerance of wheat to drought stress through genetic improvement
strategies is of great significance to ensure food security [41]. The drought tolerance index
(DI) can be derived from total yield and strongly positively correlated traits, and it is used
as a measure to select the best genotype [42–44]. A total of 43 QTLs associated with trait-
related drought tolerance were identified using the drought tolerance index (DI) of each
trait. Among them, six were directly associated with drought tolerance in wheat. Despite
the identification of several QTLs that were associated with drought indices in our study,
further validations and investigations are needed to understand the molecular functions
of the associated genes in wheat drought stress-response mechanisms. Major QTLs with
favorable SNP alleles identified in this study could be used to develop markers, such
as cleaved amplified polymorphic sequences and competitive allele-specific PCR-based
markers, to facilitate future marker-assisted breeding in wheat.

4. Materials and Methods
4.1. Plant Materials and Field Trials

A total of 186 F8 RILs derived by single-seed descent (SSD) from a cross between
XinChun7 (XC7) and XinChun21 (XC21) were used for phenotyping and QTL mapping.
XC7 is characterized by high yield, excellent bread quality, good lodging resistance and
drought-stress tolerance. XC21 is characterized by high yield as well, while being sensitive
to drought stress.

The parents and 186 RILs were grown at Xinjiang Wheat Breeder Base in Chang Ji
District (43◦96′ N, 87◦01′ E, altitude 717.2 m) from 2014 to 2016. The field trials were
carried out in randomized complete blocks with three replications and two conditions,
drought-stress and non-stress conditions. The irrigation method for both conditions was
drip irrigation, which was independently controlled for the different treatments, and the
areas under the different treatments were separated by 4 m isolation zone. Each replicate
experimental plot was 2 m in length, with four rows, and an inter-row spacing of 0.2 m,
with 40 grains per row. Field management was consistent with local practices for wheat
production. No-stress condition plants were watered eight times during the growing season
with irrigation intervals of 10 days. Drought-stress condition plants were irrigated three
times at the jointing, heading and early grain filling stages. Non-stress and drought-stress
condition plants had 480 mm and 180 mm irrigation water applied, respectively. During
the 2014, 2015, and 2016 growing seasons, both treatments received 65, 74.5, and 142 mm of
rainfall, respectively.

4.2. Phenotypic Evaluation

The traits were measured at physiological maturity. Three individual plants were
selected from each row and used to investigate plant height, grain number per spike
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and number of basal sterile spikelets in accordance with established protocols [45,46].
The heading date was assessed as the interval between the date of seeding emergence
and the date at which 50% of spikes per row emerged from the flag leaf [47]. The grain
fullness was divided into nine grades, from very shrunken (1) to very full (9). In addition,
thousand-grain weight and grain weight per spike were recorded using the rapid SC-G
grain appearance quality image analysis system [45]. Finally, all the plants in the plot were
harvested manually, and after threshing, the weight was calculated as the total yield (t/ha)
when the water content was 13%.

The canopy temperature was measured at 13:00–15:00 using a hand-held thermal
infrared instrument (FLIR Integrated Imaging Solutions Inc., Richmond, BC, Canada)
during the heading stage, early filling stage (9 days after flowering) and middle filling
stage (18 days after flowering), with a field of view of 25◦ × 20◦ and a resolution of
320 × 240 [48]. The SPAD was measured in 10 flag leaves per plot at the heading stage,
early filling stage and middle filling stage using a SPAD-502 Minolta chlorophyll meter
(Spectrum Technologies, Plainfield, IL, USA). Three points were taken per leaf, and the
three readings were averaged [48]. The NDVI was measured during the elongation stage,
heading stage, early filling stage and middle filling stage using a Green Seeker 505 (Hand
Held Optical Sensor Unit, Model 505; NTech Industries Inc., Ukiah, CA, USA) [49].

4.3. Statistical Analyses

The phenotypic data analyses were conducted using Genstat v.17.1 (VSN International
Ltd., Hemel Hempstead, UK) and SPSS Statistics v.20.0 (IBM Corporation, Armonk, NY, USA).
PROCGLM was used for the analysis of variance, in which genotypes were considered
as fixed effects, and environments and replicates nested in environments were consid-
ered as random effects. Pearson’s correlation analysis and independent-samples t-tests
were performed using the IBM SPSS Statistics version 20.0 software (IBM Corporation,
Armonk, NY, USA).

The drought-resistance coefficient (DC) and DI were used to assess the drought toler-
ance of wheat [16,50]. The formulas are as follows:

DC = Pd/Pi

DI = DC × Pd/Pd,

where Pd represents the phenotype under drought conditions; Pi represents the phenotype un-
der irrigated conditions; and Pd represents the average phenotype under drought conditions.

4.4. SNP Genotyping

Total genomic DNA was isolated from the lyophilized young leaves of each geno-
type using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA; cat. no. 69106). The
DNA quality was assessed using 0.8% agarose gel electrophoresis, and the DNA concen-
tration was measured using a NanoDrop™ ND-2000 spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA). The RIL, XC7 and XC21 accessions were genotyped
using the Illumina 90K iSelect wheat SNP assay [36] in the Small Grains Genotyping Lab
at the USDA-ARS, Fargo, ND, USA. The Illumina iSelect 90K assay produced data for
81,587 SNPs. The analyses of SNP genotyping, clustering of the SNP alleles and calling of
the genotypes were performed using Genome Studio v2011.1 (https://www.illumina.com,
accessed on 5 June 2023). The minimum number of points used in a cluster was 10 [36].
Monomorphic SNPs, and SNPs having more than 20% missing genotypic data and 10%
heterozygosity, were excluded. The polymorphic SNPs selected after filtering based on the
above-mentioned criteria were screened to determine their positions on the chromosomes
based on the wheat consensus genetic map [36].

https://www.illumina.com
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4.5. Genetic Map Construction and QTL Mapping

For genetic map construction, the monomorphic markers between parents and the
markers with a high missing value (i.e., more than 20.0%) or minor allele frequency less than
0.3 were removed, and the remaining 11,213 high-quality polymorphic markers were used
for subsequent analyses. The BIN function in IciMapping v4.2 (http://www.isbreeding.net/,
accessed on 5 November 2023) [51] was used to remove redundant markers. A linkage
analysis of the 4784 non-redundant markers was performed with the JoinMap v4.0 Soft-
ware using the regression mapping algorithm. The linkage maps were drawn using the
IciMapping v4.2 Software.

A QTL analysis was carried out using the inclusive composite interval mapping
function of IciMapping v4.2. The mapping parameters were set as step = 0.1 cM and
PIN = 0.001, and the logarithm of odds threshold was calculated with 1000 permutations at
p < 0.05. QTLs that explained more than 5% of the phenotypic variance were considered to
be major loci, and those detected in more than two environments were regarded as stable.

5. Conclusions

We evaluated 18 yield-related agronomic and physiological traits, along with their
drought tolerance indices, in a recombinant inbred line population derived from the
XC7 × XC21 cross. Drought stress exerted negative impacts on grain formation and filling,
directly leading to significant reductions in grain weight per spike and grain yield per plot,
compared with non-stress conditions. Genotyping the recombinant inbred line population
using the wheat 90K single nucleotide polymorphism array resulted in the identification of
131 QTLs associated with the 18 traits. Among the identified QTLs, 43 were specifically
associated with drought tolerance across the 18 traits, with 6 showing direct linkages to
drought tolerance in wheat.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13060898/s1, Figure S1: The Frequency distribution of 186
RILs in different treatments; Table S1: The phenotypes of parents and 186 RILs in different treatments;
Table S2: All QTLs of wheat agronomic traits; Table S3: The DI of yield-related agronomic traits and
physiological traits of 188 RILs; Table S4: All QTLs of the wheat drought resistance index.
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