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Abstract: Challenges of climate change and growth population are exacerbated by noticeable environ-
mental changes, which can increase the range of plant diseases, for instance, net blotch (NB), a foliar
disease which significantly decreases barley (Hordeum vulgare L.) grain yield and quality. A resistant
germplasm is usually identified through visual observation and the scoring of disease symptoms;
however, this is subjective and time-consuming. Thus, automated, non-destructive, and low-cost
disease-scoring approaches are highly relevant to barley breeding. This study presents a novel
screening method for evaluating NB severity in barley. The proposed method uses an automated RGB
imaging system, together with machine learning, to evaluate different symptoms and the severity
of NB. The study was performed on three barley cultivars with distinct levels of resistance to NB
(resistant, moderately resistant, and susceptible). The tested approach showed mean precision of
99% for various categories of NB severity (chlorotic, necrotic, and fungal lesions, along with leaf tip
necrosis). The results demonstrate that the proposed method could be effective in assessing NB from
barley leaves and specifying the level of NB severity; this type of information could be pivotal to
precise selection for NB resistance in barley breeding.

Keywords: barley; net blotch; disease symptoms; machine learning; RGB imaging

1. Introduction

Climate change and steady population growth represent serious burdens to sustainable
food production. The global human population has grown substantially over recent
decades, which has noticeably strained the capacity of agricultural systems to provide a
sufficient supply of food [1,2], to the point that many researchers are also shifting their
attention to the valorization and use of wild species useful for human food [3–5]. At the
same time, climate change—which has become increasingly noticeable—not only reduces
crop yields, but also increases the risk that various plant pests and diseases will spread
to new locations [6]. A primary goal of plant breeding programs is the identification
of high-yield cultivars that can sufficiently meet consumers’ food demands [7], starting
from the rediscovery of ancient varieties [8]. Barley is a major cereal crop that is mainly
destined for direct human consumption but also transformed into processed food forms
like bread, soups, stews, and health products [9]. These food products, including starch
flour, flakes and pearled barley, are staple food in several countries, including Morocco,
India, China, and Ethiopia (OECD, 2004). In Europe, up to 90% of barley is used for beer
production (FAOSTAT, 2020); thus, this region is the largest producer and consumer of
barley worldwide [10]. However, the dissemination and wider domains of plant pathogens
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represent a threat that can affect both barley grain quality and yields [7,11]. The fungal
pathogen Pyrenophora teres is a major pest that affects barley [12].

Pyrenophora teres exists in two forms: the net form of net blotch (NB) caused by
P teres. f. teres and the spot form of NB caused by P teres. f. maculata [13]. Both forms of this
fungal pathogen will decrease grain yield and quality, ultimately contributing to noticeable
economic losses. P. teres f. teres is a necrotrophic pathogen that grows at an intracellular
level during the infection period [14]. Generally, the pathogen penetrates the epidermal
layer within two days of infection [15]. Once inside the sub-stomatal chamber, the pathogen
then creates secondary hyphae [16]. A prevalent technique for the laboratory evaluation of
this pathogen involves detached leaf assays, in which lesion size is quantified, the number
of spots is counted, and classification is based on lesion color. In whole-plant assays,
inoculation is performed at a specified growth stage. Nevertheless, a comprehensive
laboratory assessment needs to consider diverse parameters, with the most important
encompassing the intricate interplay between the host, environment, and pathogen [8]. To
mitigate the incidence and transmission of the disease, various management practices are
implemented, e.g., the application of fungicides and seed treatments [17]. Additionally,
strategies such as the utilization of biocontrol agents and crop rotation, which primarily
target reductions in the primary inoculum, have been investigated for effectiveness in
curbing infection [18]. Nevertheless, it has been shown that the best practical and long-term
approach to controlling NB is the selection of resistant cultivars [19].

To date, resistance to the net form of NB has only been witnessed in a limited number
of cultivars, while the majority of cultivars display only minimal susceptibility to the
spot form of NB; this can greatly complicate the identification of resistant lines [13,19–21].
An additional challenge is that the evaluation of net blotch lesion severity traditionally
involves visual assessments which employ a standardized 1–10 scale and are conducted as
the disease progresses [22]. While this method has produced meaningful outcomes, the
main drawbacks include a lack of precision and reproducibility, along with inherent time
and labor intensiveness [23].

Over the last decades, efforts have focused on the development of high-throughput
phenotyping methods to overcome these constraints [24–26]; one potentially robust ap-
proach relies on using image analysis to measure and analyze plant health [27–30]. This
simple and low-cost solution mostly uses red–green–blue (RGB) imagery to extract informa-
tion about the shape, texture, and color of plants, and has shown promise for the evaluation
of different abiotic and biotic stresses even before the typical symptoms manifest [31,32].
Image acquisition can be performed through various methods, either manually [33] or via
an automatic platform [34], and encompass various devices such as mobile phones [35],
imaging chambers [36], high-throughput phenotyping facilities [37], or drones [38]. An
example is the Phenocave, an automatic, low-cost, custom-built, and user-friendly system
for image acquisition under indoor growth conditions [34]. This system has proven to be
useful for capturing images with different cameras, e.g., RGB, multi-, and hyperspectral.
Integrating these technologies with suitable analytical approaches can make it possible for
researchers to differentiate between infected and healthy plants, as well as determine the
severity, stage, and type of disease [39,40].

In the same sense, improvements in the software for image analysis have been accom-
plished in recent years; an example is ImageJ/Fiji [41,42], which is a platform dedicated
to biological image analysis and contains plugins—written in Java—that can be used to
tailor the image editing and analysis to a specific problem. Some of these plugins have
been developed to provide machine learning approaches to analysis; for instance, the
machine learning plugin “The Trainable Weka Segmentation” (TWS) [43] is a combination
of image segmentation and machine learning algorithms that use the Waikato Environment
for Knowledge Analysis. As such, almost any user can utilize this plugin, which does not
require proficiency in coding. It has shown great promise in the classification of plants [44]
as well as other domains within plant research [45–47].
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Extensive research has specifically focused on using image analysis for the detection
of NB. Notably, one prior study aimed to identify techniques that are relevant to the
early detection of various diseases, including wheat yellow rust, stem rust, powdery
mildew, potato late blight, and wild barley NB. Despite achieving 95% accuracy under
field conditions by using deep learning approaches, the study primarily focused on early
disease detection, along with the differentiation of various diseases; as such, the developed
technique did not prove to be useful for following NB progression [48]. Another broad
study that employed deep learning methods reported 75% accuracy for the identification of
various spot and lesions; unfortunately, the applicability of this approach to specific cases,
e.g., barley NB, remains unclear [39]. Therefore, while various techniques for identifying
plant disease currently exist, most lack a simple and user-friendly interface that would
allow large-scale application through the plant pathogen field.

The present study introduces a novel method for NB screening in barley which draws
upon the Phenocave system for automatic image acquisition; more specifically, an RGB
camera and the TWS plugin for image segmentation in ImageJ. The study was conducted
in a growth chamber and involved three barley cultivars (resistant, moderately resistant,
and susceptible).

2. Materials and Methods
2.1. Plant Material

The plant material used in this study comprised three spring barley cultivars selected
on the basis of resistance to NB: Laureate (resistant); Firefoxx (moderately resistant); and
Flair (susceptible). Approximately 60 seeds representing each cultivar were germinated
on moist filter paper in petri dishes, prior to transplantation into soil. The seeds were
germinated for three days under dark conditions at a temperature of 20 ◦C. The germinated
seedlings were then transplanted to plastic pots (9 × 9 × 8 cm) filled with a mix of soil
(Emmaljunga plantjord produced by Emmaljunga Torvmull AB) containing osmocote, a
long-acting fertilizer, and oxywet, a product that helps retain soil moisture; three seedlings
were planted in each pot. Thus, each cultivar had a total of 20 pots; all 60 pots were placed
on three trolleys in a completely randomized order provided by the design.crd() function
in the agricolae package [49] for R software version 4.2.

The seedlings were left to grow for 10 days, after which the full emergence of a second
leaf was observed in all plants (n = 60). This step, along with the subsequent parts of this
study, were conducted in controlled conditions in a climate chamber at the Biotron research
facility, which is located at the Swedish University of Agricultural Sciences in Alnarp,
Skåne, southern Sweden. The plants were grown at a light intensity of 250 µmol m−2 s−1

with a photoperiod of 12 h/12 h day/night, a relative humidity of 65%, and a constant
temperature of 19 ◦C.

2.2. Inoculation Protocol

The isolated fungal pathogen Pyrenophora teres f. teres was retrieved from glycerol
stocks stored at −80 ◦C and plated onto Petri dishes with 20% V8 media. The plates were
incubated for three days at 19 ◦C and a 12/12 h white light/dark cycle, after which the
plates were moved to a UV chamber for a five-day 12/12 h UV/darkness regimen (constant
temperature of 19 ◦C). This was followed by an 8/16 h UV/darkness regimen for another
10 days.

After incubation, the plates were flooded with approximately 10 mL of sterile water
and the contents were scraped into a beaker. The initial spore count of 55,000 spores/mL in
the resulting inoculum was adjusted to 27,500 spores/mL using a hemocytometer. Finally,
1 µL of the surfactant Tween 20 was added to the suspension to facilitate spore adhesion to
the leaf surface.

A subset of the 60 pots was distributed among 12 trays according to a two-factorial
design including all three of the cultivars, two treatments, and two replicates (Figure 1A).
The design was generated using the design.ab() function in the agricolae R package. A total



Plants 2024, 13, 1039 4 of 12

of four pots representing each cultivar were placed into a tray. Next, the second leaves from
plants were fixed to a horizontal board using rubber bands; this kept the leaves flat against
a white background (Figure 1B). Each tray then consisted of two clusters of 5–6 leaves.
The two treatments included inoculation, under which each leaf was brushed with 30 µL
of inoculum, and control, under which each leaf was brushed with a mixture of sterile
water with 0.02% Tween. A control treatment was included to record data concerning stress
symptoms that were unrelated to net blotch infection. Immediately following infection, the
trays were covered with black plastic bags for 24 h to maintain high humidity and darkness.
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Figure 1. (A) Distribution of cultivars under the two-factorial experimental design, which included
two replicates (R1 and R2) and two treatments (control (blue) and infected (yellow)). The numbers 1
and 2 represent plants that represent the same cultivar but received different treatments, respectively.
The plants marked with an orange color were used to build the training set for the applied model;
(B) Image of the 12 plant trays in the chamber.

2.3. Image Acquisition

Top-down images were captured on a daily basis using a Canon EOS 1300D camera
(Canon, Tokyo, Japan), with a Canon EF-S 50 mm f/1.8 STM lens, that was mounted onto
the Phenocave automated imaging gantry system [34]. The camera parameters used when
capturing images were a shutter speed of 1/50 s, an aperture stop of f/16, and ISO 200. The
images were saved in the JPEG file format. The capturing of images started one day after
infection (DAI) and proceeded until 15 DAI. The Phenocave was set up in a way that each
cluster of leaves could be photographed separately; this resulted in two pictures per tray
at each time point. An example of an image taken from two clusters of leaves is shown in
Figure 2.

2.4. Image Processing

The resulting 720 images were processed using Raw Therapee v5.8 to crop the images
to a size of 900 × 1024 pixels. The free software ImageJ/Fiji (ver.1.53c.) [41], with the
Trainable Weka Segmentation (TWS) plugin (ver.3.2.35) [43], was used to segment the
images. When training the model in TWS, one cluster per tray was randomly selected,
using only images collected at 1, 7, and 15 DAI.



Plants 2024, 13, 1039 5 of 12Plants 2024, 13, x FOR PEER REVIEW 5 of 13 
 

 

  
Figure 2. Example of an image showing two clusters of leaves; the left photo shows the disease 
symptoms on the leaves, while the right photo shows sound leaves that were not infected. 

2.4. Image Processing 
The resulting 720 images were processed using Raw Therapee v5.8 to crop the images 

to a size of 900 × 1024 pixels. The free software ImageJ/Fiji (ver.1.53c.) [41], with the Train-
able Weka Segmentation (TWS) plugin (ver.3.2.35) [43], was used to segment the images. 
When training the model in TWS, one cluster per tray was randomly selected, using only 
images collected at 1, 7, and 15 DAI. 

Each image of the training set was opened in the TWS interface, after which leaf re-
gions were manually marked according to the following six classes: (1) healthy leaf area; 
(2) necrotic lesion area; (3) chlorotic lesion area; (4) fungal lesion area; (5) leaf tip necrosis; 
and (6) background. The classes were selected according to the fungal symptoms given 
for classes 2 to 4, and if necrosis was observed at the leaf tip (class 5). This type of necrosis 
was a common form of stress that appeared in both infected and control leaves. The model 
was built using the Random Forest algorithm with the training features Gaussian Blur, 
Sobel filter, Hessian, Difference of Gaussians, Membrane projections, Variance, Mean, 
Minimum, Maximum, Median, Anisotropic Diffusion, Bilateral, Lipschitz, Kuwahara, Ga-
bor, Entropy, and Neighbors. The membrane thickness was set to �1’, with a patch size of 
19. Minimum and maximum sigma were set to 1 and 16, respectively. Using images from 
50% of the total infected and control plants yielded a dataset with 215,913 rows of data 
and 231 features, with each row containing features from a manually-selected area of five 
pixels. 

The resulting model was able to classify the entire image, i.e., provide an image that 
is segmented into the six categories described above. These images were then used to 
identify any wrongly classified regions in the image, which were manually corrected to 
improve model performance.  

2.5. Model Performance 
The training set data were further analyzed in R to investigate the class-wise accuracy 

and variable importance of the potential prediction model. The R package caret version 
6.0 [50] was used to conduct a 10-fold cross-validation, which was repeated five times. 
Class-wise classification accuracy was extracted from each iteration by computing a con-
fusion matrix for the assigned and predicted classes for each pixel. The final model pro-
duced in the R package caret was used to assess variable importance. Finally, the trained 
random forest model was applied to the remaining images collected in the experiment. 

  

Figure 2. Example of an image showing two clusters of leaves; the left photo shows the disease
symptoms on the leaves, while the right photo shows sound leaves that were not infected.

Each image of the training set was opened in the TWS interface, after which leaf
regions were manually marked according to the following six classes: (1) healthy leaf area;
(2) necrotic lesion area; (3) chlorotic lesion area; (4) fungal lesion area; (5) leaf tip necrosis;
and (6) background. The classes were selected according to the fungal symptoms given for
classes 2 to 4, and if necrosis was observed at the leaf tip (class 5). This type of necrosis was
a common form of stress that appeared in both infected and control leaves. The model was
built using the Random Forest algorithm with the training features Gaussian Blur, Sobel
filter, Hessian, Difference of Gaussians, Membrane projections, Variance, Mean, Minimum,
Maximum, Median, Anisotropic Diffusion, Bilateral, Lipschitz, Kuwahara, Gabor, Entropy,
and Neighbors. The membrane thickness was set to ‘1’, with a patch size of 19. Minimum
and maximum sigma were set to 1 and 16, respectively. Using images from 50% of the total
infected and control plants yielded a dataset with 215,913 rows of data and 231 features,
with each row containing features from a manually-selected area of five pixels.

The resulting model was able to classify the entire image, i.e., provide an image that is
segmented into the six categories described above. These images were then used to identify
any wrongly classified regions in the image, which were manually corrected to improve
model performance.

2.5. Model Performance

The training set data were further analyzed in R to investigate the class-wise accuracy
and variable importance of the potential prediction model. The R package caret version
6.0 [50] was used to conduct a 10-fold cross-validation, which was repeated five times. Class-
wise classification accuracy was extracted from each iteration by computing a confusion
matrix for the assigned and predicted classes for each pixel. The final model produced in
the R package caret was used to assess variable importance. Finally, the trained random
forest model was applied to the remaining images collected in the experiment.

3. Results

In this study, a total of 60 plants were inoculated with the fungal pathogen that causes
NB. Visual scoring and RGB imaging of the leaf clusters was already performed one DAI.
The RGB images were processed using the TWS plugin of Fiji/ImageJ software version
2317, during which pixels were classified into five different categories: healthy; chlorotic;
necrotic; fungal; and leaf tip necrosis. A total of 65 leaves across six trays were infected. The
total number of inoculated leaves across the three barley cultivars, including the percentage
of leaves that developed infection symptoms, are detailed in Table 1.
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Table 1. Total number of inoculated leaves for the three tested barley cultivars, including the
percentage of leaves that developed infection symptoms.

Cultivar No. Inoculated Leaves Percentage Infected

Firefoxx 23 43.5%

Flair 23 69.6%

Laureate 19 52.6%

The results obtained from the training and test sets were cross-validated to verify
the accuracy of classification. The results of this cross-validation analysis revealed high
classification accuracy for all classes of 0.99 (Table 2), with slightly differences in decimals
of approximately 0.004 for each class evaluated. However, 0.78% of the total pixels of
images were wrongly classified as belonging to different categories. For example, in the
case of pixels representing the background, 0.05% of these pixels were misclassified as leaf
tip necrosis. Moreover, 0.11% of the pixels representing a healthy leaf were misclassified as
fungal lesions, while the same proportion (0.11%) of pixels representing chlorotic lesions
were misclassified as necrotic lesions. The proportion of misclassified pixels increased in
the case of fungal lesions, with 0.31% of the pixels misclassified as necrotic lesions. About
0.2% of pixels representing leaf tip necrosis were misclassified as necrosis. Although these
cases of misclassification provide evidence that the process was not entirely accurate, the
fact that less than 1% of the analyzed pixels were misclassified can be considered as an
insignificant error; in this way, we believe that the presented image analysis approach
can provide reliable and accurate results in a timely manner. The final model, which was
trained using the full training dataset, was applied to all of the images, including the
training set images and images left out of the training set. An example of how the model
performed on images not included in the training set can be seen in Figure 3, with pixels in
two infected clusters of leaves at 15 DAI classified into one of the six classes.

Table 2. Class-wise confusion matrix of prediction accuracy and variable importance. TBA: statistics
concerning spotty disease infection.

Reference

Background Healthy Necrotic Chlorotic Fungal Leaf tip necrosis

Prediction

Background 3,797,616 125 19 0 21 159

Healthy 468 1,988,363 37 59 318 55

Necrotic 27 870 91,082 73 958 470

Chlorotic 36 225 36 66,011 40 162

Fungal 251 2319 217 45 300,801 147

Leaf tip necrosis 1971 400 16 29 184 223,780

Overall accuracy 0.999 0.998 0.996 0.997 0.995 0.996
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Figure 3. An example of the application of the final model to test set images taken 15 DAI. (A) Susceptible
cultivar, original (left) and processed (right); (B) resistant cultivar, original (left) and processed (right). The
various classes are shown using the following colors: background (red); healthy leaf area (green); chlorotic
lesion (yellow); necrotic lesion (purple); fungal lesion (blue); and leaf tip necrosis (magenta).

4. Feature Importance

A total of 20 features, such as entropy corresponding to texture information and hue
and saturation corresponding to color, were used when creating the model for classification.
Moreover, features related to noise reduction, such as Kuwahara, Bilateral, and Anisotropic
diffusion reduction, were included. All of these features were then included in the analysis
of variable importance to determine which features provide the most information about
visible NB symptoms. The results, illustrated in Figure 4, revealed that the features related
to color are highly important, with hue receiving a score of 100% for importance and
saturation receiving a score of 24% for importance. Features related to noise reduction were
also important for the model, with Kuwahara receiving a score of 40%, while the feature
“entropy” also received a high score (37.5%) for variable importance.
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To capture the progression of the disease in barley plants, the pixel counts describing
affected areas of leaves were plotted across time. As can be observed in Figure 5, the
period from the 21st of February (1 DAI) to the 7th of March (15 DAI) showed significant
changes in the health of leaves inoculated with Pyrenophora teres f. teres. The infected
plants, denoted with the letter A, showed more significant changes when compared to
control plants, denoted with the letter B. Although all of the plants belonging to the same
cultivar showed similar trends in the experiments, there were several cases in which plants
from the same cultivar had significant differences in NB progression. For example, plants
representing the cultivar Flair in replicate I were highly affected by NB, with symptoms of
fungal lesions, while the Flair plants in replicate II were classified as resistant. Moreover,
plants belonging to the cultivar Laureate in replicate I showed some damage caused by
the infection, such as fungal lesions, while the Laureate barley plants in replicate II were
found to be the most susceptible to NB, with over 75% of the leaf area showing symptoms,
especially fungal lesions. Concerning the cultivar Firefoxx, the results confirmed that this
cultivar is highly resistant to NB. In replicate I, leaf tip necrosis was observed in less than
25% of the leaf area, with 30% of the leaf area affected by chlorotic lesions. A similar trend
was observed in replicate II, with one group of plants showing leaf tip necrosis in less than
40% of the leaf area and chlorotic lesions affecting approximately 30% of the leaf area. As
such, plants representing the Firefoxx cultivar demonstrated very mild symptoms across
both treatments and replicates.
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5. Discussion

This study evaluated the potential of a novel approach in the detection and quantifi-
cation of the symptoms and severity of NB in barley which is an economically important
disease in the temperate region. NB in barley also has a high broad sense heritability of
0.8 to 0.85, as documented previously [51], making it a suitable model system to evaluate
imaging for disease detection. The results indicated that using a machine learning approach
can provide utility in detecting differences among various cultivars. In addition, the present
study evaluated two affordable, user-friendly, and time-efficient approaches. The low-cost
image acquisition system Phenocave [34] was developed for indoor growth conditions
and takes images using a regular RGB camera and two other imaging sensors (multi- and
hyperspectral). We only analyzed RGB images, while the use of spectral data for disease
screening can be explored in future studies. The performance of the TWS [43] plugin
of the free software Fiji/ImageJ in image segmentation with different machine-learning
algorithms was also assessed.

The features used to build the classification model were included in a variable impor-
tance analysis, the results of which revealed the most relevant characteristics to evaluate
during RGB image processing. The analysis identified hue as the most significant feature
(100% importance), followed by noise reduction via the Kuwahara filter and texture “en-
tropy” (Figure 4). Although all of the other features contributed to the model performance,
a second model could be created using a feature importance threshold of 25%. While the
combination of all of the features provided a classification accuracy of 99%, it could be
expected that a similar accuracy could be obtained by only including the features with
the largest contributions to performance, as this would translate to large improvements in
computational speed. The class-wise prediction analysis results revealed a certain degree of
misclassifications; this may be explained by the sheer number of features used to create the
model or by the number of samples analyzed. In this study, we only investigated three time
points to evaluate whether the developed model is efficient, affordable, and easy-to-use. It
is important to note that the inclusion of a longer study period of disease progression and
obtaining more images, i.e., a larger sample size, could decrease the number of misclassifi-
cations. Nevertheless, only 0.78% of the classifications made based on samples collected
from 60 plants over 15 days were wrong, which is very low, and essentially negligible; this
provides strong evidence of the value of the presented approach.

Image data were systematically recorded over a span of 15 days that encompassed
the period from 1 to 15 DAI. This experimental design enabled the detailed tracking of
NB disease progression. The predictive capacity of the method not only facilitated the
discrimination of resistant and susceptible cultivars, but also provided insights into the
temporal dynamics of disease evolution. Notably, the susceptible cultivar Flair exhibited
the highest percentage of leaves with signs of infection, whereas the moderately-resistant
cultivar Firefoxx displayed the lowest percentage of infection symptoms over the analyzed
leaf area, which even fell below the rates observed for the resistant Laureate cultivar.
Although the three cultivars were chosen based on susceptibility to NB, the experiments
provided a highly nuanced understanding of how the barley cultivars respond to fungal
infection, e.g., a moderately-susceptible cultivar demonstrated better performance than
a susceptible cultivar following inoculation. The described methodology, along with the
quantitative results, provide strong evidence for the efficiency of combining machine
learning with RGB image analysis for screening NB in barley. Furthermore, as the current
standard for detecting NB in barley—manual observations—is time- and labor-intensive,
the presented approach could be widely applicable to both research and agricultural
contexts due to its efficiency.

6. Conclusions

The current study shows the potential viability of an approach which combines ma-
chine learning with RGB image analysis for screening resistance to NB. The cost-effective
Phenocave system enabled rapid image acquisition, and proved to be highly advanta-
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geous in terms of time savings. Furthermore, the application of the user-friendly TWS
plugin, which provided access to machine learning approaches, translated to the successful
detection of various symptoms attributable to NB. Even though some misclassifications
occurred, the share of these mistakes to the overall correct classifications across all of the
evaluated categories was minimal (0.78%) when compared to the 99% accuracy for different
symptoms of NB. Additionally, certain features, such as entropy, noise reduction filters like
Kuwahara, and specific color values of hue and saturation, were found to be highly accurate
at classifying pixels into the correct category of disease-specific symptoms, and should be
examined further to verify the presented findings. This study not only contributes valuable
insights into NB detection in barley, but also demonstrates the potential application of the
presented method in identifying other diseases with similar characteristics across various
plants. For instance, the quantitative differentiation of disease symptoms among diverse
barley cultivars suggests broader implications for the field of plant pathology. In light of
ever-increasing climate change, the further exploration of the identified features could yield
various methodologies that can be used to detect and follow the progression of multiple
plant disease in a highly efficient manner. Also, in order to advance our understanding
of environmental monitoring net blotch disease progression, as a future study, there is a
promising opportunity to adapt this indoor condition screening method for real outdoor
applications with different tunings.
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