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Abstract: Phytolacca americana, introduced to China in the 20th century for its medicinal properties,
has posed a significant ecological and agricultural challenge. Its prolific fruit production, high repro-
ductive coefficient, adaptability, and toxic roots and fruits have led to the formation of monoculture
communities, reducing native species diversity and posing threats to agriculture, human and animal
health, and local ecosystems. Understanding its potential distribution patterns at a regional scale
and its response to climate change is essential for effective monitoring, management, and control. In
this study, we utilized the Maxent model to simulate potential habitat areas of P. americana across
three timeframes (current, 2050s, and 2070s) under three climate change scenarios (SSP126, SSP245,
and SSP585). Leveraging data from 556 P. americana sites across China, we employed ROC curves
to assess the prediction accuracy. Our findings highlight key environmental factors influencing
P. americana’s geographical distribution, including the driest month’s precipitation, the coldest
month’s minimum temperature, the wettest month’s precipitation, isothermality, and temperature
annual range. Under current climate conditions, P. americana potentially inhabits 280.26 × 104 km2

in China, with a concentration in 27 provinces and cities within the Yangtze River basin and its
southern regions. While future climate change scenarios do not drastically alter the total suitable
area, the proportions of high and low-suitability areas decrease over time, shifting towards moderate
suitability. Specifically, in the SSP126 scenario, the centroid of the predicted suitable area shifts
northeastward and then southwestward. In contrast, in the SSP245 and SSP585 scenarios, the centroid
shifts northward.

Keywords: Phytolacca americana; biological invasion; Maxent; climate change; potentially suitable area

1. Introduction

Recently, intensified global environmental changes have significantly increased the
threat of biological invasions to ecosystems and biodiversity [1]. Given the backdrop
of significant global climate change, understanding the spatial distribution of biological
populations and their interplay with the environment has become pivotal for unraveling
biodiversity patterns and devising strategies for its preservation [2]. Extensive research
demonstrates that climate change profoundly impacts and will continue to influence
species distribution patterns [3,4]. Consequently, predicting species’ potential habitats and
their migration trends in response to climate change is vital for informing future species
management, ecological conservation, and cultivation strategies [5,6].

The emergence of advanced computational statistical techniques and the development
of global information systems have facilitated the exploration of direct correlations between
environmental factors, such as climate and topography, and species data, revolutionizing
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the field of ecology [7,8]. Among these innovations, species distribution models (SDMs)
have emerged as a crucial tool for deciphering species distribution patterns [9]. SDMs
leverage known distribution data and corresponding environmental variables to simulate
species’ geographical distribution and their responses to climate change, employing various
algorithms across temporal and spatial scales [2,10].

The Maxent model, based on the maximum entropy principle developed by Phillips, is
widely recognized for predicting geographical distributions of species [11–14]. Its notable
advantage lies in its capacity to maintain a high accuracy and stability, even in cases
with incomplete species data and limited sample sizes [15]. Furthermore, Maxent stands
out for its speedy computations and flexible operation [14–16], with its predictions easily
visualized using ArcGIS [17]. The Maxent model has also proven valuable in forecasting the
potential distribution of invasive and endangered species, including Xanthium spinosum L.
(Asteraceae) [18], Lonicera japonica Thunb. (Caprifoliaceae) [19], Ziziphus jujuba var. spinosa
(Rhamnaceae) [20], Pinus massoniana Lamb. (Pinaceae) [21], and Litsea cubeba (Lour.) Pers.
(Lauraceae) [22].

Native to North America, Phytolacca americana, a perennial herb from the Phytolac-
caceae family, was introduced to China for its medicinal properties. Since its discovery in
Hangzhou in 1935, it has rapidly invaded numerous regions of the country, colonizing for-
est margins, roadsides, village lands, wastelands, and disrupting tea plantations, orchards,
and bamboo groves [23]. This invasion poses significant threats to local agricultural and
forestry production and biodiversity [24,25]. P. americana was included in the “List of Inva-
sive Species in China’s Natural Ecosystems (Fourth Batch)” in 2016, mandating strict control
and regulation of its cultivation [26]. Consequently, conducting a comprehensive study of
P. americana’s suitable and potential distribution areas assumes a paramount importance
for the effective monitoring, early warning, and prevention of its invasion. It is also critical
for sustaining agroforestry production, conserving diversity, maintaining productivity, and
restoring ecological environments. Presently, research on the invasive species P. americana
primarily focuses on its invasion mechanisms, biological characteristics, and ecological
hazards [27–29]. However, there is limited domestic and international research concerning
its suitable distribution areas and potential sites.

In this study, leveraging distribution data and relevant environmental variables, we
employed the Maxent model and ArcGIS to forecast potential suitable areas for P. americana
across various climate scenarios, both current and future. Our objectives encompassed
(1) predicting potentially suitable habitats for P. americana under current climate scenarios,
(2) identifying primary environmental variables constraining its geographic distribution,
and (3) forecasting potentially suitable habitats under future climate scenarios. Our aim
was to unravel shifts in P. americana’s present and future geographical distribution patterns.
This research strives to provide a scientific foundation for the monitoring and management
of this highly invasive species.

2. Materials and Methods
2.1. Collection and Screening of Species Occurrence Data

The distribution data for P. americana in China were primarily sourced from two
databases: the Global Biodiversity Information Facility (GBIF) (https://www.gbif.org,
accessed on 1 May 2023) and the Chinese National Plant Specimen Resource Center (http:
//www.cvh.ac.cn/, accessed on 1 May 2023). Additionally, we augmented our dataset with
field survey data collected using GPS terminals. The data collection period spanned from
1935 to 2023.

To ensure data accuracy, we performed a thorough screening of the occurrence data,
eliminating duplicate entries and addressing missing latitude and longitude information.
This meticulous data curation process yielded a comprehensive dataset consisting of
556 unique distribution points for P. americana across China. The resulting distribution map
is depicted in Figure 1.

https://www.gbif.org
http://www.cvh.ac.cn/
http://www.cvh.ac.cn/
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Figure 1. Current distribution of Phytolacca americana L. across China, based on data compiled up to
May 2023.

2.2. Data Acquisition and Variables

We sourced historical and projected climate data from the World Climate Database
(https://www.worldclim.org, accessed on 1 May 2023), with a spatial resolution of 2.5 arc
minutes (approximately 5 km × 5 km). The selected periods for analysis encompassed cur-
rent climate conditions (1970–2000), as well as two future projections, the 2050s (2041–2060)
and the 2070s (2061–2080), as outlined in Table 1.

Table 1. Environmental variables considered for modeling the potentially suitable habitat of Phytolacca
americana L.

Environmental Variables Names

2.5m-bio1 Annual mean temperature
2.5m-bio2 Mean diurnal range
2.5m-bio3 Isothermality (2/7) (×100)
2.5m-bio4 Temperature seasonality (standard deviation × 100)
2.5m-bio5 Max temperature of warmest month
2.5m-bio6 Min temperature of coldest month
2.5m-bio7 Temperature annual range
2.5m-bio8 Mean temperature of wettest quarter
2.5m-bio9 Mean temperature of driest quarter
2.5m-bio10 Mean temperature of warmest quarter
2.5m-bio11 Mean temperature of coldest quarter
2.5m-bio12 Annual precipitation
2.5m-bio13 Precipitation of wettest month
2.5m-bio14 Precipitation of driest month
2.5m-bio15 Precipitation seasonality (variation coefficient)
2.5m-bio16 Precipitation of wettest quarter
2.5m-bio17 Precipitation of driest quarter

https://www.worldclim.org
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Table 1. Cont.

Environmental Variables Names

2.5m-bio18 Precipitation of warmest quarter
2.5m-bio19 Precipitation of coldest quarter
Alt Altitude

To model the future scenarios, we utilized data from the Beijing Climate Center
(BCC) Climate System Model 2 Medium Resolution, within the framework of the Sixth
International Coupled Model Intercomparison Program (CMIP6). This dataset included pro-
jections corresponding to three distinct Shared Socioeconomic Pathways (SSPs): SSP1_2.6
(sustainable development), SSP2_4.5 (moderate development), and SSP5_8.5 (normal de-
velopment) [30].

2.3. Variable Selection

To mitigate the impact of spatial covariance among environmental variables on the
accuracy of the Maxent model and enhance its predictive performance, we employed a
systematic variable selection process guided by the following principles:

A Maxent pre-model was constructed using 20 environmental variables, allocating
25% of the data for testing and 75% for training. Default parameters were utilized, and the
calculations were repeated ten times with the Bootstrap method. A total of 500 iterations
and 10,000 background points were specified. We employed the jackknife test to assess the
contribution of each environmental variable [30–33].

A Principal Component Analysis (PCA) was conducted, using SPSS 25.0 software,
on the initial set of 20 environmental variables. Principal components with eigenvalues
exceeding 1 were retained. From each principal component, environmental variables with
loading coefficients exceeding 0.5 were selected for further analysis. Spearman correlation
tables were generated [34].

Exclusion Criteria: We excluded environmental variables with a high correlation
(|r| ≥ 0.8), low percentage contribution, and limited biological significance [35]. When
two environmental variables exhibited a correlation coefficient exceeding 0.8, the less
influential variable was eliminated using the jackknife test in Maxent. Only variables with
greater contributions to the model were retained [36,37]. Ultimately, we identified nine
environmental variables for the Maxent modeling process: bio2, bio3, bio6, bio7, bio8,
bio10, bio12, bio13, and bio14.

2.4. Parameter Selection and Model Accuracy Evaluation

We employed Maxent 3.4.1, following the methodology proposed by Phillips et al.
(2017) [38], to construct the maximum entropy model for our study. To ensure the proba-
bility of P. americana distribution approached normality, we allocated 75% of the data for
model training, reserving the remaining 25% for accuracy validation [39]. The primary
parameters were configured as follows: Maximum Iterations: 500, Replicated Run Type:
Bootstrap, No. of Replicates: 10, and Output Format: logistic.

We incorporated P. americana distribution data and nine environmental variables into
the Maxent model. The “Do jackknife” function within the software was employed to assess
the contribution of each environmental factor to the model construction [40,41]. Response
curves were generated to visualize the relationship between distribution probabilities and
climate factors (see Figure S1). The model accuracy was evaluated using the receiver
operating characteristic (ROC) curve [17]. We conducted 10 model replicates, and the
average result was considered the prediction of potential species distribution [42].

The model performance was assessed using the ROC area under the curve (AUC) [43].
The AUC is independent of the model threshold settings and serves as a reliable measure
of accuracy [43]. AUC values range from 0 to 1, with interpretations as follows: an
AUC < 0.7 indicates a poor predictive performance, from 0.7 to 0.8 suggests moderate
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performance, from 0.8 to 0.9 signifies good performance, and from 0.9 to 1.0 indicates
excellent performance [44]). Upon running the model with the specified parameter settings
in ten replicates, the average AUC from these iterations was calculated and found to be
0.907 (see Figure S2). This high AUC value indicates an excellent predictive performance,
underscoring the accuracy and credibility of our prediction results.

2.5. Classification of Suitable Areas

We took the output ASC file from Maxent and imported it into ArcGIS, converting
it into grid data. It was then overlaid onto a map of China’s administrative districts
for visualization. Using ArcGIS, we employed the reclassification function to classify
different areas and utilized grid calculation tools to determine their corresponding areas.
For this study, we employed the Natural Breaks (Jenks) classification method to categorize
suitable areas into four grades: highly suitable areas (p ≥ 0.48), moderately suitable areas
(0.30 ≤ p < 0.48), low-suitability areas (0.10 ≤ p < 0.30), and unsuitable areas (p < 0.10).

3. Results
3.1. Analysis of the Contribution of Environmental Variables

Following model optimization, the final model included nine bioclimatic factors:
Mean diurnal range (bio2), isothermality (bio3), minimum temperature of coldest

month (bio6), temperature annual range (bio7), mean temperature of wettest quarter (bio8),
mean temperature of warmest quarter (bio10), annual precipitation (bio12), precipitation of
wettest month (bio13), precipitation of driest month (bio14). Their respective contributions
to the model construction are as follows: bio14: 68.7%, bio6: 13.6%, bio13: 6.7%, bio3: 3.4%,
bio7: 2.3%, bio12: 1.7%, bio2: 1.6%, bio8: 1.1%, and bio10: 0.9% (Table 2).

Table 2. Contribution rate of environmental variables.

Variable Bioclimatic Factors Percent Contribution

bio14 Precipitation of driest month 68.7
bio6 Min temperature of coldest month 13.6

bio13 Precipitation of wettest month 6.7
bio3 Isothermality (2/7) (×100) 3.4
bio7 Temperature annual range 2.3

bio12 Annual precipitation 1.7
bio2 Mean diurnal range 1.6
bio8 Mean temperature of wettest quarter 1.1

bio10 Mean temperature of warmest quarter 0.9

3.2. Current Potentially Suitable Areas of P. americana in China

Figure 2 illustrates the division of P. americana distribution based on the Maxent model
predictions, visualizing its potential suitable areas. Under current climate conditions, po-
tentially suitable areas for P. americana are dispersed across 27 provinces and municipalities,
including the Hong Kong and Macao Special Administrative Regions. These areas are
predominantly concentrated in the Yangtze River basin and its southern vicinity.

Highly suitable areas are primarily situated in southeastern Sichuan, eastern Guizhou,
southern Hubei, southern Anhui, southern Jiangsu, northern Guangdong, the northern
Guangxi Zhuang Autonomous Region, northwestern and southeastern Fujian, Zhejiang,
Shanghai, Jiangxi, Hunan, and Chongqing, with a sporadic presence in eastern Shandong
and northern Taiwan. These highly suitable areas cover a total area of 98.68 × 104 km2,
constituting 10.26% of China’s total area.

Moderately suitable areas border the highly suitable regions, encompassing a total
area of 69.10 × 104 km2, accounting for 24.66% of the total suitable area.

Low-suitability areas predominantly include northeastern Sichuan, western Guizhou,
central Hubei, central Anhui, northern Jiangsu, central Guangdong, the central Guangxi
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Zhuang Autonomous Region, most of Fujian, southern Henan, and southern Shaanxi,
covering a total area of 112.48 × 104 km2, which is 40.13% of the total suitable area.

The combined area of low-suitability and unsuitable areas reaches 793.99 × 104 km2,
representing 82.55% of China’s total area.
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conditions based on the Maxent model. The color-coded areas denote different levels of suitability:
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3.3. Future Suitable Areas of P. americana under Different Climate Scenarios

We employed the Maxent model, following the same criteria as mentioned earlier, to
predict the potential suitability areas for P. americana in the 2050s and 2070s under three
climate scenarios: SSP126, SSP245, and SSP585. The results included a spatial distribution
map of future predicted potential suitability areas for P. americana (Figure 3), a dynamic
change map of each suitability class (Figure 4), and changes in area for each suitability
category (Table 3).

Across the three climate scenarios in the 2050s and 2070s, the location and area of each
suitability class for P. americana exhibited varying degrees of change (Table 3). Notably,
there was a significant increase in moderately suitable areas and an overall decrease in high-
and low-suitability areas. There was a modest increase in highly suitable areas in the 2050s
under the SSP245 and SSP585 scenarios and in low-suitability areas in the 2070s under the
SSP126 scenario. The percentage change in the total area of suitable areas increased over
time, with varying trends under different climate scenarios.

Looking specifically at moderately suitable areas, they increased in size over time
under all three climate scenarios, with reduced fragmentation (Figures 3 and 4). In
the 2050s, the SSP126 scenario exhibited the largest area of moderately suitable regions
(82.6 × 104 km2), marking a 19.53% increase compared to current climatic conditions, rep-
resenting the most significant change (Table 3). The expansion of moderately suitable areas
was primarily attributed to transformations from highly suitable areas at multiple junc-
tions and from low-suitability areas in various regions. In the 2070s, the SSP126 scenario
continued to lead, with the largest moderately suitable area (76.09 × 104 km2), reflecting a
10.10% increase (Table 3).
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In contrast, the total area of highly suitable and low-suitability areas declined, pri-
marily converting into moderately suitable areas. The most substantial decrease in highly
suitable areas occurred in the 2050s under the SSP126 scenario, with a 15.86% reduction
(Table 3). The most significant decline in low-suitability areas was observed in the 2050s
under the SSP245 scenario, with a 9.14% decrease (Table 3). Many of the areas transitioning
from low-suitability to moderately suitable became unsuitable, notably in northern Yunnan,
southern Liaoning, and the junction of Shaanxi, Shanxi, and Henan (Figure 4).
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Table 3. Potential suitable area of Phytolacca americana L. under different climate change scenarios.

Scenario Period

Highly
Suitable Area

Change

Moderately
Suitable Area

Change

Low-Suitability
Area

Change Total
Area

Total
ChangeArea

(×104 km2)
Area

(×104 km2)
Area

(×104 km2)

Current 98.68 69.10 112.48 280.26
SSP126 2050s 83.02 −15.86% 82.60 19.53% 104.94 −6.70% 270.56 −3.46%

2070s 87.51 −11.32% 76.09 10.10% 115.99 3.12% 279.59 −0.24%
SSP245 2050s 101.00 2.35% 70.19 1.58% 102.20 −9.14% 273.40 −2.45%

2070s 97.46 −1.24% 72.50 4.91% 107.49 −4.43% 277.45 −1.00%
SSP585 2050s 94.42 −4.32% 79.07 14.43% 111.99 −0.44% 285.48 1.86%

2070s 102.50 3.88% 74.93 8.42% 109.01 −3.08% 286.44 2.20%

3.4. Centroid Distributional Shifts under Future Climate Conditions

Figure 5 illustrates the calculation of the centroid location, direction, and distance
using ArcGIS under various climate scenarios and time periods.
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Figure 5. Total suitable habitat centroid distribution shifts under climate change for Phytolacca ameri-
cana L. (The red square represents the location in China of the main migration areas of the centroids.).

Under current climate conditions, the centroid of suitable habitat was at coordinates
111◦10′36′′ E, 29◦21′51′′ N.

For the SSP126 climate scenario:
In the 2050s, the centroid was projected to shift 88.54 km to the northeast (111◦40′47′′ E,

30◦1′42′′ N). In the 2070s, it was expected to move 142.04 km to the southwest (111◦30′32′′ E,
29◦15′51′′ N). Overall, it would have shifted 66.09 km southwest.

For the SSP245 climate scenario:
In the 2050s, the centroid was projected to move 34.33 km southwest (110◦52′33′′ E,

29◦12′15′′ N). In the 2070s, it was expected to shift 121.75 km northeast (112◦5′22′′ E,
29◦27′54′′ N). Overall, it would have moved 89.54 km to the northeast.

For the SSP585 climate scenario:
In the 2050s, the centroid was projected to move 63.59 km southwest (110◦32′37′′ E,

29◦13′42′′ N). In the 2070s, it was expected to shift 190.61 km north (110◦28′19′′ E, 30◦56′21′′ N).
Overall, it would have moved 188.08 km to the northwest.
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4. Discussion
4.1. Main Environmental Variables Affecting the Occurrence of P. americana

The Maxent model, considering percentage contribution, ranked importance, and
jackknife tests, identifies the primary factors influencing the distribution of P. americana.
Precipitation of the driest month, minimum temperature of the coldest month, precipitation
of the wettest month, isothermality, and temperature annual range emerge as the dominant
variables shaping its current distribution.

These findings highlight the pivotal roles of temperature and precipitation in deter-
mining the species’ distribution. Research has shown that P. americana thrives in warm
and humid climates [45]. Temperature affects plant photosynthesis, while precipitation
plays a critical role in regulating carbon sequestration and transpiration by influencing soil
moisture. Together, these factors impact various physiological processes throughout the
plant’s life cycle, from seed germination to growth and development [46]. Hydrothermal
conditions are key variables that restrict the geographical distribution of plants. Terrestrial
plants exhibit high sensitivity to temperature and precipitation [47,48]. Consequently,
areas with warm and humid climatic conditions are more conducive to the growth and
proliferation of P. americana. These environmental insights provide valuable information
for understanding the current distribution patterns of P. americana and can be instrumental
in managing and controlling its spread.

The present study reveals that P. americana primarily inhabits coastal regions rich in
hydrothermal resources and the subtropical monsoon climate zone south of the Yangtze
River in China. Several factors contribute to this distribution pattern.

Climatic Suitability: The species thrives in areas characterized by humid and rainy
summers, seasonal high temperatures, and ample sunshine—conditions conducive
to its growth and reproduction [49,50]. These climatic characteristics align with the
observed distribution.

Human Activities: Human interventions, including agricultural production, trade,
and transportation, often serve as significant drivers in the spread of invasive species like P.
americana [51,52]. Frequent economic and trade exchanges in the distribution areas may
contribute to its expansion.

Unsuitable Regions: Conversely, regions such as the Tibetan Plateau, inland Northwest
China, and much of Northeast China are unsuitable for P. americana. These areas feature
temperate continental and temperate monsoon climates, characterized by low annual
rainfall and cold, dry winters. As such, they pose a low risk of invasion or are entirely
unsuitable for the species’ growth.

In summary, the current distribution of P. americana can be attributed to a combination
of favorable climatic conditions, human activities, and the unsuitability of certain regions.
These insights are valuable for understanding the species’ distribution patterns and can
inform management and control efforts.

4.2. Future Changes in P. americana Distribution

The study indicates that the potential suitable areas for P. americana will undergo
changes over time and under various climate scenarios. While specific patterns may vary, a
consistent trend emerges: no significant alteration in the total suitable area, expansion of
moderately suitable areas, and reductions in highly suitable and low-suitability areas.

Climate-Induced Shifts in Centroid Location:
Depending on future climatic conditions, the centroid of P. americana suitability exhibits

directional movement. Under the SSP245 and SSP585 scenarios, it generally migrates to
higher latitudes over time. SSP585 shows more pronounced shifts, especially by the 2070s.
Conversely, under the SSP126 scenario, the centroid moves northeastward in the 2050s but
significantly shifts southwestward by the 2070s.

Implications of Climate Change:
Centroid movements in the present study (Figure 5) align with previous findings that

climate change can drive shifts in species distributions. Examples include P. massoniana ex-
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tending northward [21], Vaccinium membranaceum Douglas ex Torr. (Ericaceae) transitioning
to high-elevation areas [53], and Z. spinosa’s suitable area gradually moving northward [20].

Factors Influencing Shifts:
The SSP126 scenario, projecting reduced carbon dioxide emissions and temperature

stabilization, leads to a relatively slow rate of temperature increase. Consequently, P.
americana suitability does not exhibit a significant northward shift, reflecting the influence
of sustainable development and a slower temperature rise.

Hydrothermal Considerations:
The subtropical monsoon climate of high-suitability areas plays a crucial role. Changes

in precipitation patterns under the SSP126 scenario significantly impact suitability. Pre-
cipitation of the driest month (bio14), a critical contributing factor, tends to fluctuate,
influencing the centroid’s movement (Figure 6).
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In summary, the study highlights the potential impact of climate scenarios on P.
americana distribution. The findings underscore the importance of climate-induced shifts in
species habitats and the role of precipitation patterns in shaping these changes.

4.3. Prevention and Control Strategies

China’s location in the East Asian monsoon zone, with its proximity to the Pacific
Ocean, exposes it to significant climate change impacts. Studies indicate that rising tem-
peratures, strengthened summer winds, increased rainfall, and a warmer, wetter climate
are expected in coastal areas due to global climate change. These changes align with P.
americana’s preference for warm and humid conditions, potentially expanding its suitable
habitat in the future [54–56].

The modeled potential distribution maps in this study serve as crucial references for
effective prevention and control strategies for P. americana. Three key recommendations
are proposed:

Strict Regulation of Highly Suitable Areas: Regions such as Zhejiang, Shanghai,
Jiangxi, Hunan, and Chongqing are identified as highly suitable for P. americana under the
current climate scenario. Consequently, strict regulations should be enforced to control the
introduction and planting of this invasive species in these areas.
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Enhanced Monitoring for New Suitable Habitats: Proactive monitoring of poten-
tial new suitable habitats should be intensified to prevent P. americana invasion driven
by human activities. Identifying and addressing emerging suitable areas can help curb
its spread.

Protection of Agricultural Areas: Agricultural production zones, including croplands
and orchards, require robust prevention and control measures against P. americana intrusion
to safeguard native species. Early intervention methods, such as chemical and biological
controls, as well as the timely removal of fruit-bearing plants and aerial parts after fruiting,
can effectively mitigate its impact.

These recommendations underscore the importance of proactive and adaptive man-
agement strategies to address the potential expansion of P. americana in response to climate
change, safeguarding native ecosystems and agricultural productivity.

4.4. Limitations of the Study

While our study provides valuable insights into the potential distribution of P. ameri-
cana, several limitations should be acknowledged:

Limited Environmental Factors: Our analysis focused solely on bioclimatic variables
as predictors of species distribution. Species distributions are influenced by a myriad of
biotic factors (e.g., interspecific competition, predation, and disease) and abiotic factors
(e.g., soil, topography, and human activities). Future studies should consider a broader
range of factors, such as soil type, land use, and anthropogenic impacts, to provide a more
comprehensive understanding of P. americana’s distribution dynamics.

Incomplete Response Curve Data: Although we provided response curves for dom-
inant environmental factors, some secondary factors, such as elevation, annual mean
temperature, and temperature seasonality, were not included due to data limitations. Incor-
porating these factors into future research could enhance the precision of our models.

Limited Geographic Scope: Our dataset only included occurrences within China; it
does not fully capture the global distribution of P. americana. The response curves derived
from this dataset may not entirely represent the species’ environmental responses across its
entire range. Future studies should aim to gather data from a broader geographic range to
improve model accuracy.

Large-Scale Analysis: Our study primarily operates at a large geographic scale. Future
research could benefit from conducting more fine-scale analyses in specific geographic
regions. Excluding unsurveyed and inaccessible areas in these smaller-scale studies can
enhance precision and accuracy.

Model Validation: While the Maxent model is widely accepted for species distribu-
tion modeling, employing alternative models, such as BioCLIM and DOMAIN, in future
research could provide additional validation and strengthen our findings.

Acknowledging these limitations helps refine the scope of future research and en-
sures a more comprehensive understanding of P. americana’s distribution patterns and
ecological interactions.

5. Conclusions

In this study, we employed the Maxent model to predict the potential suitable areas
for P. americana in China. Examining future climate scenarios, our projections indicate that
the total area of potential suitable habitat for P. americana is unlikely to undergo significant
changes. However, the centroid of suitable areas is expected to shift northeastward in
the 2050s under the SSP126 climate scenario, followed by a substantial southwestward
movement in the 2070s. Under the SSP245 and SSP585 climate scenarios, the centroid
generally migrates toward higher latitudes over time.

Considering these findings, we propose rigorous monitoring of the currently highly
suitable areas for P. americana, especially agricultural production areas such as croplands
and gardens. Meanwhile, we recommend intensified surveillance of potential new suitable
habitats, based on projected future distribution patterns of the species. Additionally, to
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address the limitations of this study, future research can further improve the results of this
study by considering a broader range of environmental factors (e.g., soil type, land use,
and anthropogenic impacts), a wider range of geographic factors (e.g., global scale), and
more model validation (e.g., BioCLIM, DOMAIN, etc.). In conclusion, the outcomes of this
study offer crucial insights for future monitoring, early warning systems, and management
strategies concerning P. americana.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13081082/s1, Figure S1: Response curve of environmental
factors. Figure S2: Reliability test of the distribution model created for Phytolacca americana L.
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