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Abstract: (1) Background: Due to the wide application in medicinal and pharmaceutical chemistry of
flavonoid molecules, which are one of the most famous types of secondary plant metabolites, our
work has come within the framework of bio-consulting to help in the identification of the molecule(s)
responsible for the antibacterial effect which will be the active principle of a natural antibiotic
developed from Algerian fir using bioinformatics tools. (2) Methods: The docking method was used
to test the antiviral activity on SARS-CoV-2 virus and the antibacterial activity on Gram-positive
Staphylococcus aureus and Gram-negative Escherichia coli of 12 polyphenolic molecules present in the
ethyl acetate and n-butanol extracts of Numidian fir leaves, and identify the molecules responsible
for these specific biological activities. (3) Results: The findings revealed that it is possible that
two molecules, hyperoside and quercitrin, have a high capacity to inhibit SARS-CoV-2, and it is
important to mention that they are the most quantitatively abundant molecules in the extract. The
molecule luteolin-7-glucoside is probably responsible for the antibacterial activity in the extract
against Gram-negative bacteria such as Escherichia coli, and the molecule hesperidin is responsible for
the antibacterial activity in the extract against Gram-positive bacteria such as Staphylococcus aureus.

Keywords: Algerian fir needles; ethyl acetate extract; n-butanol extract; molecular docking; antiviral;
antibacterial

1. Introduction

Phytochemicals, also known as secondary metabolites, are a rich and varied class of
aromatic, non-nutritive compounds found in the kingdom of plants. They play a crucial part
in the defense mechanism that plants use to fend off biotic factors like pathogens and abiotic
stresses like UV radiation [1]. The spread of various bacterial infection-related diseases is a
major worry for humanity due to the resistance of microorganisms to antibiotics. The food
industry is very interested in using plants’ bioactive molecules to develop and produce
functional products, with the goal of eliminating or reducing risks. Because of this, there
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is growing interest in looking for and finding new products made of synthetic drugs and
natural resources.

Due to its geographic location, Algeria has a high biodiversity of plants; the majority
of these are endemic and little is known about them. One such example is the Algerian fir
(Abies numidica de Lannoy ex Carrière) [2], a conifer that is native to Algeria and a member
of the Pinaceae family. Its original range is 2300 hectares, and it is found in the Babor
Mountains, which are located north of Setif, Algeria. The tree is extremely branchy, with
needles wrapped around the branches [3]. It has been used as an anti-inflammatory, to
treat respiratory system issues, and as a cataplasm in traditional medicine [4].

To the best of our knowledge, not much is known about this plant and not many
papers have been published on it. According to Tlili-Ait Kaki et al.’s [4] GC-MS results, the
essential oil extracted from Algerian fir needles collected in Annaba, Algeria, contained
high concentrations of bornyl acetate, camphene, alpha-pinene, and beta-pinene. In 2016,
Ramdani et al. [5] reported the antimicrobial qualities of essential oil extracted from needles
taken from the Babor Mountains in Setif, Algeria. Ghadbane et al. [6] discussed the
chemical composition and antimicrobial activity of fractions extracted from A. numidica
de Lannoy leaves collected from the Babor Mountains. Belhadj Mostefa et al. [7] reported
specific diterpenes from A. numidica de Lannoy ex Carrière cones in 2017. The potential
α-glucosidase inhibitory effect of essential oil extracted from A. numidica de Lannoy ex
Carrière was reported by Benouchenne et al. [8]. Benouchenne et al. [9] demonstrated that
the ethyl acetate fraction derived from the leaves of A. numidica exhibited potent antioxidant
properties. Benouchenne et al. in 2022 [10] reported on the GC-MS chemical profile and
biological activities of essential oil extracted from Abies numidica needles. Furthermore,
Benouchenne and her team [11] disclosed the tyrosinase inhibitory ability and the in vitro,
in vivo, and in silico toxicity of Algerian fir leaf extracts.

A wide range of innovative technologies and techniques have been applied to the use
of medicinal plants in recent years, driven by an increasing understanding of the structure
and function of compounds [12]. It would be beneficial to be able to predict a large number
of chemical compounds accurately in a timely and practical manner [13]. It would take
a lot of work and time to evaluate the activities of these ingredients using traditional
methods [14].

Determining and forecasting the pharmacological underpinnings of medicinal plant
action is crucial to modernizing their application. Because of their complex and varied
chemical constituents, it is difficult to identify the precise chemical components and major
biological roles of medicinal plants. In traditional medicinal plant research, the extrac-
tion of compounds or fractions is typically the first step, followed by their qualitative
and quantitative identification [15,16]. The entire research process is generally costly
and time-consuming [17]. There are ways to improve efficiency by adjusting different
aspects of this shared method. The in-silico method of determining the combinations of
simulated compounds and targets has become more accurate as computer technology
continues to advance [18]. Thanks to the development of network pharmacology technolo-
gies, complex relationships between compounds and their various activity targets can be
discovered quickly.

This study aimed to predict, for the first time via an in-silico method, the antiviral
and antibacterial effect of molecules detected in ethyl acetate and n-butanol fractions of
Algerian Abies numidica De Lannoy using LC-MS/MS analysis.

2. Results
2.1. Molecular Docking
2.1.1. Antiviral Ability: Anti-SARS-CoV-2

Figure 1 shows the interaction of the Remdesivir standard used with the residue of
the active site of the Mpro protein. The results revealed that the active site residues of the
Mpro protein interacted with the Remdesivir ligand in seven different positions, which
were Ser144, Thr190, Met165, Met49, His41, Cys145, and Gln189.
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Figure 1. The interaction of the Remdesivir standard with the residue of the active site of the Mpro
protein of COVID-19 virus.

In order to identify novel and more effective COVID-19 Mpro protein inhibitors,
we docked 12 polyphenol molecules with the SARS-CoV-2 receptor in this section of the
research. The COVID-19 docking server was used (Table S1).

Thr190, Asp187, Met165, Met49, His41, His164, Cys145, Cys145, and His163 are the
Mpro residues involved in the nine linkages of the residues that demonstrate the Mpro-
Quercitrin complex’s increased stability, as shown by the results displayed in Figure 2.
Thr190, His41, Met49, and Met165 are common interactions between the Mpro-Quercitrin
complex and Mpro-Remdesivir. However, the Mpro-Hyperoside complex, which includes
the following Mpro residues: Thr190, Gln189, Met165, Met49, His41, His164, Cys145,
Leu141, and Ser144, was 10 bonds stronger (Figure 3). Additionally, we noticed that the
Mpro-Hyperoside complex and Mpro-Remdesivir share interactions with regard to residues
Ser144, His41, and Met49.
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with the COVID-19 virus’s main protease (Mpro).

In addition, the binding energy was calculated; the compound exhibiting the highest
ligand–target affinity had the lowest energy. Table 1 provides an overview of the various
energetic features and physicochemical attributes of the interactions between the ligand
and the protein.
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Hyperoside −8.8 + + + + + - - - - - -

Quercitrin −8.8 + + + - + - + - - - -

Astragalin −8.6 - + + + + - - - + - - - -

Rutin −8.4 + + ++ + - - - - - - - -

Hesperidin −8.2 + - - - + - - + + + - -

Apigetrin −8 + - - + - + - - - - -

Quercetin −8 + + + + + + - - - - -

Apigenin −7.9 + + + + + - + - - - -

Luteolin −7.9 + + + + + - - - - - -

Luteolin-7-
glucoside −7.9 + + - - - - + + + - - - -

Remdesivir −7.70 ++ + + + + - - + - - - - -

Chlorogenic acid −7.4 + - - + - - - - - - -

Protocatechuic
acid −5.3 - - - + - - - - - - -

+ : Pi-Cation; +: Unfavorable Acceptor-Acceptor; + : Pi-Donor Hydrogen Bond; + : Pi-Sulfur; + : Conventional
Hydrogen Bond; + : Sulfur-X; + : Pi-Alkyl.

Table 1 lists the bond energies for each molecule in ascending order and shows which
residues are most frequently found in the active site when the Mpro protein docks with
each ligand. Based on the obtained results, the reference molecule Remdesivir had an
interaction energy of −7.70 kcal/mol, while hyperoside and quercitrin were the most
effective inhibitors with an interaction energy of −8.8 kcal/mol. Thus, it is reasonable to
assume that these two molecules are what could be triggering the ethyl acetate or n-butanol
extract of Algerian fir leaves to exhibit antiviral properties.
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2.1.2. In Silico Antibacterial Effect Evaluation

The antibacterial effect of ethyl acetate and n butanol fractions obtained from the
leaves of Algerian fir was examined by Benouchenne et al. [9] and Benouchenne et al. [19].
The results concluded that both extracts demonstrated a strong antibacterial ability against
all tested bacterial strains. According to these findings, our in-silico work is in the context
of identifying which molecule or compounds are responsible for the antibacterial effect, and
which will be a promoting active ingredient of a natural antibiotic development. Actually,
with the evolution of computer tools, it has become easy and helpful as well as reducing
time and budget consumption. The in silico antibacterial activity evaluation of 12 molecules
present in the extracts and the determination of the molecule responsible for this activity
were carried out in the case of a Gram-negative bacterial strain (Escherichia coli) using as
a reference the antibiotic tigecycline, and in the case of a Gram-positive bacterial strain
(Staphylococcus aureus) using the antibiotic penicillin as a reference.

Escherichia coli

The docking of 13 ligands (the 12 molecules of phenolic compounds and the reference
antibiotic) was carried out with the receptor of the bacterium Escherichia coli, which is the
4PRV protein to determine the molecule responsible for the antibacterial activity of this
extract in the case of Gram-negative bacteria. The program used was the DockThor Server
(Table S2).

Figure 4 presents the molecular interactions between the antibiotic tigecycline and
the E. coli 4PRV protein receptor. The active site residues of the E. coli 4PRV protein that
interacted with the tigecycline ligand are Arg272, Phe265, Pro270, Tyr263, Cys264, Ile262,
Asn261, and Gln271.
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Figure 4. The positioning of the antibiotic tigecycline and intermolecular interactions within the
complex with the E. coli 4PRV protein receptor.

Additionally, Figure 5 demonstrates that, with 11 residue interactions, namely, Tyr263,
Glu189, Pro270, Ile269, His34, Asp41, Arg186, and Phe37, the complex 4PRV-luteolin-7-
glucoside is the most stable.

Furthermore, the interaction energy was estimated. The results are presented in Table 2.
It can be seen that luteolin-7-glucoside is the best inhibitor with the lowest interaction
energy, −9.109 kcal/mol, compared to the reference product (antibiotic tigecycline), which
presents an interaction energy equal to −9.027 kcal/mol. In this case, we can predict that
luteolin-7-glucoside may be the molecule responsible for the antibacterial activity of the
ethyl acetate and n-butanol fractions on E. coli bacteria.
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Figure 5. The positioning of luteolin-7-glucoside and intermolecular interactions within the complex
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Table 2. Energy characteristics and interactions between the ligands and E. coli 4PRV protein receptor.

Compounds Score
(kcal/mol)
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Luteolin-7-
glucoside −9.109 ++ - - + - + + - - - -

Tigecycline −9.027 - + - - - - - - - + -

Rutin −8.547 ++ + + - - - - - - - - -

Apigetrin −8.483 ++ + + - - - - - - - - -

Hyperoside −8.451 + - - - - - - - - - -

Hesperidin −8.443 ++ - + ++ + - - - - - - - -

Astragalin −7.890 + + + - - - - - + - -

Quercitrin −7.765 + + + - - + - - + - - -

Luteolin −7.656 + + + + - - - + - - - -

Quercetin −7.632 + + + - + + - - - - - -

Apigenin −7.614 + + + - + + + - - - - -

Chlorogenic
Acid −7.544 + + + - - - - - - - -

Protocatechuic
Acid −7.030 - - - + - + - + - - -

+ : Pi-Cation; +: Unfavorable Acceptor-Acceptor; + : Pi-Donor Hydrogen Bond; + : Pi-Sulfur; + : Pi-Sigma;
+ : Conventional Hydrogen Bond; + : Sulfur-X; + : Pi-Alkyl.

Staphylococcus aureus

The interaction of the ligands with the 4URO are presented in Table S3. Figure 6
illustrates the outcomes of the molecular interactions between penicillin and the S. aureus
4URO protein.
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aureus 4URO protein receptor.

Table S3 shows the interactions between the ligands and the S. aureus 4URO protein
receptor. The Gram-positive bacteria S. aureus’s active site residues at the 4URO receptor
that interacted with the penicillin ligand are Val82, Glu25, Arg154, and Asp28 (Figure 6).
The following table (Table 3) provides an overview of the various energetic features and
physicochemical aspects of the interactions between the ligand and the protein.

Table 3. Energy characteristics and interactions between the ligands and S. aureus 4URO protein
receptor.

Compounds Score
(kcal/mol)
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Hesperidin −7.941 - - - ++ + + + - + - - - -

Luteolin-7-
glucoside −7.681 + + + - - - - - - + - -

Quercetin −7.678 + + - - - - - - - - - -

Apigetrin −7.645 - + + ++ + - ++ - + - - -

Quercitrin −7.598 - - + ++ + - + - - - -

Hyperoside −7.473 + + ++ - - - - - - - - -

Apigenin −7.471 - - + ++ - - + - - - -

Chlorogenic
acid −6.798 + + + + - - + - + - - -

Penicillin −6.704 + + - - - - - - - - -

Luteolin −6.660 ++ + - - - - - - + - -

Astragalin −6.587 - - - - - - - - - - -

Rutin −6.340 + + + - - - - - - - -

Protocatechuic
acid −5.926 - - - - - - - - - - -

+ : Pi-Cation; + : Pi-Donor Hydrogen Bond; + : Conventional Hydrogen Bond; + : Pi-Alkyl.

In order to identify the molecule causing the antibacterial activity in the case of Gram-
positive bacteria, the 4URO receptor of the bacterium Staphylococcus aureus is docked with
13 ligands (penicillin and 12 phenolic compounds) using the Dockthor server. The results
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are summed up in the table above. According to these findings, hesperidin interacts with
the bacterial receptor the best, having the lowest interaction energy (−7.941 kcal/mol) in
comparison to penicillin (−6.704 kcal/mol). Thus, we can hypothesize that hesperidin may
be the compound causing the ethyl acetate extract’s antibacterial effect on Gram-positive
bacteria (Table 3).

Twelve bonds involving the residues Arg59, Arg100, Pro62, Glu33, Ile61, Gly60, Asp56,
and Asp32 make up the most stable complex of 4URO-hesperidin (Figure 6). In this instance,
we observe that the two molecules’ molecular interactions with the S. aureus 4URO protein
receptor—hesperidin and the reference antibiotic penicillin—are distinct and do not share
any residues in the complexes 4URO-penicillin and 4URO-hesperidin.

3. Discussion

This study is the first to identify the specific compounds responsible for the in silico
antiviral and antibacterial activities of molecules found in the ethyl acetate and n-butanol
fractions extracted from Algerian fir [9,19]. Molecular docking has become a major tool
in computer-aided drug development. By searching through enormous pharmaceutical
libraries for potential drug candidates, this innovative method can drastically cut down
on the amount of energy, money, and time needed for drug discovery [20]. In the current
work, we screened the inhibitory effects of the polyphenolic components of LC–MS/MS
using a molecular docking technique.

Globally, the SARS-CoV-2 virus has a devastating impact on both human lives and
economics. The virus continues to develop and take on new strains despite the availability
of numerous treatment medications and vaccinations. Concerning viral variations have
the potential to develop a dangerous resistance to current medications and vaccines. The
identification of anti-SARS-CoV-2 medications from medicinal plants is facilitated by the
use of machine learning in drug development [21].

The majority of the anticipated anti-SARS-CoV-2 compounds belong to polyphenols,
such as the flavonoids category, accounting for 38.6% (390 compounds) [21]. Additionally,
earlier research showed that flavonoids possess potent antiviral properties [22,23]. Within
the flavonoid class, MOL000098 (quercetin) and MOL002008 (myricetin) can likewise limit
SARS-CoV-2-2′s ability to infect by focusing on its 3CLpro [24,25]. Other groups, like
aporphines [26], coumarins [27], and isoflavonoids [28], also possess antiviral qualities.
The antiviral qualities of these types of chemicals could be useful in the fight against the
COVID-19 pandemic.

Our findings demonstrate the strong antiviral activity of flavonoid molecules, es-
pecially hyperoside and quercitrin, which have an energy of −8.8 kcal/mol compared
to the energy of −7.70 kcal/mol of Remdesivir, and show strong interactions and good
binding affinity with the virus’s main protease. They are the most quantitatively abundant
molecules in the extract, which is worth mentioning. Maaroufi et al. [29] reported that the
extracts from Abies sachalinensis showed a stronger virucidal activity; the extracts from Abies
sachalinensis contained nonvolatile flavonoids, mainly procyanidin- and prodelphinidin-
type condensed tannin, and this may probably explain their rapid and potent virucidal
activity against multiple viruses, including SARS-CoV-2 [30].

Strong redox substances that easily interact with proteins are polyphenols and
quinones [31–33]. Protein structure can be altered, and cross-linked protein aggregates, such
as membrane proteins, can develop as a result of protein interaction with polyphenols and
quinones [32–35]. Maaroufi et al. [29] also reported that the extracts from Abies sachalinensis
led to a significant viral titer reduction in SARS-CoV-2 ancestral and variant strains, affected
the viral S and N proteins, and disrupted the SARS-CoV-2 genome. The extracts from
Abies sachalinensis also induced envelope disruption in Beta coronavirus virions. Lipid
vesicles rupture as a result of flavonoids like flavan-3-ols, which are the constituents
of condensed tannins, causing phospholipid aggregation inside lipid membranes and
consequent membrane stiffness [36]. Quinones have also been shown to breach the viral
envelope [37] and pierce lipid bilayers, altering their biophysical characteristics [38].
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Another problem that humans face are bacterial infections. For that raison, plants are
now one of the most important sources for identifying a new bioactive chemical to treat
human diseases caused by pathogenic bacteria [39–41]. According to Brantner et al. [42],
at certain concentrations, phenolic chemicals, flavonoids, and steroids may prevent the
growth of bacteria. Important antibacterial agents include polyphenols like tannins and
flavonoids such as myricetin, epigallocatechin, catechin, quercetin, and luteolin [43]. Also,
anthraquinones and dihydroxyanthraquinone such as saponins have direct antimicrobial
activity [44–46].

Based on our findings, the antibacterial activity against Gram-negative Escherichia coli
is attributed to the Luteolin-7-glucoside molecule. This molecule exhibits strong interac-
tions with the 4PRV protein of these bacteria and has the lowest energy at −9.109 kcal/mol,
in comparison to the antibiotic Tigecycline, which has an energy of −9.027 kcal/mol. When
compared to the reference molecule, which has an interaction energy of −6.704 kcal/mol,
the majority of molecules for Gram-positive Staphylococcus aureus showed stronger in-
teractions with the 4URO protein and better antibacterial activity than penicillin. One
such molecule is likely hesperidin, which exhibited the lowest energy of all molecules at
−7.941 kcal/mol. The results obtained in this study proved that the presence of weak
binding interactions can activate specific biological responses in proteins, such as inhibition
through specific domains. These results are in agreement with the reported pattern by
Abdelli et al. [47].

4. Materials and Methods
4.1. Ligand Preparation

In 2020 and 2021, Benouchenne and her colleagues [9,19] determined the chem-
ical composition of ethyl acetate and n-butanol fraction obtained from Algerian fir
leaves. The results are summarized in Table 4. The extraction process was realized
by means of cold maceration using methanol as solvent (80%, v/v). The obtained crude
extract was fractionated using several solvents with increased polarities, starting with
dichloromethane, followed by ethyl acetate and n-butanol. Later fractions were subjected
to LC-MS/MS analysis.

Table 4. Chemical composition of ethyl acetate and n-butanol fractions obtained from Algerian fir
needles by means of LC-MS/MS analysis.

No. Analytes RT a Precursor ion
(m/z) b Fragmentations Ionization

mode Equation c R2 U f n-BuOH
(µg/g)

EAF
(µg/g)

1 Protocatechuic
acid 7.00 153.4 109.0–108.0 Neg y = 590.460x +

120.26 0.9909 0.0215 N.D 71.62

2 Chlorogenic
acid 8.03 353.3 191.2–85.0 Neg y = 697.935x +

87418.5 0.9910 0.0299 9.66 15.59

3 Luteolin-7-
glucoside 13.20 447.0 285.1–284.1 Neg y = 215.412x +

36852.1 0.9939 0.0086 14.6 43.17

4 Rutin 13.67 609.1 300.1–301.1 Neg y = 469.333x +
30144.8 0.9902 0.0136 102.62 27.58

5 Hesperidin 13.68 611.1 303.0–449.3 Poz y = 2539.52x +
123981 0.9942 0.0162 42.02 7.83

6 Hyperoside 13.69 463.0 300.1–271.0 Neg y = 185.593x +
8126.67 0.9905 0.0126 399.91 3370.96

7 Apigetrin 14.54 431.0 268.1–269.1 Neg y = 1052.01x +
146897 0.9902 0.0132 23.19 192.56

8 Quercitrin 14.98 447.0 300.0–301.1 Neg y = 175.298x +
33626.6 0.9918 0.0133 20.44 2300.33

9 Astragalin 15.13 447.0 284.1–227.1 Neg y = 329.506x +
44598.6 0.9900 0.0153 147.22 3391.36

10 Quercetin 17.10 301.2 151.1–179.1 Neg y = 1826.89x −
146948 0.9962 0.0573 N.D 24.75
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Table 4. Cont.

No. Analytes RT a Precursor ion
(m/z) b Fragmentations Ionization

mode Equation c R2 U f n-BuOH
(µg/g)

EAF
(µg/g)

11 Luteolin 17.78 285.2 133.1–151.0 Neg y = 3166.03x +
495252 0.9901 0.0188 N.D 2.41

12 Apigenin 19.20 269.2 117.0–151.1 Neg y = 3115.89x +
483037 0.9910 0.0181 N.D 6.64

13 Pseudohypericin 26.34 519.0 487.1–475.1 Neg y = 2548.96x +
468900 0.9908 0.0172 N.D N.D.

14 Hyperforin 28.97 535.3 383.3–315.2 Neg y = 44260.6x +
203394 0.9901 0.0418 N.D N.D.

15 Hypericin 30.18 503.0 405.1–433.1 Neg y = 7676.03x +
605593 0.9925 0.0189 N.D N.D.

RT a: Retention time, c R2: Correlation coefficient, U f (%): Percent relative uncertainty at 95% confidence level
(k = 2), N.D: NOT detected, EAF: ethylacetate fraction, n-BuOH: n-butanol fraction.

4.2. Programs and Methods

Molecular mechanic computations were performed using Hyperchem™ 8.0.10 soft-
ware (Hypercube Inc., Gainesville, FL, USA). Avogadro Version 1.1.1 was used; it is an
open-source molecular builder and visualization tool (http://avogadro.cc/, accessed on
15th March 2022) with a number of tools designed for molecular modeling that enables
the editing and visualization of molecular models. MOPAC® (Molecular Orbital PACkage)
computes force constants for molecules, radicals, ions, and polymers as well as quantities.
COVID-19 Docking Server [48,49] was employed to forecast binding patterns between
COVID-19 targets and ligands, such as small molecules, and for molecular visualization
(https://ncov.schanglab.org.cn, accessed on 30th June 2020). Dockthor server [50,51] gave
the basic instructions for getting the ligand and protein ready, allowing us to alter the
residues’ protonation states and specify the ligand’s degree of flexibility. BIOVIA Discovery
Studio Visualizer [52] allowed the visualization of biomolecular structures and sequences.

4.3. Antiviral Effect
Main Protease of SARS-CoV-2 Virus (Mpro)

The main protease of the SARS-CoV-2 virus is thought to be a key player in the
pathogenicity of SARS-CoV-2, and was chosen as the molecular target based on a review of
the literature. Because it is involved in the viral entry into the host [51], given the pivotal
role of Mpro in the viral life cycle, it becomes an attractive target for the design of anti-SARS
drugs. The three-dimensional crystal structures of the main protease of the SARS-CoV-2
virus were downloaded from the Research Collaboratory Structural Bioinformatics-Protein
Data Bank (RCSB-PDB) [52]. The PDB code used was 6W63.

4.4. Antibacterial Effect
4.4.1. PRV for Escherichia coli

A complex of 43-kDa N-terminal fragment of E. coli GyrB with ADP was used; the
3D structure was downloaded from RCSB PDB [52] as a pdb file. The PDB code used
was 4PRV.

4.4.2. URO for Staphylococcus aureus

It consists of novobiocin combined with the 24 kDa N-terminal domains of Staphylococ-
cus aureus gyrase B. From RCSB PDB [52], the 3D structure as a pdb file was downloaded,
and we only worked on chain A. The PDB code used was 4URO.

5. Conclusions

The conclusion of this study is that the polyphenolic compound of Abies numidica
De Lannoy has potential as an antiviral against the Mpro enzyme of the SARS-CoV-2
virus, which is predicted in silico. Based on the molecular docking data, hyperoside and
quercitrin (−8.8 kcal/mol) have greater SARS-COV-2 antiviral activity than Remdesivir

http://avogadro.cc/
https://ncov.schanglab.org.cn
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(−7.70 kcal/mo). The findings reveal that luteolin-7-glucoside and hesperidin may be
further explored as antibacterial agents. Therefore, it would be convenient to extract
these biomolecules specifically from Numidian fir leaves and test them again in vivo to
confirm their impact on bacteria and the coronavirus. And why not create natural antiviral
and antibacterial drugs that have no adverse effects on human health compared to their
synthetic counterparts?

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13091246/s1. Table S1. Superposition and intermolecular
interactions between the different ligand determined in Algerian fir and the main protease of SARS-
COV-2 virus using PM7 Method (COVID-19); Table S2. Superposition and intermolecular interactions
between the different ligand determined in Algerian fir and 4PRV presents in E. coli using PM7
Method; Table S3. Superposition and intermolecular interactions between the different ligand
determined in Algerian fir and S. aureus 4URO protein receptor using PM7 Method.
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