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Abstract: Plants are constantly confronted to both abiotic and biotic stresses that seriously 

reduce their productivity. Plant responses to these stresses are complex and involve 

numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a 

combination of abiotic and biotic stress can have a positive effect on plant performance by 

reducing the susceptibility to biotic stress. Such an interaction between both types of stress 

points to a crosstalk between their respective signaling pathways. This crosstalk may be 

synergistic and/or antagonistic and include among others the involvement of 

phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS). 

In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s 

resistance against pathogens. This review aims at giving an insight into cross-tolerance 

between abiotic and biotic stress, focusing on the molecular level and regulatory pathways. 
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1. Introduction 

Plants have to deal with various and complex types of interactions involving numerous 

environmental factors. In the course of evolution, they have evolved specific mechanisms allowing 

them to adapt and survive stressful events. Exposure of plants to biotic and abiotic stress induces a 
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disruption in plant metabolism implying physiological costs [1–4], and thus leading to a reduction in 

fitness and ultimately in productivity [5]. Abiotic stress is one of the most important features of and 

has a huge impact on growth and, consequently, it is responsible for severe losses in the field. The 

resulting growth reductions can reach >50% in most plant species [6]. Moreover, biotic stress is an 

additional challenge inducing a strong pressure on plants and adding to the damage through pathogen 

or herbivore attack [7–11]. 

A crucial step in plant defense is the timely perception of the stress in order to respond in a rapid 

and efficient manner. After recognition, the plants’ constitutive basal defense mechanisms [12] lead to 

an activation of complex signaling cascades of defense varying from one stress to another [13,14]. 

Following exposure to abiotic and/or biotic stress, specific ion channels and kinase cascades [15]  

are activated, reactive oxygen species (ROS) [16], phytohormones like abscisic acid (ABA), salicylic 

acid (SA), jasmonic acid (JA), and ethylene (ET) [17] accumulate, and a reprogramming of the genetic 

machinery results in adequate defense reactions and an increase in plant tolerance in order to minimize 

the biological damage caused by the stress [18]. 

In recent years, research has mainly concentrated on understanding plant responses to individual 

abiotic or biotic stresses [19–22], although the response to simultaneous stresses is bound to lead to a 

much more complex scenario [18]. From the perception of the stimulus (stress) to the final response in 

cells, plants use various signaling pathways depending on the challenge(s). It seems that plants respond 

in a specific manner when they have to face more than one stress simultaneously, and the response 

cannot be predicted based on the plant’s response to the individual single stresses [23]. Research on 

multiple stresses has been trying to simulate natural conditions, but in the field, conditions are not 

controlled, and one stress can strongly influence the primary stress defense response of the plants [18]. 

Moreover, plants can show different degrees of sensitivity depending on the field condition and the 

developmental stage of the plant [24]. Additional factors that can influence an interaction are the intensity 

of the stress and the plant species. Various interactions can take place between the defenses induced 

after perception of the stresses. They depend on the specific combination of stresses and even on the 

degree of simultaneity [15,25,26]. It is not clear whether simultaneous stresses are rather antagonistic, 

synergistic or additive, inducing more or less susceptibility to a specific kind of stress [27,28]. 

Combination of two stressors can have a negative and additive effect on plants, the second stress being 

the one that leads to a greater damage [29]. On the other hand, the combination of stresses can also 

lead to antagonistic responses in the plants [30,31]. Common beans exposed to drought stress display 

more symptoms when infected by Macrophomina phaseolina [29] and treatment of detached tomato 

leaves with exogenously applied ABA increases the susceptibility of wild type plants to Botrytis 

cinerea [32]. 

Interestingly, one possible outcome of multiple stress exposure is that plants that are able to defend 

themselves facing one stress can become more resistant to other stresses [33]. This phenomenon is 

called cross-tolerance, showing that plants possess a powerful regulatory system that allows them to 

adapt quickly to a changing environment [33–35]. Wounding, for instance, increases salt tolerance in 

tomato plants [34]. Furthermore, in tomato plants again, localized infection by Pseudomonas syringae pv. 

tomato (Pst) induces systemic resistance to the herbivore insect Helicoverpa zea [36]. The association 

between abiotic and biotic stress is also possible [13], as demonstrated by the reduced infection of 

tomato by Botrytis cinerea and Oidium neolycopersici following the application of drought stress [37]. 



Plants 2014, 3 460 

 

 

Ozone exposure can induce resistance to virulent Pseudomonas syringae strains in Arabidopsis [38]. 

Conversely, biotic stress can also interfere to increase the resistance to abiotic stress. This effect is 

visible when plants are under pathogen attack. Infection may cause stomatal closure to hinder pathogen 

entry and as a consequence water loss is reduced and leads to an enhanced plant resistance under 

abiotic stress [39]. Xu and colleagues [40] show that viral infection protects plants against drought 

stress. Verticillium infection in Arabidopsis plants induced the expression of the Vascular-Related No 

Apical meristem ATAF and Cup-Shaped Cotyledon (NAC) domain (VND) transcription factor VND7. 

VND7 induced de novo xylem formation ensuring the water storage capacity and as a consequence, 

increased plant drought tolerance [41]. Stress combination induces different signaling pathways, which 

share some components and common outputs [14–25]. This could help plants to minimize energy costs 

and create a flexible signaling network [42]. 

Resistance to both biotic and abiotic stress has been well documented in a variety of crops through 

priming of defenses. This component of induced resistance can be achieved through specific chemical 

stimuli like the resistance inducers BABA (beta-aminobutyric acid) or BTH (benzothiadiazole) [43,44], 

genetic manipulation of genes and proteins [45] or by previous contact with a pathogen [46]. Due to 

the complexity of interactions in defense, in the present review, we aim to focus on the cross-tolerance 

between abiotic and biotic stress as a part of induced resistance for defense. 

2. Cross-Tolerance between Abiotic and Biotic Stress 

Plants are able to manage simultaneous exposure to abiotic and biotic stress, and there is evidence 

for a link between the responses to these two stressful situations [23,47–49]. Usually, environmental 

pressure by abiotic and biotic stress can induce plant resistance. However, some plants confronted with 

each stress individually have also been reported to be more susceptible compared to a simultaneous 

exposure to two different stresses [50,51]. In addition, certain environmental stresses have the 

possibility to predispose the plant in order to allow it to respond faster and in a resistant manner to 

additional challenges. Therefore, cross-tolerance between environmental and biotic stress may induce a 

positive effect and enhanced resistance in plants and have significant agricultural implications. 

Interestingly, abiotic stress regulates the defense mechanisms at the site of pathogen infection as well 

as in systemic parts, thus ensuring an enhancement of the plant’s innate immunity system [31]. 

Likewise, osmotic and proton stress are inducers of resistance in barley against powdery mildew. This 

induced resistance depends on the formation of callose-containing papillae capable of blocking fungal 

growth [48]. This kind of resistance is similar to the chemically induced resistance by BTH and INA 

(isonicotinic acid) [52]. Achuo et al. [37] demonstrated that drought stress increased the ABA content 

of tomato leaves, concomitantly with increasing the resistance against the necrotophic fungus Botrytis 

cinerea and that salt stress reduced susceptibility towards the biotrophic fungus Odium neolycopersici 

but not against Botrytis cinerea. This difference between drought and salt stress is in accordance with 

the observation that they both induce different gene expression patterns [53]. Additionally, the acclimation 

of Nicotiana benthamiana to moderate drought stress (60% of field capacity) reduced the growth of  

P. syringae pv. tabaci [26]. Recently, Atkinson and Urwin [23] reviewed the interaction of abiotic and 

biotic stress where they showed the common threads in pathways leading to a regulation of plant 
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responses. Therefore, in order to prepare the plant for the battle, the activation of various detoxifying 

enzymes, control hormones, signaling pathways, and gene expression are indispensable [4,42,54]. 

The defense response of plants exposed to different stressors is expected to be complex including 

the interconnection of various signaling pathways regulating numerous metabolic networks [55]. 

3. Signaling Pathways Induced by Multiple Stress Responses 

The interaction between abiotic and biotic stress induces complex responses to the different 

stressors. Under stress, the accumulation of certain metabolites positively affects a plant’s response to 

both stresses and therefore protects it from multiple aggressors [25,47]. Callose accumulation, changes 

in ions fluxes, ROS, and phytohormones are the first responses induced to combat the stress and the 

resulting signal transduction triggers metabolic reprogramming towards defense [31,56]. 

3.1. Reactive Oxygen Species 

A rapid generation of ROS is observed after stress sensing [57,58]. One of the major roles of ROS 

is to serve as signaling molecules in the cells [58–62]. The production of ROS is fine-modulated by the 

plant to avoid tissue damage [58,63–71]. ROS have long been known to be destructive and harmful 

compounds in stressed organisms. However, it has been shown that while high levels of ROS lead to 

cell death, lower levels are mostly responsible to regulate the plant’s stress responses [67–69]. In biotic 

stress, ROS are mainly involved in signaling. This again might attenuate the oxidative stress caused  

by abiotic stress [70]. Furthermore, ROS could interfere in cross-tolerance [33]. ROS are involved in 

stress-induced tolerance in Arabidopsis thaliana after infection with the vascular pathogen Verticillium 

spp. by increasing drought tolerance due to de novo xylem formation and the resulting enhanced water 

flow [68]. Additionally, the production of ROS can help in cell-to-cell communication by amplifying 

the signal through the Respiratory Burst Oxidase Homologue D (RBOHD; [72]) and can act as a 

secondary messenger by modifying protein structures and activating defense genes [61,73]. ROS 

respond to abiotic and biotic stress, but differently from one stress to another [47]. Davletova et al. [74] 

showed that the transcription factor Zat12 was involved in both abiotic and biotic stress and that  

Zat12 could be a regulator in ROS scavenging. ROS may possibly be the central process mediating 

cross-tolerance between abiotic and biotic stress responsive networks [23]. In Arabidopsis, ROS 

production can be sensed by ROS-sensitive transcription factors [75,76] leading to the induction of 

genes participating in the stress responses. Gechev et al. [77] proposed that ROS were inducers of 

tolerance by activating stress response-related factors like mitogen-activated protein kinases (MAPKs), 

transcription factors, antioxidant enzymes, dehydrins, and low-temperature-induced-, heat shock-, and 

pathogenesis-related proteins. 

Priming for stress tolerance induced after application of specific chemicals is responsible for certain 

modifications in ROS signaling [70–78]. Treatment of cucumber plants with brassinosteroids lead to a 

rise in H2O2 levels and primed the plants for both biotic and abiotic stress tolerance [68]. H2O2 priming 

for salt tolerance in citrus moderately increased the abundance of oxidized and S-nitrosylated proteins, 

and the level remained the same after stress application, however, non-treated plants were more 

sensitive to the stress [78]. 
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3.2. Mitogen-Activated Protein Kinase (MAPK) Cascades 

Following perception and recognition of stress stimuli, Mitogen-Activated Protein Kinase (MAPK) 

cascades are activated. They control the stress response pathways [79,80]. MAPKs are highly 

conserved in all eukaryotes and are responsible for the signal transduction of diverse cellular processes 

under various abiotic and biotic stress responses, and certain kinases are involved in both kind of  

stress [18,81,82]. Since MAPKs are involved in different stress responses, they could have a role in the 

combination of abiotic and biotic stress [83,84]. For instance, in cotton the kinase GhMPK6a 

negatively regulates both biotic and abiotic stress [85]. MAPK pathways activated by pathogen attack 

are mediated by SA, and the resulting expression of PR genes induces defense reactions [86]. The 

Arabidopsis protein VIP1 is translocated into the nucleus after phosphorylation by MPK3 and acts as 

an indirect inducer of PR1 [87]. Chinchilla et al. [88] showed that pathogen associated molecular 

patterns (PAMPs) like flagellin trigger MAPK cascades in order to establish pathogen response 

signaling. In addition, MAPK such as MPK3, MPK4, and MPK6 also responded to various abiotic 

stresses [89,90]. MAPK cascades are important in controlling cross-tolerance between stress responses [12]. 

MPK3 and MPK6 are essential to show full primed defense responses [91], therefore, these two 

kinases could be important for mediating tolerance to further stresses. Over-expression of the OsMPK5 

gene and also kinase activity of OsMPK5 induced by ABA contributes to increased abiotic and biotic 

stress tolerance. OsMPK5 seems to play a double role in the rice stress response, one as a positive 

regulator of resistance to the necrotrophic brown spot pathogen Cochliobolus miyabeanus and the 

second as a mediator of abiotic stress tolerance [81,92]. Tomato plants activate MPK1 and MPK2 

against UV-B, wounding, and pathogens in order to enhance their defense reactions [93]. MAPK 

signaling also interacts with ROS and ABA signaling pathways leading to enhanced plant defense 

and induction of cross-acclimation to both abiotic and biotic stress [94–96]. 

3.3. Relevance of Hormone Signaling under Stress Interaction 

The control of every kind of stress by specific hormones allows defense responses against defined 

environmental conditions. ABA is considered the primary hormone involved in the perception of  

many abiotic stresses [97]. Increases in ABA concentration modulate the abiotic stress-regulation 

network [98] while biotic stress responses are preferentially mediated by antagonism between other 

stress hormones such as SA and acid JA/ET [99]. In certain cases, ABA has been shown to accumulate 

after infection [18,27,100,101]. For instance, higher levels of ABA were observed after Pst DC 3000 

infection [102], and this provoked a suppression of other defense responses [103]. However, recent 

findings show a positive effect of ABA on biotic stress resistance [30,104,105]. This dual effect makes 

ABA a controversial molecule that can switch from “good to bad” depending on the environmental 

conditions (type and timing of the stress; [105]). Moreover, under combination of abiotic and biotic 

stress, ABA mostly acts antagonistically with SA/JA/ethylene inducing a susceptibility of the plant 

against disease and herbivore attack [28,31,32,106,107]. However, since an increase of ABA under the 

effect of abiotic stress induces stomatal closure, as a “secondary effect”, the entry of biotic assailants 

through these passive ports of the plant is prevented. Hence, under such circumstances, the plant is 

protected from abiotic as well as from biotic stress [108]. There are three different phases showing the 
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influence of ABA on pathogen infection [23,30]. The first effect of ABA on the combination of both, 

abiotic and biotic stress is related only to abiotic stress because an infection takes more time to 

establish itself and the plants react therefore later to it [30–109]. At this moment, ABA induces stomatal 

closure [110], which allows a reduction in water loss and, as a consequence, the maintenance of a 

beneficial water potential. In this first phase, SA, JA and ethylene might not yet be activated and ABA 

can antagonize their induction. In this situation, future responses against potential pathogens are 

modified. The second phase concerns the post-infection reactions. Callose is an important inducible 

defense that can prevent pathogen invasion [111]. After infection, an intact ABA signaling pathway is 

required to increase callose accumulation in attacked plants [44,112], and the presence of ABA can 

induce or repress additional callose accumulation [98] depending on the environmental conditions. 

Therefore, ABA variation by a previous stress can influence the final output following biotic stress, 

such as strengthening the resistance phenotype through accumulation of callose or by inducing other 

defense pathways [96,108]. The third phase finally starts when PAMPs stimulate the accumulation of 

specific hormones that are SA, JA, and ethylene in order to regulate the defense reaction [27,96,113]. 

In summary, the exact role of ABA as a regulator of the dialogue between abiotic and biotic stress 

strongly depends on the timing of the stress perception: does the infection hit a plant that had already 

been exposed previously to abiotic stress or does an infected plant become additionally exposed to 

abiotic stress [30,97,114]? 

The beneficial role of SA in the relationship between plants and pathogens has been extensively 

studied. What is known is that ABA and SA have an antagonistic role in plant defense against stressors [31]. 

However, Miura and Tada [88] have shown that in addition to ABA, SA seems to also be important in 

plant responses to drought stress. Furthermore, SA increased barley resistance against water deficit [115]. 

3.4. Transcription Factors and Molecular Responses in Cross-Tolerance 

Changes in gene expression occur after detection of a given stress, and the reprogramming of the 

molecular machinery is regulated by the action of transcription factors. The altered expression of 

certain genes is a key event in helping plants to set up an effective defensive state, and there is 

convincing evidence that many genes are multifunctional and able induce tolerance in plants towards 

more than one stress [49–116]. The activity of such genes involved in defense is mediated by specific 

phytohormones like ABA, SA, JA, and Ethylene. For example, the activity of the BOTRYTIS 

SUSCEPTIBLE1 (BOS1) gene is mediated by both ABA and JA and induces resistance against 

osmotic stress and necrotrophic pathogens [117], and bos1 mutant plants are more susceptible to both 

stresses [117]. In Arabidopsis, the transcription factor MYB96 plays an important role in plant 

protection under pathogen infection by mediating the molecular link between both ABA induced by 

drought stress and SA expressed following pathogen infection [118]. SlAIM1 in tomato responds 

positively to the combination of abiotic stress and infection with Botrytis cinerea [13] and OsMAPK5, 

which has kinase activity, is a positive regulator of the rice response to drought, salt, and cold 

tolerance and disease resistance [86]. 

Interestingly, many PR genes are also induced upon exposure of a plant to abiotic stress ensuring 

disease resistance [118]. PR proteins are crucial for plant resistance against pathogens, and their 

expression is strongly up-regulated when plants are attacked [118]. Over-expression of certain 
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transcription factors in plants confronted with cold stress and infection activates cold-responsive PR 

genes, thereby conferring protection against both stressors [119]. The up-regulation of some 

transcription factors after exposure to abiotic stress leads to an accumulation of PR proteins. The 

transcription factors C-repeat Binding Factors (CBF), Dehydration-Responsive Element-Binding 

proteins (DREB) and No Apical meristem ATAF and Cup-Shaped Cotyledon (NAC) have been 

extensively studied as players of the primary abiotic stress signaling pathways ensuring tolerance 

under stress [120–122]. CBF is induced under cold stress together with a group of PR proteins [123]. 

Transgenic Arabidopsis overproducing the NAC transcription factor NTL6, which is induced by cold 

stress, enhance their defense response against pathogen attack by promoting an up-regulation of the 

PR1 gene [118–124]. Tsutsui et al. [125] showed that the transcription factor DREB could regulate the 

response of cross-tolerance between abiotic and biotic stress insuring the resistance of Arabidopsis 

response to cold and pathogen (Figure 1). 

Figure 1. Abiotic stress can enhance the expression of specific transcription factors (TFs) 

like C-repeat Binding Factors (CBF), No Apical meristem ATAF and Cup-Shaped 

Cotyledon (NAC), MYB mediated by abscisic acid (ABA). Although the exact role of ABA 

in plant pathogen interactions is still a matter of debate, in some specific cases it has been 

shown to promote resistance against biotic stress following abiotic stress. This is attributed 

to the over-expression of TFs inducing the up-regulation of PR genes.  

 

Recently, it has been proposed that the WHIRLY1 protein and REDOX-RESPONSIVE 

TRANSCRIPTION FACTOR1 (RRTF1) could participate in the traffic of communication between 

plastids and the nucleus [126]. WHIRLY1 perceives the redox changes in the plastid and carries the 

information to the nucleus in an NPR1-independent manner. The authors propose this protein as an 

ideal component in retrograde signaling that will lead to acclimation and adaption to new stresses. In 

the same way, RRTF1, which is induced by biotic and abiotic stresses, could be priming distant leaves 

to defend themselves against further stresses. 

Abiotic stress Resistance to
biotic stress

ABA

Transcription factors
CBF, NAC, MYB

PR        
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4. Conclusions and Outlook 

A plant’s response following exposure to abiotic/biotic stress strongly depends on its developmental 

stage [127] and the environmental conditions to which it is subjected [99]. Many stress combinations 

lead to phenotypic damage and, as mentioned above, the expression of defense is affected according to 

the type of abiotic stress and the pathogens involved. Overall, the complex response of the plant stems 

from the interplay of specific signaling pathways involved in abiotic and biotic stress. The combination 

of both stress types leads to an increased accumulation of a large number of signaling compounds that,  

in an ideal case, will be expressed as cross-tolerance (Figure 2). 

Plants perceive the information signal of each stress and consequently activate specific molecules. 

Only some of them, which are common to both stressors, will participate in the defense response to the 

specific stress combination and thus contribute to protect the plant and enhance its resistance. 

Various novel approaches can help plants to resist under combinatorial stress. The “Omics” 

technology is one of these approaches. Transcriptomics, proteomics, and metabolomics have revealed 

plant responses under stress and their underlying mechanisms and point to potential target genes, 

proteins or metabolites for inducing tolerance and improve plant responses. Little is known about the 

“Omics” characterization of abiotic and biotic stress combinations, but recently, several reports have 

addressed this question [16,51,70,128,129]. Although complete genome sequences are available for an 

increasing number of crop and model plants, in comparison, protein and metabolite databases are still 

rather incomplete, hence complicating the task of integrating all observations. Additionally, different 

plant species or even cultivars may behave differently, plant responses are also often organ-dependent, 

and results obtained with whole plants may be misleading. 

Another approach might consist of molecular engineering of specific genes and their introduction 

into crop plants. By modifying a gene coding for a small antimicrobial peptide and introducing it into 

potato, the resistance of potato to biotic and abiotic stress was increased [130]. 

The manipulation of common regulators is also a promising approach. Boosting the accumulation 

of flavonoid biosynthesis mitigates the negative effects of abiotic and biotic stress [131,132]. 

Polyamines are another example. These substances have long been known to mediate resistance to 

pathogens [133] but they are also involved in abiotic stress resistance [134]. Genetic manipulation of 

polyamine accumulation could lead to multi stress tolerance [135]. 

A further possibility to promote cross-tolerance is the exploitation of priming. Some chemicals have 

been shown to prime plants for both biotic and abiotic stresses under laboratory conditions [136], and 

their application might allow a better management of multiple stresses under field conditions. The 

ultimate goal in every case is to maintain or even enhance plant performance, yield, and productivity 

under adverse conditions. 
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Figure 2. Elements possibly involved in cross-tolerance between biotic and abiotic stress. 

Both biotic and abiotic stress have to be first sensed by the plant cell, and then the information 

is transduced to appropriate downstream-located pathway(s). Sensors as well as signal 

transducers might be shared by both types of stressors. Reactive oxygen species (ROS) and 

Ca++ are known among others to play a prominent role as transducers (messengers) and 

mitogen-activated protein kinases (MAPK) cascades have been shown to be used by both 

types of stresses. MAPKs are centrally positioned in Ca2+-ROS crosstalk as well as in the 

signal output after exposure to a specific stress. The importance of ROS has repeatedly 

been described for both types of stresses too, and, therefore, ROS might represent crucial 

elements in the integration of both stresses during cross-tolerance. Plant hormone signaling 

is of utter importance for stress adaptation. While abscisic acid (ABA) is predominantly 

involved in abiotic stress adaptation, salicylic acid (SA) and jasmonate/ethylene (JA/ET) are 

more responsible for the plant’s reaction to biotic stress. However, there is a tremendous 

amount of crosstalk taking place between the various hormonal pathways, and the exact 

nature of this crosstalk during simultaneous biotic and abiotic stress remains to be 

investigated. ABA signaling contributes positively to pre-invasion defense and is responsible 

for enhancing callose deposition. ABA presents a positive interaction with JA/ET signaling. 

The activation of SA signaling by pathogen challenge can attenuate ABA responses. ABA 

signaling negatively affects signals that trigger systemic acquired resistance, enhancing 

pathogen spread from the initial site of infection. The interaction of SA, JA, and ET 

signaling results in increased resistance to pathogens. Hormones, secondary metabolites, 

priming agents, and further chemicals located in the cytoplasm finally up-regulate transcription 

factors (TF), pathogenesis related (PR) and defense genes, heat shock protein (HSP) genes, 

and further genes involved in protection against stress and thus lead to the phenotypic 

expression known as cross-tolerance. Arrows: induction; flat-ended lines: repression. 
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