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Abstract: Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA)
remains the best understood in terms of its biosynthesis, function and signaling. Much like their
eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins
in diverse physiological processes. JA serves as the model plant oxylipin species and regulates
defense and development. For several decades, the biology of JA has been characterized in a few
dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this
work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology.
The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and
described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens
and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is
presented for use as biological markers for improving future investigations into JA signaling in maize.

Keywords: jasmonic acid; maize; lipoxygenase; oxylipins; plant-insect interactions;
plant-microbe interactions

1. Importance of Maize as a Crop and a Genetic Model

Despite contributing over 50% of the annual calories for humans [1] and 34% of the production
for animal feed [2], little is known about fundamental hormone biology in monocot plants compared
to greater advances with dicot plants, primarily Arabidopsis. Maize is a diploid large grain cereal
possessing unique reproductive organs where the male and female sexual organs are spatially
separated. It also has a rich cultural heritage. Of all of the top most cultivated monocot crops, maize
(Zea mays L.) is the only one with New World origins. Several characteristics of maize facilitate its use
as a model organism to explore fundamental processes: the maize genome was recently sequenced for
the B73 [3] and Palomero Toluqueño [4] lines; its separated sexual organs allow for effortless controlled
pollination; it possesses tremendous genetic diversity; and it is backed by an intensely collaborative
scientific community [5].

Maize and its closest crop relative, Sorghum bicolor, belong to the Panicoideae subfamily of the
grasses [6] and utilize C4 carbon metabolism, an adaptation to high light intensities, temperatures and
low water availability [7]. In contrast, most other economically-important cereals, such as wheat, rice
and barley, belong to the Pooideae subfamily and utilize the more common C3 carbon metabolism.
In recent years, scientific communities have sought to establish Brachypodium distachyon [8] and
Setaria viridis [9] as monocot models for the Pooideae and Panicoideae, respectively [10]. Modern maize
arose from an ancient hybridization event between two closely related diploid species that resulted
in doubling of the genome (i.e., allopolyploidization) between 8.5 and 13 million years ago [11].
Eventually, the genome of this ancestor was reduced to the diploid state, but with uneven gene loss [3].
This resulted in many maize genes, including jasmonic acid (JA) biosynthesis genes, occurring as pairs
throughout the genome.
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2. Jasmonates Belong to Oxylipins, a Group of Signals Better Understood in Mammals

JAs belong to the immense group of oxygenated fatty acid products known collectively as
oxylipins. Oxylipins are derived from either enzymatic or autoxidation of free or membrane-esterified
fatty acids. Since all metabolic processes in cells are enclosed within fatty acid-containing membranes,
oxylipins are universally produced across all kingdoms of life. Undeniably, oxylipins are best
understood in mammals and in these organisms are termed eicosanoids. Eicosanoids are further
categorized into subgroups based on their chemical structure and the enzymes (e.g., lipoxygenases,
cyclooxygenases and epoxygenases) that catalyze the fatty acid oxygenation. The major subgroup
of enzymatically-derived mammalian oxylipins are leukotrienes, prostaglandins, prostacyclins,
thromboxanes, lipoxins, eoxins, hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids
(EETs), while chemically-produced eicosanoids are known as isoprostanes [12]. In mammals, oxylipins
regulate diverse physiological processes, such as vasoconstriction, vasodilation, pain response and
fever generation. A central characteristic of eicosanoid activity is their cell-type-dependent responses,
which occur from the receptor-ligand binding of specific eicosanoid with its particular receptor [13].
In addition to receptor-ligand signaling, oxylipins also possess direct antimicrobial activity [14] and
are capable of altering cellular redox status [15].

Eicosanoids were first identified in 1935 with the discovery of prostaglandins in seminal fluid [16,17];
however, significant strides in eicosanoid function did not occur until after the development of synthetic
eicosanoid standards and improved analytical techniques. Figure 1 represents the number of articles
published each year from 1949 through 2015 as indexed by ISI Web of Science using eicosanoids (terms
used: “prostaglandin”, “thromboxane” and “leukotrienes”), jasmonates (terms used: “jasmonate”,
“jasmonic”, “jasmonyl” and “jasmone” [18]) and plant oxylipins (term used: “oxylipins”) and related
oxylipin terms. The first dramatic increase in the number of articles published with the terms associated
with eicosanoids in the early 1970s corresponds to the development of methods of the synthesis of
prostaglandins [19]. Another substantial increase in the early 1990s coincides with the development
of electrospray ionization, an essential component for the detection of biomolecules through mass
spectrometry [20].
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Figure 1. Articles published each year for the given topic terms related to mammalian and plant
oxylipins. The x-axis represents year from 1949 to 2015 and y-axis represents the number of articles
published each year for the selected topic terms. The line representing the terms related to mammalian
oxylipins (terms “prostaglandin”, “thromboxane”, and “leukotriene”), known as eicosanoids, and
is colored black. The line representing jasmonates (terms “jasmonate”, “jasmonic”, “jasmonyl”, and
“jasmone”) is colored red. Plant oxylipins (term “oxylipins”) is colored purple. Terms were searched in
the Web of ScienceTM citation indexing service and organized per year.
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Together, these techniques have allowed for the elucidation of the mechanisms behind the activity
of oxylipins on numerous human physiological processes, which has resulted in the understanding of
oxylipins and their biosynthetic enzymes as important therapeutic targets in modern clinical medicine.
The pharmacological manipulation of oxylipin biosynthesis has been used to relieve fever and pain for
several hundred years [21]. The first of these therapies arose from plant extract enriched in salicylic acid
and later with synthetic salicylates (e.g., aspirin) and nonsteroidal anti-inflammatory drugs (NSAIDs;
e.g., ibuprofen), all of which inhibit cyclooxygenase activity [22]. Selective inhibitors of oxylipin
biosynthetic enzymes [23] or substrate availability (e.g., glucocorticoids) [24] have been developed
and are routinely prescribed or used over-the-counter. Cyclooxygenase inhibitors make up one third
of the prescriptions and 60% of drug costs [25]. Impressively, nearly 80% of the U.S. Food and Drug
Administration-approved drugs [26] target pathways under oxylipin regulation.

3. Plant Oxylipins

In plants, oxylipins are generated primarily from the enzymatic oxygenation of polyunsaturated
fatty acids, linoleic (C18:2) or linolenic acid (C18:3) via lipoxygenase (LOX) or alpha-dioxygenase [27,28].
Chemical oxygenation of fatty acids produces a subset of oxylipins, known as phytoprostanes and
phytofurans [29,30]. The structural similarities of mammalian prostaglandins and JA provided plant
biologists a springboard to explore the role of oxylipins in the plants and to explore the commonality of
oxylipin biology in both kingdoms. Of the more than 600 estimated oxylipins [31] produced from plants
as a whole, JA has been in the limelight for nearly all investigations into plant oxylipins. Despite this
focus, in sharp contrast to human oxylipins, the number of articles published about JA lags behind
(Figure 1). Nonetheless, JA remains the best-understood plant-derived oxylipin and serves as the
model oxylipin species in plant biology. Its biosynthesis, signaling and roles in defense, development,
tolerance, growth and symbiotic interactions were identified through work with Arabidopsis, tobacco
and tomato [32,33].

It is important to point out that JA biosynthesis has been reported to occur in fungi from several
genera, including pathogenic and symbiotic species [34–36]. It appears that at least for some fungi, JA
biosynthesis evolved independently, but developed in a manner similar to plant JA production [37].
The capability of fungi to produce JA suggests that fungi modify plants into more suitable hosts through
JA-mediated signaling. This phenomenon is similar to how coronatine, a JA structural mimic, is utilized
by pathogenic bacteria to facilitate pathogenesis. In that system, coronatine facilitates stomata opening
for bacterial entry into the plant [38] and suppresses plant inducible defenses [39]. In turn, JA produced
by fungi may be used as molecular cues for defense against diverse pathogens [40].

4. Jasmonate Biosynthesis in Maize

Less than a handful of JA biosynthesis enzymes have been characterized in maize thus far.
This review describes the current literature regarding the genes identified via genetic or recombinant
protein evidence, but also proposes additional uncharacterized gene candidates with a strong
likelihood of their involvement in JA biosynthesis. The majority of studies in JA production arose
from investigations utilizing the B73 yellow dent inbred line [41], the first maize genome that has been
sequenced. As such, this section regarding JA biosynthesis is B73-centric, and it is reasonable to expect
that diverse inbred lines and landraces possess varying copy numbers for specific JA biosynthesis
gene family members. Another gene in the octadecanoid pathway, LIPOXYGENASE5 (ZmLOX5), was
shown to be present in zero, one and two copy numbers in the inbred lines tested [42]. A diagram of JA
biosynthesis with maize-specific enzymes is presented (Figure 2), but for a more detailed description of
JA biosynthesis in plants, please refer to the comprehensive historical and current reviews ([32,33,43]).
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synthase (DES), and hydroperoxide lyase (HPL) are cytochrome P450 monooxygenases (CYP) and 
part of the CYP74 clade (green oval). The AOS sub-branch is responsible for production of jasmonates 
(JAs). Divinyl ether synthases (DES) have been identified in some dicots, but not in monocots, 
including maize. The hydroperoxide lyase (HPL) sub-branch mediates the cleavage of 13-
hydroperoxide octadecadi(tri)enoic (HPOD/T) into C6- alcohols, aldehydes, and acetates collectively 
known as green leaf volatiles (GLVs), and as well as the oxo-fatty acid, traumatin which oxidizes into 
the dicarboxylic acid, traumatic acid (TA). 9-HPL converts 9-HPOD/T to produce C-9 alcohols, 
aldehydes, acetates, and C9-oxo-fatty acid that can be oxidized into the dicarboxylic acid, azelaic acid 
(AZA). Peroxygenase (PXG) catalyzes the formation of hydroxides and epoxides. LOX activity on 
hydroperoxides yields keto fatty acids. Epoxide alcohol synthase (EAS) synthesizes epoxy-
hydroxides which are hydrolyzed to trihydroxy fatty acids. Hydroxides can be converted 
nonenzymatically from hydroperoxy fatty acids or through action of reductases. ZmLOX6 is a unique 
monocot specific sub-branch which produces a C13-oxo-fatty acid and C5 alcohols from 13-HPOT 
specifically [48]. 

Figure 2. Overview of maize JA biosynthetic pathway. Genes marked with * have been functionally
characterized [44,45] and other genes are predicted from phylogenic analysis.

5. 13-Lipoxygenases

These non-heme iron containing oxygenases are the namesake for an immense pathway of fatty
acid metabolism, known as the lipoxygenase (LOX) pathway, consisting of at least seven enzyme
branches [46]. Depending on plant species and tissue specificity [47], this pathway produces diverse
subsets of alcohols, aldehydes, divinyl ethers, esters, epoxides, hydroxides, hydroperoxides, ketols,
ketones and triols [46,48] (Figure 3). These metabolites are implicated in nearly all plant biological
processes that include defense, development and trans-kingdom communication [40,49].
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Figure 3. Major metabolite classes produced by the eight sub-branches in the Lipoxygenase (LOX)
pathway. LOXs catalyze the dioxygenation of polyunsaturated fatty acids (PUFA), namely linoleic
(C18:2) or linolenic (C18:3) fatty acids at the 9- or 13-carbon position. The subsequent hydroperoxide
fatty acid can be fluxed into seven sub-branches [31,46]. Allene oxide synthase (AOS), divinyl ether
synthase (DES), and hydroperoxide lyase (HPL) are cytochrome P450 monooxygenases (CYP) and part
of the CYP74 clade (green oval). The AOS sub-branch is responsible for production of jasmonates (JAs).
Divinyl ether synthases (DES) have been identified in some dicots, but not in monocots, including
maize. The hydroperoxide lyase (HPL) sub-branch mediates the cleavage of 13-hydroperoxide
octadecadi(tri)enoic (HPOD/T) into C6- alcohols, aldehydes, and acetates collectively known as green
leaf volatiles (GLVs), and as well as the oxo-fatty acid, traumatin which oxidizes into the dicarboxylic
acid, traumatic acid (TA). 9-HPL converts 9-HPOD/T to produce C-9 alcohols, aldehydes, acetates, and
C9-oxo-fatty acid that can be oxidized into the dicarboxylic acid, azelaic acid (AZA). Peroxygenase
(PXG) catalyzes the formation of hydroxides and epoxides. LOX activity on hydroperoxides yields keto
fatty acids. Epoxide alcohol synthase (EAS) synthesizes epoxy-hydroxides which are hydrolyzed to
trihydroxy fatty acids. Hydroxides can be converted nonenzymatically from hydroperoxy fatty acids
or through action of reductases. ZmLOX6 is a unique monocot specific sub-branch which produces
a C13-oxo-fatty acid and C5 alcohols from 13-HPOT specifically [48].
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In the maize B73 genome, this enzyme family is comprised of 13 members categorized into either
the 9- or 13-LOX groups depending on the position the oxygen is incorporated into the fatty acid
carbon backbone [50,51]. Only 13-LOXs are capable of catalyzing 13(S)-hydroperoxide octadecatrienoic
acid (13-HPOT, (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoic acid), from α-linolenic acid
(C18:3) with appropriate regio- and stereo-specificity required for JA biosynthesis. The initial steps of
JA biosynthesis (lipases, LOX, AOS and AOC) are localized in plastids, and therefore, most 13-LOXs
possess plastid transit peptides (CTP) for close proximity to linolenate.

Six 13-LOXs are present in the maize genome (Figure 4) and cluster into two groups. ZmLOX7
(Zm00001d025524; GRMZM2G070092), 8 (Zm00001d003533; GRMZM2G104843) and 9 (Zm00001d027893;
GRMZM2G017616) cluster together and ZmLOX10 (Zm00001d053675; GRMZM2G015419), and 11
(Zm00001d015852; GRMZM2G009479) and 13 (Zm00001d031449; GRMZM5G822593) form a distinct
group [51–54]. The two groups share relatively low amino acid sequence identity (Figure 5) of around
45%, yet the members of the same group share up to 90% sequence identity. While any of these 13-LOXs
in maize may produce substrate for JA biosynthesis, thus far, only ZmLOX8 has been shown to be
required for basal JA biosynthesis in tassel [44]. Christensen et al. (2013) have shown that ZmLOX8 is
the major 13-LOX isoform in wound-induced JA biosynthesis in leaves. ZmLOX8 localization to the
chloroplasts was determined by analysis of the LOX8:mCherry fluorescent protein [44]. In addition
to wound-inducible JA, ZmLOX8 is essential for normal JA production during tassel primordia
development, discovered in a forward genetics approach characterizing the tasselseed1 mutant of
maize [44]. ZmLOX8 shares 94% sequence identity with ZmLOX7, suggesting that ZmLOX7 may
also be involved in JA biosynthesis. Another functionally-characterized maize 13-LOX, ZmLOX10, is
solely responsible for green leaf volatile (GLV) biosynthesis and wound-induced JA; however, whether
it is directly involved in JA production or signaling JA biosynthesis via GLVs needs to be further
elucidated [51]. ZmLOX10-YFP (yellow fluorescent protein) was previously shown to not localize to
chloroplasts and instead be found in small microbodies [51]; however, recent analysis with improved
microscopy techniques positively confirm ZmLOX10-YFP presence in chloroplasts (M. K., unpublished
data). Thus, it cannot be ruled out that ZmLOX10 provides substrate towards JA biosynthesis during
stress response in a tissue- or stimulus-specific manner. A cautionary note, careful examination of the
subcellular localization of ZmLOX9-YFP, did not find it to be localized to chloroplasts [55].
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Figure 5. Protein sequence identity comparison of the 13-LOX family members from Arabidopsis,
maize, and rice. Analyses was performed with Sequence Identity and Similarity software (SIAS;
http://imed.med.ucm.es/Tools/sias.html). The color code (red to white to blue) scale represents the
percent sequence identity from greatest to least.

Another class of LOXs, termed dual positional LOXs, has dioxygenase activity on both the 9- and
13- carbon positions [56–59]. In maize, two dual positional LOXs exist, ZmLOX1 (Zm00001d042541;
GRMZM2G156861; DQ335760) [60] and ZmLOX2 (Zm00001d042540; GRMZM2G156861 [sic];
DQ335761). Both lack a predicted plastid transit peptide sequence as determined by ChloroP [61].
Interestingly, when expressed transgenically in rice, ZmLOX1 was able to associate with chloroplast
membranes in the presence of calcium [62]. A similar dual positional LOX from rice was determined
to localize into chloroplasts and when silenced, failed to produce increased JA following brown plant
hopper (Nilaparvata lugens) infestation [59]. Therefore, genetic evidence is required to definitively assign
a role to the dual positional maize LOXs, ZmLOX1 and 2. Unfortunately, these two genes share 87%
amino acid identity and are tandemly duplicated, suggesting functional redundancy. To completely
characterize the role of maize dual positional LOXs, the creation of double mutants is necessary, but
problematic. It is likely that next generation genome editing tools will be required for this endeavor [63].
In summary, the most likely candidate isoforms for JA biosynthesis are ZmLOX7, 8, 9, 10, 11 and 13.

6. Allene Oxide Synthase

The 13-LOX product 13-HPOT is catalyzed into an epoxide, 12,13(S)-epoxy-octadecatrienoic acid,
by 13-AOS. 13-AOS, along with the closely related 9-AOS, hydroperoxide lyase (HPL) and divinyl
ether synthase (DES), belong to the cytochromeP450 monooxygenase (CYP) enzyme family and part
of the CYP74 group (Figure 3) [64]. The CYP74s are involved in the metabolism of the immediate
LOX products, hydroperoxy fatty acids. All HPLs, DESs and AOSs utilize the same substrate, but
form distinct products, and the enzymes cluster into different clades. The CYP74A clade contains all
9-, 9/13- and 13-AOSs. 13-AOS serves as the first committed enzymatic step for the production of
JA [65]. Interestingly, these enzymes are extremely similar, and even a single amino acid substitution
repurposed the AOS from Arabidopsis into a functional HPL [66].

Previous research reported three maize AOS isoforms [67], but after analysis of the maize
B73 genome, five AOSs were identified (Figure 6). These five isoforms cluster into two clades,
termed here AOS1 and 2. AOS1 clade contains ZmAOS1a (Zm00001d034186; GRMZM2G376661), b
(Zm00001d034184; GRMZM2G07265) and c (Zm00001d013185; GRMZM2G033098), and AOS2 contains
ZmAOS2a (Zm00001d028282; GRMZM2G002178) and b (Zm00001d048021; GRMZM2G067225).
Currently, no specific 13-AOS has been characterized in maize. Nearly all JA-producing 13-AOSs
are localized in plastids and, similarly to 13-LOXs, encode CTP sequences with few exceptions,
a notable example being the AOS from barley (Hordeum vulgare) [68]. The three maize AOS1s contain
predicted CTPs [61] that are expected to target them to plastids. The ZmAOS1 clade members
also cluster with OsAOS1 at ~86% sequence identity. OsAOS1 was shown to contain a CTP and
identified through a preliminary mapping of a mutant in phytochrome-mediated inhibition of coleoptile
photomorphogenesis growth (cpm1) [69] that was later determined to be NPH3 (NONPHOTOTROPIC
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HYPOCOTYL3) [70]. Two previously predicted rice AOSs were later determined to encode for HPLs
and have been appropriately renamed [71] and are not included in this analysis.
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The maize genome encodes two AOC isoforms, which are termed here ZmAOC1 
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cluster closer with the sole rice AOC (Figure 7) [72] (~78% sequence identity) than with the four AOCs 
from Arabidopsis [84]. The availability of an additional AOC in maize compared to rice may convey 
functional redundancy, but also provide a tissue- and stress-specific regulation, as was observed for 
the tissue- and promoter-activity of the four AOC isoforms in Arabidopsis [84]. A maize AOC isolated 
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Similar to the dual positional specific LOXs of maize [62] and rice [59], the barley AOS [68], rice
AOS2 (Os03g0225900) [73] and recently maize (ZmAOS2b) [74] were reported to possess dual substrate
specificity capabilities of catalyzing either 9- or 13-HPOD/T into the corresponding allene oxides.
None of the AOS2 clade members (Figure 6) encode predicted CTPs. Recombinant ZmAOS2b was
determined to catalyze 9-HPOD into 9,10-epoxy-10,12-octadecadienoic acid (9,10-EOD). In that study,
maize root extract possessed a cyclase activity to convert 9,10-EOD into (9S,13S)-10-oxo-phytoenoic
acid (10-OPEA). In rice, while attempting to produce male-sterile plants with an RNAi approach,
silencing OsAOS2 was determined to be more effective than silencing OsAOS1 [75]. This observation
suggests that either members of the AOS2 clade produce JA directly due to their dual substrate
specificity or function through the production of a yet to be determined oxylipin signal that promotes
JA-mediated male fertility. In agreement with this hypothesis, a 9-LOX mutant of maize had reduced
JA content [76].

Very few studies have explored expressional analysis of the AOS1 clade [67]. It is important
to bring to attention that most published reports analyze the expression of the maize AOS2
clade [45,77–81]. These data should be treated with caution until genetic evidence reveals which
of the AOS isoforms are directly involved in JA production in maize.

7. Allene Oxide Cyclase

Cyclization of 12,13(S)-EOT into stereospecific (9S,13S)-12-oxo-phytodienoic acid (12-OPDA)
occurs via allene oxide cyclase (AOC) and represents the first enzymatic step to yield a member of the
jasmonate family of oxylipins, 12-OPDA. It is predicated that instead of directly catalyzing the reaction,
AOC constrains 12,13(S)-EOT into the appropriate configuration for self-cyclization in a stereospecific
manner [82,83].

The maize genome encodes two AOC isoforms, which are termed here ZmAOC1
(Zm00001d029594; GRMZM2G077 316) and ZmAOC2 (Zm00001d047340; GRMZM2G415793) and
cluster closer with the sole rice AOC (Figure 7) [72] (~78% sequence identity) than with the four AOCs
from Arabidopsis [84]. The availability of an additional AOC in maize compared to rice may convey
functional redundancy, but also provide a tissue- and stress-specific regulation, as was observed for the
tissue- and promoter-activity of the four AOC isoforms in Arabidopsis [84]. A maize AOC isolated from
seed was shown to utilize only 18:3-derived, but not 18:2-derived 12,13-epoxy fatty acids; however,
the identity of this AOC has not yet been determined [85]. While in maize no functional analysis
of AOC have been reported, in rice, the JA-deficient hebiba (Japanese for “snake leaf”) mutation [86]
and coleoptile photomorphogenesis2 (cpm2) [72] mutants lack the sole AOC. Recently, it was determined
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that in addition to missing AOC, hebiba is also deleted in DWARF14-like [87], which imparts defects
root interactions with arbuscular mycorrhize through the karrikin (the so-called, “smoke hormone”)
receptor [88] and 25 other genes [89]. Because of the complicated nature of the hebiba mutation, the
function of JA in rice will need to be revisited by using JA-deficient mutants disrupted in single
genes. Interestingly, cpm2 and hebiba displayed increased tolerance to salt [90], but it remains to be
elucidated whether JA-deficiency in maize impacts salt tolerance. Given that the two maize AOCs
share ~90% sequence identity, it is reasonable to expect functional redundancy will require double
knockout mutants to be used to establish their role in JA synthesis. Fortunately, ZmAOC1 and 2
are located on chromosomes 1 and 9, respectively, so the double mutant can be generated through
conventional breeding.

Plants 2016, 5, 41  8 of 24 

 

mutation [86] and coleoptile photomorphogenesis2 (cpm2) [72] mutants lack the sole AOC. Recently, it 
was determined that in addition to missing AOC, hebiba is also deleted in DWARF14-like [87], which 
imparts defects root interactions with arbuscular mycorrhize through the karrikin (the so-called, 
“smoke hormone”) receptor [88] and 25 other genes [89]. Because of the complicated nature of the 
hebiba mutation, the function of JA in rice will need to be revisited by using JA-deficient mutants 
disrupted in single genes. Interestingly, cpm2 and hebiba displayed increased tolerance to salt [90], but 
it remains to be elucidated whether JA-deficiency in maize impacts salt tolerance. Given that the two 
maize AOCs share ~90% sequence identity, it is reasonable to expect functional redundancy will 
require double knockout mutants to be used to establish their role in JA synthesis. Fortunately, 
ZmAOC1 and 2 are located on chromosomes 1 and 9, respectively, so the double mutant can be 
generated through conventional breeding. 

 

Figure 7. Amino acid sequences of AOC family members from Arabidopsis, maize, and rice compared 
with ClustalX and visualized with Figtree. (A) Gene labels follow nomenclature from Arabidopsis [84], 
maize (this chapter), and rice [72]. * denotes predicted CTP by ChloroP. (B) Identity analyses was 
performed with SIAS. The color code (red to white to blue) scale represents the percent sequence 
identity from greatest to least. 
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The maize genome encodes eight OPR isoforms, yet only two are Type II OPRs [91], ZmOPR7 
(Zm00001d032049; GRMZM2G148281) and ZmOPR8 (Zm00001d050107; GRMZM2G082087). 
ZmOPR7 and 8 share ~87% and ~70% sequence identity, respectively, with rice [92] and  
Arabidopsis (Figure 8) [93,94] JA-producing OPRs. In the B73 inbred line, ZmOPR7 and/or ZmOPR8 
are induced by JA, ethylene and abscisic acid in leaves [91]. OPR7 and OPR8 share ~95% sequence 
identity, and recent functional characterization showed that ZmOPR7 and 8 are functionally 
redundant and both are capable of reducing 12-OPDA [45]. Supporting the case of redundancy for 
the two genes in JA biosynthesis, only opr7opr8 double mutants, but not single mutants displayed 
reduced JA [45]. As expected, 12-OPDA levels of opr7opr8 double mutants were similar to WT. To 
date, the opr7opr8 double mutant provides the best genetic evidence for the role of JA in maize. The 
phenotypes of the double mutant are described in detail below.  

Three rounds of beta-oxidation are required to shorten the octanoic acid side change of OPC-8:0 
to ethanoic acid. The three rounds of beta-oxidation are performed by three distinct enzymes, ACX 
(acylcoenzyme A (CoA) oxidases), MFP (multifunctional proteins), and KAT (3-ketoacyl-CoA 
thiolases) [32]. The product of the three reactions is JA. 

Figure 7. Amino acid sequences of AOC family members from Arabidopsis, maize, and rice compared
with ClustalX and visualized with Figtree. (A) Gene labels follow nomenclature from Arabidopsis [84],
maize (this chapter), and rice [72]. * denotes predicted CTP by ChloroP. (B) Identity analyses was
performed with SIAS. The color code (red to white to blue) scale represents the percent sequence
identity from greatest to least.

8. Oxo-Phytodienoic Acid Reductase and Beta-Oxidation

Reduction of 12-OPDA occurs in the peroxisome via Type II 12-OPDA reductases (OPRs).
Type II OPRs reduce the cyclopentenone cis-(+)-12-OPDA into the cyclopentanone,
OPC-8:0 (8-[3-oxo-2-cis-[(Z)-2-pentenylcyclopentyl]octanoic acid).

The maize genome encodes eight OPR isoforms, yet only two are Type II OPRs [91],
ZmOPR7 (Zm00001d032049; GRMZM2G148281) and ZmOPR8 (Zm00001d050107; GRMZM2G082087).
ZmOPR7 and 8 share ~87% and ~70% sequence identity, respectively, with rice [92] and
Arabidopsis (Figure 8) [93,94] JA-producing OPRs. In the B73 inbred line, ZmOPR7 and/or ZmOPR8
are induced by JA, ethylene and abscisic acid in leaves [91]. OPR7 and OPR8 share ~95% sequence
identity, and recent functional characterization showed that ZmOPR7 and 8 are functionally redundant
and both are capable of reducing 12-OPDA [45]. Supporting the case of redundancy for the two genes
in JA biosynthesis, only opr7opr8 double mutants, but not single mutants displayed reduced JA [45].
As expected, 12-OPDA levels of opr7opr8 double mutants were similar to WT. To date, the opr7opr8
double mutant provides the best genetic evidence for the role of JA in maize. The phenotypes of the
double mutant are described in detail below.

Three rounds of beta-oxidation are required to shorten the octanoic acid side change of OPC-8:0
to ethanoic acid. The three rounds of beta-oxidation are performed by three distinct enzymes,
ACX (acylcoenzyme A (CoA) oxidases), MFP (multifunctional proteins), and KAT (3-ketoacyl-CoA
thiolases) [32]. The product of the three reactions is JA.
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9. JA-Amino Acid Conjugation

Many chemically-diverse jasmonic acid derivatives were reported from different plant species [33].
In summary, JA can be converted to one of its derivatives by conjugation with a number of amino acids,
decarboxylation, glycosylation, hydroxylation of a number of carbon positions, autocyclization of
hydroxy-JAs into lactones, methylation, sulfonation or by more than one modification. The conjugation
of JA with the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), has also been
reported [95]. JAs were also found with an unsaturated cyclopentenone (didehydro-JAs), with a saturated
pentanyl moiety (dihydro-JAs) or with its ethanoic acid chain elongated into three (homo-JA) or four
carbons (dihomo-JA) [96]. In addition, JA is capable of undergoing stereo-rearrangement of its
ethanonic acid and pentenyl chains and can be found in the 3R, 7R or 3R, 7S (7-iso-JA) configurations.
These different jasmonates possess different effects on JA-inducible gene expression, and while most
have shown no discernible activity, several were able to induce or suppress JA-responsive genes [97].
Recently, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) was determined to be the most effective ligand for
the SCF(COI1) receptor [98], currently the only JA receptor identified in plants.

The conjugation of JA with Ile occurs through the JAR1 (JASMONATE RESISTANT1) enzyme [99].
The JAR1 enzyme belongs to the large firefly luciferase gene family. In Arabidopsis, only one protein,
AtJAR1 was shown to utilize JA as a substrate [99]. In rice, two proteins were shown to produce JA-Ile
in vitro, OsJAR1 and OsJAR2 [100]. The maize genome encodes five JAR1-like isoforms that group
into two clusters (Figure 9). The JAR1 cluster contains ZmJAR1a (Zm00001d011377; GRMZM2G09127)
and ZmJAR1b (Zm00001d039346; GRMZM2G162413), which share ~60% sequence identity with
AtJAR1. The JAR2 cluster contains ZmJAR2a (Zm00001d008957; GRMZM2G001421), ZmJAR2b
(Zm00001d039346|GRMZM2G060991) and ZmJAR2c (Zm00001d039345; GRMZM2G061005). These
isoforms only share ~56% sequence identity with AtJAR1, but 68 to 78% sequence identity with OsJAR2.
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white to blue) scale represents the percent sequence identity from greatest to least. 

Figure 9. Amino acid sequences of JAR1-like family members from Arabidopsis, maize, and rice
compared with ClustalX and visualized with Figtree. (A) Gene labels follow nomenclature from maize
(this chapter) and rice [100]. (B) Identity analyses was performed with SIAS. The color code (red to
white to blue) scale represents the percent sequence identity from greatest to least.
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To date, no maize JAR1-like isoform has been characterized. In rice, JAR1 was determined to be
involved in photomorphogenesis [101], floret development [102] and phytoalexin production [103].
The presence of multiple JAR1-like isoforms in maize will require utilization of double mutants for
functional characterization.

10. 9-Oxylipin Jasmonate Analogs (10-OPEA, 10-OPDA and Derivatives)

In addition to the 13-LOX-derived jasmonates, plants possess a parallel pathway involving
9-LOX reactions that also produce cyclopenta(e)nones, analogous to JAs [67]. These 9-LOX products,
10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11,15-phytodienoic acid (10-OPDA), are structurally
related to 12-OPDA and first described in potato [104]. The 9-LOX isoforms responsible for their
biosynthesis have not been identified yet in maize or any other plant species. In maize, following 9-LOX
activity on C18:2, the 9-hydroperoxy fatty acid (9-HPOD) is catalyzed into 9,10-epoxy octadecadienoic
acid (9,10-EOD) through the action of ZmAOS2b [74]. The 9,10-EOD is cyclized into 10-OPEA by an,
as yet uncharacterized, AOC-like enzyme [74].

Recently, these cyclopentanones were described to possess potent signaling, insecticidal and
antimicrobial activities in maize [67,105]. Transcriptional analysis uncovered that JA, 12-OPDA or
10-OPEA regulate unique subsets of genes, suggesting distinct signaling activities [67]. In wounded
silk and root tissue, 10-OPEA accumulates as the predominant cyclopentanone species followed by
10-OPDA [105]. Low concentrations of 10-OPEA added to artificial diet media reduce the growth
of Helicoverpa zea (corn earworm) by half compared to insects grown on control media. 10-OPEA
and its derivatives accumulated in local tissue following inoculation by Cochliobolus heterostrophus,
the causal agent of southern corn leaf blight, to greater levels than either 12-OPDA or JA. While not
having direct antimicrobial effects against C. heterostrophus, concentrations as low as 170 µM reduced
growth of Fusarium verticillioides and Aspergillus flavus. Direct application of 10 µL of 2 mM of 10-OPEA
caused dramatic phytotoxicity due to programmed cell death (PCD). Most surprisingly, 10-OPEA
promoted the greatest necrosis and ion leakage compared to all other PCD-promoting compounds
tested, including fumonisin B1 [67].

11. Regulation of JA Production by the Non-JA Producing Branches of the LOX Pathway

11.1. The Role of GLV-Mediated Signaling on JA Production

In maize, ZmLOX10 was determined to serve as the sole 13-LOX isoform responsible for basal,
herbivore- and wound-induced GLV production in aboveground tissue [51]. Following ZmLOX10
activity, the C18:2- or C18:3-derived 13-hydroperoxy fatty acids are cleaved into C6 aldehydes and
C12-oxo-fatty acids, via the action of hydroperoxide lyase (HPL) [106]. The C6 aldehydes can be
subsequently converted into C6 alcohols, acetylated or hydroxylated [107]. Transposon-disrupted
lox10 knockout mutant plants are completely devoid of GLVs and were utilized as a genetic tool to
understand the role of GLVs in regulation of JA production. Compared to wild-type (WT) plants, lox10
mutants accumulated significantly lower levels of 12-OPDA and JA in locally-damaged tissue after
wounding treatment compared to WT. The lox10 mutants also showed reduced transcript levels of
the JA biosynthesis genes, ZmLOX8 and ZmOPR7/8, suggesting that GLVs are required for normal
wound-induced JA via transcriptional regulation.

11.2. The Role of 9-LOX-Mediated Signaling on JA Production

Recent evidence suggests that 9-oxylipins regulate maize JA production, in both a positive or
negative manner. ZmLOX3 is a 9-LOX and has been shown to serve as a negative regulator of JA
biosynthesis in roots and seed. The lox3 knockout mutant roots produced elevated basal levels of JA
and displayed an increased expression of JA biosynthesis genes [77], suggesting that LOX3-produced
9-oxylipins suppress the production of JA. Interestingly, transcript levels for GLV-biosynthesis genes,
ZmLOX10 and ZmHPL, were also elevated in untreated lox3 roots. In seeds infected by A. flavus,
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lox3 mutant accumulated increased levels of linolenic acid and JA compared to WT. These studies
suggest that ZmLOX3 suppresses JA biosynthesis in diverse organs. In contrast to ZmLOX3, another
predominant 9-LOX, ZmLOX12 appears to function as a positive regulator for JA production [76].
In response to F. verticillioides infection, lox12 knockout mutants were unable to induce accumulation of
12-OPDA, JA and JA-Ile. The decrease in JAs was accompanied with decreased transcript accumulation
of JA biosynthetic genes and increased susceptibility of lox12 mutants to F. verticillioides. Taken together,
these reports suggest that 9-LOX-derived oxylipins help fine-tune JA biosynthesis in organ- and
stress-inducible fashion.

12. JA in Maize Defense against Insects

12.1. Plant Defenses, Genetic Evidence and Insect Elicitors

Plant defenses against insects are classified according to nature (physical or chemical), mode of
action (direct or indirect) and timing (constitutive or inducible) [108]. Physical defenses are anatomical
structures that provide increased durability to herbivory. Chemical defenses utilize toxins or other
molecules to deter feeding or nutrition acquisition. Direct defenses explicitly target the insect herbivore
physiology and survival, while indirect defenses rely on the attraction of predators of the herbivores.
Constitutive defenses are preformed and persist through herbivory, while inducible defenses are
activated only during the perception of an herbivore or herbivory-associated tissue damage. While the
role of JA in dicot insect defense has been well studied [109], especially in tobacco and tomato, there is
limited information on the role of JA in maize insect defenses.

As in other studied plants, JA in maize is critical to successfully thwarting insect attack.
The strongest evidence for the role of JA in maize insect defense stems from studies using the
JA-deficient opr7opr8 double mutants’ response to herbivory by beet armyworm (Spodoptera exigua) [45].
Double mutants were consumed by beet armyworm more readily than WT, which was accompanied
with an increased larval weight. The significance of wound-induced JA in insect defenses was also
confirmed by the analysis of the lox10 mutant that was unable to induce accumulation of JA in response
to wounding [51]. Similar to opr7opr8, mutant seedlings of lox10 lost more mass due to insect feeding
and supported greater larval weight gain compared to WT.

As in other plants, JA serves as a major regulator for diverse insect resistance mechanisms [110],
but its precise mode of action in maize is still under investigation. Here, we present recently
published studies highlighting the impact of JA on diverse lines of maize defenses against
herbivory. In maize, JA biosynthesis in response to insect feeding has been studied extensively
using insect elicitors. Of the insect-derived elicitors described so far, volicitin, known chemically
as N-(17-hydroxylinolenoyl)-L-glutamine (17-OH-C18:3-Gln) [111] and N-linolenoyl-glutamine
(C18:3-Gln) [112], possesses the greatest activity on maize JA activation [113]. An application of either
elicitor caused JA accumulation to spike after treatment. Volicitin, crude regurgitant and mechanical
wounding increased local JA concentration when applied to leaf tissue, but only the treatments by crude
regurgitant or volicitin induced the accumulation of JA in the distal portion of the leaf [78]. In terms
of basal tissue, treatment with volicitin was unable to induce JA accumulation after application [78].
However, treatment with C18:3-Gln induced expression of ZmMYC7E, a putative orthologue of
the Arabidopsis transcription factor AtMYC2, in maize (Zm00001d030028; GRMZM2G001930), after
application in both basal tissue and in untreated systemic leaves [80].

12.2. Direct Defenses

One type of direct physical defense is trichomes. Trichomes obstruct insects and are capable of
storing toxic defensive metabolites that are released upon damage. JA positively regulates trichome
formation. Exogenous application of JA on maize leaves induced the development of trichomes [114].
Another physical defense is lignification, which strengthens cell walls to increase resistance against
insect mastication. Recently, treatment with MeJA resulted in degradation of repressors of the
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lignin biosynthetic pathway [115]. Direct chemical defense responses include the production of
metabolites that intoxicate or repel herbivores or suppress nutrient acquisition (e.g., protease inhibitors).
Benzoxazinoids are indole derived hydroxamic acids (e.g., DIMBOA, 2,4-dihydroxy-7-methoxy-
1,4-benzoxazin-3-one) that can have direct insecticidal activity [116]. ZmIGL (INDOLE-3-GLYCEROL
PHOSPHATE LYASE) is capable of generating free indole for benzoxazinoid biosynthesis and is
inducible by MeJA application [117]. Similarly, application of JA induced accumulation of 2-(2-hydroxy-
4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc) in levels similar to insect
herbivory [118].

Several recent studies have identified potential mechanisms of JA-mediated herbivory defense
in maize. For example, a new class of diterpenoids derived from ent-kaurane [119] (precursor for
gibberellic acid) was increased upon insect feeding when leaves were pre-treated with a combination
of JA and ethylene [120]. Kauralexin A3 or B3 treatment on maize stems reduced feeding by European
corn borer (Ostrinia nubilalis) [120]; however, kauralexins may not have direct insecticidal activity, as
artificial diet enriched with high concentrations failed to affect O. nubilalis growth [119].

Cysteine proteases are defensive enzymes produced by plants, which when consumed by insects
damage their gut [121]. In maize, the best-characterized defensive cysteine protease is ZmMIR1
(MAIZE INSECT RESISTANCE1, Zm00001d036542; GRMZM2G150276) [122,123]. In the place of
JA, another phytohormone, ethylene (ET) appears to be the major regulator of ZmMIR1. Treatment
with 2-chloroethylenphosphonic acid (CEP), an ET-releasing chemical, was able to induce ZmMIR1
transcript accumulation more dramatically than MeJA treatment [124]. Application of an ET inhibitor
reduced aphid-induced ZmMIR1 expression and improved aphid performance [125]. Plant protease
inhibitors inactivate insect digestive enzymes [126] and slows their growth and development [127].
In several dicot species, including tomato, tobacco and Arabidopsis, JA is the major hormone mediating
the induction of protease inhibitor production [128,129]. Similarity, ZmMPI (MAIZE PROTEASE
INHIBITOR, Zm00001d011080, GRMZM2G028393) is induced more strongly by MeJA treatment than
by CEP [124] and is upregulated in lox3 knockout mutant roots, overproducers of JA [77]. ZmMPI1 is
clearly JA-dependent, as induction of this gene by wounding is significantly reduced in the JA-deficient
opr7opr8 double mutants. In addition to protease inhibitors that inactivate native insect digestive
proteins, plants are capable of producing non-protein amino acids that are incorrectly incorporated
into protein synthesis. MeJA transiently induced the production of 5-hydroxynorvaline, and aphids
fed diets supplemented with 5-hydroxynorvaline at physiological concentrations suppressed aphid
reproduction [130].

In addition to signaling for resistance, JAs can display direct toxicity on insects in a manner similar
to what was described for their 9-LOX analogues [67]. The α,β-unsaturated carbonyl structure makes
a subset of jasmonate (e.g., 12-OPDA) reactive electrophilic species (RES) and subsequently toxic
metabolites. To circumvent this toxicity, ear- and army-worms possess isomerases that can rearrange
the double bond in the cyclopentenone ring to disrupt the α,β-unsaturated carbonyl structure, which
detoxifies 12-OPDA [131]. It was shown that silencing of an isomerase gene involved in the 12-OPDA
detoxification reduces the insect performance [132].

12.3. Indirect Defenses

Indirect defense is another strategy of plants to resist insect herbivory, and it relies on the
emission of volatile organic compounds (VOCs) to recruit beneficial predators of insect herbivores [133].
Following insect damage, JA accumulation was positively associated with increased indole and
sesquiterpene emissions [134] and was correlated with the site of terpene release [135]. While mechanical
damage and volicitin induced similar levels of JA in intact or excised leaves, treatment with either JA or
volicitin results in a greater release of sesquiterpenes from excised leaves compared to intact leaves [136].
Additionally, ethylene enhanced volatile emission from volicitin and JA treatment, but not mechanical
damage. Treatment with JA increased the attractiveness of maize plants to the parasitoid wasp,
Cotesia kariyai [137]; however, JA did not interfere with the ability of C. kariyai to discriminate between
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armyworm (Mythimna separata) infested and uninfested maize plants. Interestingly, application of
both JA and a derivative of a JA precursor, methyl-C18:3, produced a comparable increase of C. kariyai
attraction to maize plants [138]. However, the volatile profiles emitted from JA or methyl-C18:3
were substantially different. Methanol and the GLV, Z-3-hexenyl acetate, were found to be the most
attractive volatiles, respectively, from the methyl-C18:3 or JA treatment. It remains to be seen if these
observations can be repeated under natural conditions [139].

Another indirect defensive role of VOCs is their ability to induce intra- and inter-plant defenses in
a phenomenon known as priming. The priming of plants is the ability to activate defenses earlier and
to a greater level after exposure to a stimulus [140]. One such stimulus is the volatile blend released
from an injured neighbor or by exogenous volatile treatment. The effect of the priming response is
determined by subjecting the exposed plants to stress such as wounding or herbivory after 24 h of
priming treatment and monitoring JA accumulation or VOC emissions. The priming state persists
for at least five days following initial treatment [141] and is likely reliant on chromatin modification
to prepare the transcriptional machinery to activate defense genes similar to what is observed with
systemic acquired resistance (SAR) against pathogens [142]. JA accumulation is responsive to the
volatile-mediated priming. Maize plants pretreated overnight with GLVs facilitated enhanced JA
induction following regurgitant application compared with non-pretreated plants [143]. Similarly,
a subset of JA-responsive defensive genes also displays a priming pattern in response to airborne
volatiles [144].

While GLVs [143], indole [145] and other VOCs [144] are better understood in their role in priming,
much less is known concerning the role of jasmonates during priming activation. JA itself can be
converted into several volatiles that serve roles in the priming response. One example of a JA-derived
volatile capable of inducing a priming response is the decarboxylated JA derivative, cis-jasmone.
When cis-jasmone is pre-applied to maize plants and incubated for 24 h, treated plants produced
greater VOC emissions rapidly after leafhopper (Cicadulina storeyi) infestation [146]. Treatment with
another volatile JA derivative, MeJA, induces ZmIGL [117], thus potentially indirectly signaling for
indole-mediated priming [145]. Curiously, multiple tests in several laboratories, including the groups
of Engelberth and Kolomiets, have failed to detect any measurable amounts of MeJA from maize,
suggesting that the inbred lines that were tested do not produce MeJA. It remains to be seen if other
maize lines or teosintes produce this volatile jasmonate.

13. JA in Maize Pathogen and Nematode Defense

JA-mediated defenses are the principle countermeasures against pathogens with a necrotrophic
lifestyle [147]. In maize, JA-deficient opr7opr8 mutants are not capable of surviving under field
conditions due to “damping-off” disease [45]. In that study, the major pathogen responsible for
“damping-off” in the diseased roots of opr7opr8 was identified to be Pythium aristosporum. Supporting
the genetic evidence that maize requires JA for immunity against P. aristosporum, exogenous application
of JA as a soil drench could rescue normal survival of the plants. Any study with opr7opr8 double
mutants requires the use of sterile soil to exclude the plants from soil-borne pathogens. JA is also
required for immunity against another common opportunistic soil-borne fungus, F. verticillioides,
as the opr7opr8 mutants succumb to mesocotyl inoculation as rapidly as 8 h post-infection by this
pathogen [76]. In another study, JA accumulation and JA biosynthetic gene induction correlated
with increased resistance against F. verticillioides stalk rot in a CO2-dependent manner [148]. A recent
genome-wide association study of maize infected by A. flavus identified the JA pathway as the most
impacted between resistant and susceptible genotypes [149]. To date, however, no genetic evidence
was reported that clearly determines the role of JA in either defense or potentially even benefiting the
pathogenicity of this important mycotoxin-producing fungus. In this regard, it is worthy to note that
the lox3 knockout mutant was more susceptible to A. flavus and possessed increased JA accumulation
in response to infection by this pathogen [150]. To unambiguously establish the role of JA in maize
interactions with A. flavus, the utilization of JA-deficient opr7opr8 [45] will be required. The male
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infertility defect of this double mutant will make this analysis technically challenging, as this pathogen
is a seed resident.

A potential mechanism for JA-mediated signaling in response to fungal pathogens is through
the peptide signal, ZmPEP1 [151]. In a pattern reminiscent of the interplay between the peptide
hormone, systemin and JA in tomato [152], exogenous ZmPEP1 and JA application induce each
other’s accumulation. ZmPEP1 treatment also induces HDMBOA-Glc accumulation and benzoxazinoid
biosynthetic genes. Pretreatment with ZmPEP1 increased resistance to fungal pathogens, C. heterostrophus
and Colletotrichum graminicola.

In contrast to the role of JA in defense, JA may also facilitate increased pathogenesis.
Elevated endogenous JA correlates with increased susceptibility to root-knot nematodes (Meloidogyne
incognita) infestation [77]. The lox3 mutant maize line, disrupted in the predominantly root-expressed
9-LOX, possessed more JA content in roots compared with WT maize seedlings [77]. Furthermore, lox3
mutant seedlings supported more root-knot nematode eggs compared to WT seedlings. Additionally,
lox3 mutants were more attractive to M. incognita juveniles than WT as determined by a six-arm root
olfactometer choice assay The elevated JA content corresponded to increased expression of the JA
biosynthetic genes, as well as the 10-OPEA producing ZmAOS2b, suggesting the suppression of the JA
pathway at the transcriptional level via ZmLOX3-mediated signaling. It will be of interest to determine
the role of 9-LOX-derived cyclopenta(e)nones during maize-nematode interactions. A definitive role
of JA in susceptibility to nematodes will require the creation of triple mutant lox3opr7opr8, but because
of male sterility and increased susceptibility of JA-deficient opr7opr8 to Pythium, it will be difficult
to maintain.

14. JA in Maize Symbiosis

Colonization of roots by beneficial microorganisms can instill beneficial traits upon the plant
host [153]. One of the most intriguing traits is induced systemic resistance (ISR) that primes the
plant for increased resistance against pathogens. This phenomenon is believed to rely on JA and
ET-mediated signaling in studied dicot species, but relatively little is known about the role of JA in
maize symbiosis compared to other plants. A JA role in the positive regulation of ISR in maize came
from a recent report showing that the JA-overproducing lox3 mutant display constitutively activated
ISR effective against multiple foliar and stem pathogens due to over production of as-yet unidentified
long distance signals found in xylem-enriched exudates [154]. Because lox3 mutant roots constitutively
overexpress all of the JA biosynthesis genes and produce elevated levels of JA in roots [77], it is likely
that JA and/or other jasmonates are responsible for the constitutively-active ISR displayed by lox3
mutant. Additional evidence for JA’s role in ISR signaling was obtained from the study of maize ISR
responses conferred by root colonization with bacterial symbiote Pseudomonas putida. Maize roots
inoculated with this beneficial bacterium were characterized by increased expression of jasmonic acid
biosynthesis genes and increased resistance against foliar pathogen, C. graminicola [155]. Interestingly,
priming by P. putida produced greater emissions of JA-induced aromatic volatiles and terpenes [156].

15. JA in Maize Growth, Development and Senescence

The strongest evidence for the role of JA in maize growth, development and senescence came
from the functional analyses of JA-deficient opr7opr8 double mutants. opr7opr8 mutants are defective
of total JA accumulation in young tissue [45]. Fitting with the role of JA in negatively regulating
plant vegetative growth [157], seedlings of opr7opr8 double mutants possess long coleoptiles, first leaf
sheathes and first and second leaf blades that displayed increased growth compared with WT seedling
tissues [158]. In addition to the increase growth in leaf-associated tissue seen in opr7opr8 mutants, an
increase in root lateral root length and density was also detected [158].

The most striking developmental effect of JA in maize is on the formation of the male reproductive
organ called the tassel [44,45]. Lack of JA in developing tassels of lox8 mutants (tasselseed1, ts-1) [44]
or opr7opr8 mutants failed to abort pistils in the developing florets [159], resulting in the so-called
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tasselseed mutant phenotype. While these mutants are capable of setting viable seeds when cross
pollinated, they are completely male sterile. Exogenous JA application was able to rescue the
defective masculinization of the male florets in both lox8 single [44], opr7opr8 double mutants [45]
and another related gene, tasselseed2 (ts2) [44]. TS2 was determined to encode a short-chain alcohol
dehydrogenase required for normal tassel masculinization, as well [160]. Subsequent reports list TS2
as a 3β/17β-hydroxysteroid dehydrogenase [161], with implications in linking JA-mediated signaling
with brassinosteroid-dependent tassel masculinization [162]. Unlike the mutation of the LOX8 gene,
which impacts JA production in the tassel, but not in other organs, likely due to redundancy in JA
producing LOXs (i.e., LOX7 and 9), opr7opr8 mutants are completely devoid of JA in many other organs
and possess additional reproductive developmental defects relating to the female sexual organ [45],
known as the ear. While WT maize plants only develop one to two ears upon sexual maturity, opr7opr8
double mutants initiate ear axillary buds at nearly every internode along the maize stem. Furthermore,
developing ears of opr7opr8 possess extremely elongated ear shoots three- to four-times the length of
WT. Similar to the chemical complementation rescue of normal tassel, treatment with JA successfully
restored the aberrant female sexual organ phenotype to normal.

Normal JA levels accelerate maize leaf senescence. The first and second leaf of double mutant
opr7opr8 seedlings had an increased lifespan compared to WT leaves. The senescence delay correlated
with decreased ethylene emissions, cis-zeatin 9-riboside production and abscisic acid accumulation in
opr7opr8 double mutants compared with WT [45].

16. JA in Maize Anthocyanin Pigmentation and Photomorphogenesis

JA signaling is necessary for anthocyanin pigmentation of maize brace roots and leaf auricle [45].
While brace roots and the leaf auricle of WT, opr7 and opr8 single mutants displayed a normal deep
red pigmentation due to prominent anthocyanin accumulation, brace roots of opr7opr8 did not display
any anthocyanin pigmentation and remained a yellow-green color [45]. The depigmented phenotype
of opr7opr8 was restored by exogenous JA application. The lack of anthocyanin correlated with
a decrease in expression of two anthocyanin biosynthetic genes, FLAVANONE 3-HYDROXYLASE
(F3H) and DIHYDROFLAVONOL REDUCTASE (A1). Both genes had nearly an eight-fold decrease
in expression in opr7opr8 double mutants compared with WT levels [45]. JA is required for maize
seedlings to experience normal light-induced development. When germinated and grown in darkness
for seven days, opr7opr8 double mutants grew longer mesocotyls and coleoptiles compared with
WT, indicative of exaggerated skotomorphogenesis [158]. However, when grown under continuous
red light (an external signal for photomorphogenesis) and compared to WT, opr7opr8 double mutant
continued to display longer mesocotyl and coleoptiles.

17. Maize Genes Regulated by JA

The best-characterized JA-dependent wound-responsive maize genes were determined from
a macroarray analysis comparing gene expression of opr7opr8 double mutant seedling leaves to WT
following mechanical damage [45]. Table 1 shows the genes that show clear dependence on intact
JA biosynthesis. We recommended the use of these genes as molecular markers for JA responsive
transcription. Primer sequences are available for probe construction or for semi-quantitative reverse
transcription polymerase chain reaction (semi-q RT-PCR) [45]. Primer sequences for qPCR analysis are
available for the lipoxygenase genes [67].
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Table 1. JA-dependent wound-responsive genes, adapted from [45].

Gene Gene annotation Gramene ID † GRMZM ID † Genbank † or
TIGR ID †

α,β-Unsaturated carbonyl detoxification

ZmOPR3 12-oxo-phytodienoic acid
reductase 3 Zm00001d037182 GRMZM2G156712 AY921640

ZmOPR4 12-oxo-phytodienoic acid
reductase 4 Zm00001d013493 N/A in RefGen_v3 AY921641

ZmOPR5 12-oxo-phytodienoic acid
reductase 5 Zm00001d003584 GRMZM2G087192 AY921642

Direct defense

ZmMIR1 maize insect resistance 1 (mir1)
cysteine proteinase Zm00001d036542 GRMZM2G150276 NM_001112101

ZmMPI proteinase inhibitor Zm00001d011080 GRMZM2G028393 X78988

Ethylene associated

ZmACS2 1-aminocyclopropane-1-carboxylate
synthase 2 Zm00001d002592 GRMZM2G164405 AY359569

ZmERF2 homologue to AtERF1 and 2 Zm00001d002762 GRMZM2G055180 NM_001158578
ZmERF6 homologue to AtERF1 and 2 Zm00001d034920 GRMZM2G381441 NM_001176924

Flavonoid metabolism

ZmF3H flavanone 3-hydroxylase Zm00001d001960 GRMZM2G062396 NM_001112225

Lipase

ZmPLC phospholipase C Zm00001d014903 GRMZM5G889467 NM_001111784

Oxylipin biosynthesis

ZmLOX3 lipoxygenase 3 Zm00001d033623 GRMZM2G109130 AF329371
ZmLOX4 lipoxygenase 4 Zm00001d033624 GRMZM2G109056 DQ335762
ZmLOX5 lipoxygenase 5 Zm00001d013493 GRMZM2G102760 DQ335763
ZmLOX6 lipoxygenase 6 Zm00001d002000 GRMZM2G040095 DQ335764
ZmLOX9 lipoxygenase 9 Zm00001d027893 GRMZM2G017616 DQ335767

ZmLOX10 lipoxygenase 10 Zm00001d053675 GRMZM2G015419 DQ335768
ZmLOX11 lipoxygenase 11 Zm00001d015852 GRMZM2G009479 DQ335769
ZmAOS2a allene oxide synthase 2a Zm00001d028282 GRMZM2G002178
ZmAOS2b allene oxide synthase 2b Zm00001d048021 GRMZM2G067225 AY488135

Transcription factors

ZmMYC2a homologue to AtMYC2 Zm00001d007536 GRMZM2G303463
ZmWRKY14 WRKY transcription factor 14 Zm00001d043569 GRMZM2G040298 EU973705
ZmWRKY46 WRKY transcription factor 46 Zm00001d052357 GRMZM2G063216 EU956406

Repressors of JA signaling

ZmJAZ1 ZIM domain containing protein Zm00001d026477 GRMZM2G143402 NM_001156069
ZmJAZ3 ZIM domain containing protein Zm00001d048268 GRMZM2G036288 NM_001157436
ZmJAZ4 ZIM domain containing protein Zm00001d027899 GRMZM2G343157 NM_001157673
ZmJAZ5 ZIM domain containing protein Zm00001d027901 GRMZM2G445634 NM_001156053
ZmJAZ6 ZIM domain containing protein Zm00001d048263 GRMZM2G036351 NM_001157328
ZmJAZ7 ZIM domain containing protein Zm00001d014253 GRMZM2G173596 NM_001159100
ZmJAZ8 ZIM domain containing protein Zm00001d033050 GRMZM2G145412 EU970040
ZmJAZ10 ZIM domain containing protein Zm00001d020614 GRMZM2G116614 AZM5_3798
ZmJAZ11 ZIM domain containing protein Zm00001d006860 GRMZM2G101769 AZM5_1941
ZmJAZ12 ZIM domain containing protein Zm00001d027900 GRMZM5G838098 NM_001154831
ZmJAZ19 ZIM domain containing protein Zm00001d036494 GRMZM2G080509 AZM5_87469
† Database information: Gramene (http://www.gramene.org/), GRMZM (Maize Genetics and Genomics
Database, https://www.maizegdb.org/), Genbank (https://www.ncbi.nlm.nih.gov/genbank/), TIGR
(The TIGR Maize Database, http://maize.jcvi.org/).

18. Conclusions

Given that monocots contribute, either directly or indirectly, to a substantial proportion of calories
for humans and the growing interests in utilizing monocots as a renewable fuel alternative, it is
crucial to improve monocot yield through environmentally-conscientious practices. Fine-tuning of
phytohormone signaling can provide an avenue for this improvement, but many more studies are
required to provide a comprehensive understanding of hormone biology in monocots. Generating
a level of understanding comparable to dicot models for the biosynthesis, signaling and function of

http://www.gramene.org/
https://www.maizegdb.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://maize.jcvi.org/
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jasmonates in maize (and other monocots) will require a coalition of multiple research teams with
diverse expertise. While not covered in this review, recent studies with Arabidopsis suggests that
various jasmonates and their derivatives have their own independent roles in multiple physiological
processes [15,157,158]. Additionally, many of these JA derivatizations are under enzymatic control,
and orthologous for the genes involved are found in the maize genome. Together, this suggests that
plant responses to JA are under a tight regulation via conversion of one jasmonate species to another.
Another point that requires more investigation is the cross-talk between 9-oxylipins and JA production.
This complexity that is emerging in JA biology resembles the intricacies found in mammalian systems.
It is reasonable to expect that in the near future, other plant oxylipins will take their place alongside JA
as recognized phytohormones.
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