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Abstract: Understanding the impact of the warming trend on phenological stages and phases of
cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop
management practices to enhance production. This study determined the influence of the thermal
trend on cotton phenology from 1980–2015 in 15 selected locations. The results demonstrated that
observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological
maturity (M) occurred earlier by, on average, 5.35, 5.08, 2.87 and 1.12 days decade−1, respectively.
Phenological phases, sowing anthesis (S-A), anthesis to maturity (A-M) and sowing to maturity
(S-M) were reduced by, on average, 2.45, 1.76 and 4.23 days decade−1, respectively. Observed
sowing, emergence, anthesis and maturity were negatively correlated with air temperature by,
on average, −2.03, −1.93, −1.09 and −0.42 days ◦C−1, respectively. Observed sowing-anthesis,
anthesis to maturity and sowing-maturity were also negatively correlated with temperature by,
on average, −0.94, −0.67 and −1.61 days ◦C−1, respectively. Applying the cropping system
model CSM-CROPGRO-Cotton model using a standard variety in all locations indicated that the
model-predicted phenology accelerated more due to warming trends than field-observed phenology.
However, 30.21% of the harmful influence of the thermal trend was compensated as a result of
introducing new cotton cultivars with higher growing degree day (thermal time) requirements.
Therefore, new cotton cultivars which have higher thermal times and are high temperature tolerant
should be evolved.
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1. Introduction

Cotton (Gossypium hirsutum L.) is known as “White-Gold” and is a most important fiber, oilseed
and cash crop in Pakistan. It accounts for 1.5% of the gross domestic product GDP and 7.1% of the
agricultural economy of Pakistan. The cotton cultivated area, total production bales and yield ha−1

were 2.96 million ha, 13.91 million bales and 802 kg·ha−1, respectively [1]. Nevertheless, a study
showing the adverse effects of climate warming on the phenological stages and phases of cotton was
carried out in Punjab, Pakistan. Cotton growth and development are highly impacted due to biotic as
well as abiotic stresses. From these stresses, the elevated mean temperature is the major environmental
factor which harmfully reduces cotton yield and quality [2–8].

Climate change has negatively impacted agricultural production and ecological systems of
developed and developing countries, which has been demonstrated in various current worldwide
climate change studies [9]. A recent Intergovernmental Panel on Climate Change IPCC report indicated
that in mostly Asian countries, the integer of cold days as well as nights has been reduced, while the
integer of hot days as well as nights and the heat wave frequency has been increased due to the warming
trend since about 1950. The mean temperature at the global level has increased by 0.85 ◦C since the
industrial revolution. The decade of the 2000s was the warmest decade compared previous decades and
2014 was the warmest year compared to past years [9]. Similarly, in Punjab, Pakistan, a warming trend
has been indicated for the period of the previous three decades and predominantly in the 2000s [10,11].

Phenological stages as well as phases of any crop are affected by changes in weather conditions
and crop management practices, which are comprised of sowing times and variety assortments [12–14].
Constant variations in sowing times and the growing of new introduced varieties have made it difficult
to measure the long-standing response of the phenology of a crop towards the thermal trend [15–19].
The crops’ growth and developmental rate are accelerating in most climatic conditions due to the
increasing warming trend due to climate change. Temperature is the most important factor which
influences the crop development rate throughout the whole crop lifecycle and ultimately affects
the biological and economical yield [20,21]. Consequently, we must be aware of the phenological
response of a crop because of changes in the local mean temperature in order to be capable of
developing excellent adaptation strategies, for example better agronomic management practices
and improved new introduced cultivars that can compensate for the potential harmful impact of
the warming trend [22–24]. Crop phenological phases are reduced due to the advancement in the
phenological stages due to the warming trend. This negative impact on the crop phenology can
be reduced by adopting newly introduced cultivars with higher growing degree day requirements
and early sowing dates [24–27]. The relationship between natural changes in the crop environment,
agronomical management practices, and the shifting of cultivars cannot be clarified by statistical
models as a result of the perplexing collaboration between hereditary qualities, environment, and
management. Nevertheless, the utilization of processed-based crop growth models, for example
Decision Support System for Agrotechnology Transfer DSSAT and please define, etc., can clarify
some of these multifaceted interactions [28–33] by permitting scientists to analyze either the effects of
a solitary variable at once or the associations among different factors [34,35].

The purposes of this research were (1) to inspect the observed trends of the stages and phases of
cotton phenology from 1980 to 2015 in central and lower Punjab, Pakistan; (2) to correlate the observed
phenological stages and calculated phases with temperature trends for the same time period; and (3) to
recognize the interrelated impact of warming trends and agronomical management practices on the
phenology of the cotton crop.

2. Results

2.1. Temperature Trend

The thermal trend of the environment was observed in the phenological phases of cotton in all
15 chosen locations in central and lower Punjab, Pakistan, for the duration of 1980 to 2015 (Figure 1).
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The observed air temperature increasing trend all through the phenological phases which included
S-A, S-M and A-M ranged from 0.52–0.86, 0.72–1.05 and 0.56–0.99 ◦C decade−1, respectively (Figure 2).
Overall, the average enhanced temperature values were 0.73, 0.89 and 0.81 ◦C decade−1 throughout
S-A, S-M and A-M, respectively, in 15 locations in upper and lower Punjab.
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Figure 1. Mean total temperature during the cotton growing season from 1980 to 2015 at 15 sites in 
Punjab, Pakistan. 
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Figure 1. Mean total temperature during the cotton growing season from 1980 to 2015 at 15 sites in
Punjab, Pakistan.

2.2. Spatial and Temporal Changes in Phenological Stages of Cotton

Usually, sowing of the cotton crop is done in mid-April to mid-June in central and lower Punjab,
Pakistan. The sowing dates of cotton were earlier during 1980 to 2015 in all 15 locations (Table 1).
The field-observed range of earliness in the sowing dates of cotton was between 2.80 to 7.40 days
decade−1 and, on average, the sowing date was 5.35 days decade−1 earlier. This earliness of the
sowing dates was statistically significant (p < 0.05) at 13 locations and non-significant (p > 0.05) at two
locations. Earliness in emergence dates was observed at all locations and the range of 2.66 to 7.03 days
decade−1 for emergence dates was observed. However, on average, 5.08 days decade−1 were observed
in the earliness of the emergence dates (Figure 3). Earliness in the emergence date was significant at
13 locations and non-significant at two locations.

Table 1. Average observed phenology of cotton in Punjab, Pakistan, during the period of 1980–2015.

Districts Sowing DOY EmergenceDOY Anthesis a DOY Maturity b DOY

Toba Tek Singh 119 ± 7.0 124 ± 6.4 190 ± 5.4 274 ± 9.3
Jhang 121 ± 6.2 126 ± 5.7 188 ± 3.5 281 ± 7.3
Okara 128 ± 5.7 133 ± 5.3 191 ± 7.2 273 ± 5.4

Sahiwal 123 ± 7.2 128 ± 6.9 182 ± 6.1 278 ± 8.3
Pakpattan 130 ± 5.2 135 ± 5.0 189 ± 5.9 270 ± 7.8

Multan 120 ± 4.3 125 ± 4.1 191 ± 7.2 281 ± 6.7
Khanewal 125 ± 5.0 130 ± 4.8 193 ± 8.4 276 ± 5.5

Vehari 128 ± 6.7 133 ± 6.2 197 ± 9.2 285 ± 7.2
Lodhran 125 ± 4.4 130 ± 4.1 189 ± 6.2 278 ± 8.1

Bahawalnagar 131 ± 3.8 136 ± 3.5 192 ± 8.1 272 ± 9.5
Bahawalpur 130 ± 5.1 135 ± 4.5 187 ± 4.9 282 ± 8.5

DG Khan 126 ± 4.2 131 ± 3.9 183 ± 5.8 276 ± 6.7
Rajanpur 122 ± 6.9 127 ± 6.3 190 ± 7.3 280 ± 7.6

Muzaffargarh 127 ± 5.2 132 ± 4.7 194 ± 6.1 276 ± 7.1
Rahim Yar Khan 123 ± 4.8 128 ± 3.9 197 ± 6.8 270 ± 8.6

a 50% Anthesis; b 90% Physiological maturity; DOY = Day of year.
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Figure 3. Observed trends in phenological stages of cotton sown from 1980 to 2015 in Punjab, 
Pakistan; (a) sowing; (b) emergence; (c) anthesis and (d) maturity. Circles with black border indicate 
statistically significant trends at p = 0.05 probability level. 
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was significant by statistical calculations at 11 locations and non-significant at four locations. The 
physiological maturity (90% open bolls) date was also advanced at all 15 locations, which ranged 
from 0.50 to 1.90 days decade−1. On average, the cotton physiological maturity date was advanced by 
1.12 days decade−1. Advancement in the maturity date was significant at 14 locations and 
non-significant at one location.  
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Figure 3. Observed trends in phenological stages of cotton sown from 1980 to 2015 in Punjab, Pakistan;
(a) sowing; (b) emergence; (c) anthesis and (d) maturity. Circles with black border indicate statistically
significant trends at p = 0.05 probability level.

Anthesis (50% flowering) of cotton in central and lower Punjab, Pakistan, usually starts in June
to September (Figure 4). Anthesis dates were advanced, ranging from 1.20 to 4.10 days decade−1 at
all locations. The average advancement in the anthesis date was −2.87 days decade−1. The anthesis
date was significant by statistical calculations at 11 locations and non-significant at four locations.
The physiological maturity (90% open bolls) date was also advanced at all 15 locations, which
ranged from 0.50 to 1.90 days decade−1. On average, the cotton physiological maturity date was
advanced by 1.12 days decade−1. Advancement in the maturity date was significant at 14 locations
and non-significant at one location.
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Figure 4. Time series plots of observed dates of onset of phenological stages (sowing, emergence,
anthesis and maturity) for cotton from 1980 to 2015 in Punjab, Pakistan.
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2.3. Spatial and Temporal Changes in Phenological Phases of Cotton

The impact of the thermal trend on the cotton crop phenological phases is represented by
Figure 5. The cotton crop duration from sowing to physiological maturity was reduced, ranging
from 2.30 to 5.66 days decade−1 due to the earliness of sowing and physiological maturity. On average,
the sowing-to-maturity phenological phase was reduced by 4.23 days decade−1. The reduction
of the growth duration was statistically significant at 13 locations and non-significant at two
locations. The sowing-to-anthesis phase was decreased from the range of 1.02 to 3.30 days decade−1

at the locations, which was statistically significant at 12 locations and non-significant at three
locations. On average, the reduction in the sowing-to-anthesis phase was 2.45 days decade−1.
The anthesis-to–physiological maturity phase was decreased 1.76 days decade−1 on average, ranging
from 0.70 to 2.36 days decade−1, which was statistically significant at 11 locations and non-significant
at four locations.

Plants 2017, 6, 7 6 of 16 

2.3. Spatial and Temporal Changes in Phenological Phases of Cotton 

The impact of the thermal trend on the cotton crop phenological phases is represented by Figure 
5. The cotton crop duration from sowing to physiological maturity was reduced, ranging from 2.30 to 
5.66 days decade−1 due to the earliness of sowing and physiological maturity. On average, the 
sowing-to-maturity phenological phase was reduced by 4.23 days decade−1. The reduction of the 
growth duration was statistically significant at 13 locations and non-significant at two locations. The 
sowing-to-anthesis phase was decreased from the range of 1.02 to 3.30 days decade−1 at the locations, 
which was statistically significant at 12 locations and non-significant at three locations. On average, the 
reduction in the sowing-to-anthesis phase was 2.45 days decade−1. The anthesis-to–physiological 
maturity phase was decreased 1.76 days decade−1 on average, ranging from 0.70 to 2.36 days decade−1, 
which was statistically significant at 11 locations and non-significant at four locations.  

 
Figure 5. Observed trends in the length of phenological phases for cotton from 1980 to 2015 in 
Punjab, Pakistan: (a) sowing−anthesis; (b) anthesis−maturity; and (c) sowing−maturity. Circles with 
black border indicate statistically significant trend at p = 0.05 probability level. 
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2.4. Spatial and Temporal Changes in Thermal Characteristics for Cotton Cultivars

For the cotton cultivars, the total growing degree day requirement from the sowing to anthesis
phase was enhanced at all 15 locations, ranging from 53 to 95 ◦C d decade−1 with an average value of
76 ◦C d decade−1. However, this increase was significant at 10 locations and non-significant at five
locations (Figure 6). Similarly, the thermal time requisite for the phenological phase of anthesis to
physiological maturity was also increased, ranging from 66 to 102 ◦C d decade−1 and 85 ◦C d decade−1

on average. This total thermal time requirement enhancement was significant by statistical analysis at
12 locations and non-significant at three locations.
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2.5. Correlation of Observed Phenology to Air Temperature

The regression coefficient of the field-observed phenological stages and phases with the
temperature is shown in Table 2 and Figure 7. Negative relationships of sowing dates were obtained
with the air temperature at all 15 locations, which were, on average, −2.03 days ◦C−1 and ranged
from −1.06 to −2.81 days ◦C−1 (significant at 13 and non-significant at two locations). Emergence
dates were also negatively correlated with the thermal trend, which ranged in value from −1.01 to
2.67 days ◦C−1 (significant at 13 and non-significant at two locations) and were −1.93 days ◦C−1 on
average. The negative correlation of anthesis with the temperature was obtained, ranging from −0.46
to −1.56 days ◦C−1 and, on average, −1.09 days ◦C−1, which was significant and non-significant by
statistical analysis at 11 and four locations, respectively. Physiological maturity was also negatively
correlated with the air temperature by an average of −0.42 days ◦C−1 and advanced in the range of
−0.19 to −0.72 days ◦C−1 (significant at 14 and non-significant at one location). A negative correlation
of the sowing to anthesis phenological phase with the temperature was obtained in the range of
−0.39 to −1.32 days ◦C−1 (significant at 12 and non-significant at three locations) and, on average,
−0.94 days ◦C−1. Advancement of the sowing to the physiological maturity phase was done by,
on average, −1.61 days ◦C−1 and ranged from −0.87 to −2.15 days ◦C−1, which was at 13 locations
and non-significant at two locations. A negative correlation of the anthesis to maturity phase with the
warming trend was observed, which ranged from −0.27 to −0.90 days ◦C−1 (significant at 11 locations
and non-significant at four locations) and was −0.67 days ◦C−1 on average.
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Table 2. Summary of observed and simulated phenology response to temperature for cotton in Punjab,
Pakistan, for 1980–2015.

Phenology No. neg. a No. pos. b No. sig. neg. c No. sig. pos. d Reg. Mean e (days ◦C−1)

Cotton stages and phases (observed)

Sowing 15 0 13 0 −2.03
Emergence 15 0 13 0 −1.93

Anthesis 15 0 11 0 −1.09
Maturity 15 0 14 0 −0.42

Sowing-Anthesis 15 0 12 0 −0.94
Anthesis-Maturity 15 0 11 0 −0.67
Sowing-Maturity 15 0 13 0 −1.61

Cotton phases (simulated)

Sowing-Anthesis 15 0 14 0 −1.42
Anthesis-Maturity 15 0 13 0 −1.06
Sowing-Maturity 15 0 14 0 −1.97

a Number of locations with negative regression coefficients; b Number of locations with positive regression
coefficients; c Number of locations with significant negative regression coefficients; d Number of locations with
significant positive regression coefficients; e Mean of regression coefficients.
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2.6. Correlation of Simulated Phenology to Air Temperature

Negative relationships among the CSM-CROPGRO-Cotton model simulated three phenological
phases and the warming trend was acquired, which is represented by Table 2 and Figure 7.
The sowing-to-anthesis phase was advanced by a mean of −1.42 days ◦C−1 and the values ranged
from −0.75 to −2.08 days ◦C−1, which was statistically significant at 14 locations. Advancement of
the anthesis to the physiological maturity phase ranged from −0.50 to −2.25 days ◦C−1, which was
significant at 13 locations and non-significant at two locations, with −1.06 days ◦C−1 on average.
The cotton duration (sowing-to–physiological maturity phase) was shortened by an average of
−1.97 days ◦C−1 and the values ranged from −1.21 to −2.50 days ◦C−1 (statistically significant at
14 locations and non-significant at one location).
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2.7. Model-Predicted and Observed Phenology

The relationship of the correlation of the observed and simulated cotton phenological phases with
the air temperature is revealed in Table 3. Temperature sensitivity was higher for the model-predicted
phenological phases in contrast to field-recorded phenological phase values. Differences among
the model-simulated and field-observed recorded data for S-A, S-M and A-M were 0.48, 0.36 and
0.39 days ◦C−1, respectively, which was statistically significant. The difference in the model-predicted
and observed data regarding the cotton phenological phases indicated that the various latest
approved/recommended cotton varieties grown by farmers during 1980 to 2015 have higher degree
days requirements.

Table 3. Comparison of the responses of cotton phenology with average temperature using the observed
and simulated data in Punjab, Pakistan, during 1980–2015.

Phenology
(Phases)

Regression Coefficient a (days ◦C−1) Difference between obs. and sim.
Regression Correlations (Days ◦C−1)

t-Test (p-Value)
Observed Data Simulated Data

Sowing-Anthesis −0.94 −1.42 0.48 0.0012 **
Anthesis-Maturity −0.67 −1.06 0.39 0.0053 **
Sowing-Maturity −1.61 −1.97 0.36 0.0021 **

a Mean of regression coefficients; Obs. = observed; Sim. = simulated; ** Significant at the 0.01 probability level.

3. Discussion

Climate warming had an enormous influence on the phenology of agricultural crops in several
regions. The field-recorded changes in the cotton phenological stages and phases in central and
lower Punjab, Pakistan, between 1980 and 2015 were possibly caused by the increase in temperature.
Nevertheless, other integrated crop management decisions were the changeability in sowing times
and the assortment of newly introduced cultivars [36,37] which had a superior total thermal time (total
growing degree days) requirement. The latest introduced cultivars and sowing times are, in general,
determined through the local agriculturist community, whose preferences regarding varieties and
sowing times are adapted in response to the climatic warming tendency in central and lower Punjab,
Pakistan. Nonetheless, the precipitation and residual soil moisture for the period of the crop-growing
months could also impact the sowing time assessment along with the nutrient uptake by the crops
in this region. The earliness of the emergence, anthesis, and maturity (picking) times was due to
the earliness of the cotton sowing time. However, certain phenological trends were a result of the
distinction in observed thermal trends. On average, the earliness in the sowing and emergence dates
of cotton was 5.35 and 5.08 days decade−1, respectively, while the advancement of the anthesis and
maturity dates was 2.87 and 1.12 days decade−1, respectively.

Plant breeding and genetics scientists continuously develop new heat-tolerant cultivars through
various breeding techniques that are introduced to the local farmer community subsequent to
extensive evaluation [25,38–40]. Frequently, these newly cultivars are adapted for local core and
non-core cotton area growing conditions, including observed thermal trends. Researchers also have
reported innovative phenological characteristics (heat tolerant and climate smart) in improved cotton
cultivars [26,35]. In this investigation, the researchers determined the separate influence of the growth
of newly introduced cultivars for the 15 selected locations from the field-observed changes through
the simulation of the phenology of cotton by means of the same cultivar for the interval of the
research period. This crop growth model simulation allowed for the separation of the relations of the
temperature and the improved heat-tolerant varietal response [41]. The heat sensitivity of the model
simulations was superior as compares to the field-observed phenological data, demonstrating that
about 30.21% (Table 3) of the direct negative influence of the warming tendency was mitigated with
the evolution of new cotton cultivars that require more photo-thermal time to achieve the various
phenological stages in an optimal time [2]. An analogous trend of introducing the latest cultivars
which are adapted to a thermal trend was established for other agricultural crops around the world,
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for example maize in various regions of the USA, and rice and winter wheat in China [35,42]. If the
whole duration of the lifecycle of crop varieties is shorter, then as a result, there is a lessening of crop
biological and economical yield as a consequence of the lesser time for total dry matter accumulation
for the duration of the vegetative segment, chiefly for the highest-input agricultural crops [2,43,44].
As a consequence, the agricultural community chooses newly introduced cultivars, which have higher
thermal time requirements for the compensation of the negative effect of the thermal trend on the
cotton phenology [35,45].

Crop physiological growth procedures are impacted by temperature, which has a direct impact on
the length of the phenological phases and, consequently, affects the ultimate biological and economic
yield of cotton [4–6,8,46,47]. Whole dry matter accumulation is decreased with the earliness of the
anthesis and physiological maturity time due to a mean temperature increasing trend, as a result
reducing the crop yield [21]. In numerous regions of the globe, the yield of an assortment of crops
has been improved due to a longer reproductive phase (A-M) caused by earliness in flowering and a
delayed physiological maturity time [4,42,48,49].

Day and night mean temperatures are forecasted to increase in the future as compared to
the precedent climatic situation [9]. At the ending of the 21st century, the average temperature
is predicted to rise by 2 to 3 ◦C on the basis of Representative Concentration Pathways RCPs
scenarios in Punjab, Pakistan [23]. Moreover, relentless events, for instance heat strokes due to
extreme temperature, extreme rainfalls, floods and droughts, are forecasted to be more frequent
as well, also potentially negatively impacting agricultural production [50,51]. The phenological
crop phases possibly will be potentially reduced for the period of the upcoming decades if the
warming trends persist, whereas, at the same time, in temperate and semi-arid regions with high
mean temperatures there is also the potential for crop durations to increase if the temperatures are
above the cardinal temperatures [24,34,52,53]. As a consequence, the introduction and growth of
new heat-resistant cultivars with higher growing degree day (total thermal time) requirements, high
temperature tolerance, as well as sowing time adjustments are imperative for mitigation of the harmful
impacts of climate change in Punjab, Pakistan [19], and other states across the globe.

4. Materials and Methods

4.1. Description of Site, Weather, Cotton Management and Phenological Data

Fifteen locations in the conventional cotton zone in Punjab (Figure 8), Pakistan were selected for
this study along with 36 years observed weather data were collected from 1980 to 2015 from Pakistan
Meteorological Department (PMD), Islamabad. The cotton phenological stages data comprising of
sowing, emergence, anthesis (50% flowering) and maturity (90% bolls open) dates were collected from
extension wing of Department of Agriculture, Government of Punjab, Pakistan for 15 selected locations.
With the assist of these recorded observed phenological stages data, three phenological phases data of
cotton crop including S-A, A-M and S-M were determined. Cotton crop management practices were
decided by the farming community, and varieties being grown by the framers of selected locations are
presented in Table 4. While, other management practices that vary among the farming community;
included sowing dates, seed rates, sowing methods, fertilizer amounts, types and application dates,
irrigation regimes, methods and application dates, etc. The new cotton variety was being grown by
the farming community subsequent to each six to eight years (on an average nine varieties per selected
location) and variety selection criteria was higher growing degree day’s requirement. The newly
evolved varieties by the breeders were grown by the local farmers on the advice of extension workers.
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Table 4. Cotton cultivars in all locations during 1980–2015.

Sr. No. Site Name Cultivars

1 Toba Tek Singh CIM-506a, FH-901e, FDH-228b, CYTO-124, BH-3297, B-803, MNH-552, IR-1524
2 Jhang CIM-499a, CIM-446e, MS-240, Sitara-005, SLH-8, FH-685, BH-100a, NS-141
3 Okara CIM-534c, CIM-554e, IR-1274, MNH-998, FH-901, CIM-110, CIM-435, CIM-602
4 Sahiwal NIAB-111c, CIM-473d, GN-1532, CEMB-66, B-896, CIM-70, B-622, FVH-55
5 Pakpattan BH-160e, MNH-786a, CIM-109, NIBGE-901, AGC-777, NIBGE-6, FS-631, CIM-240
6 Multan IR-3701, CIM-240, CIM-1100, NIBGE-2d, AGC-999, CIM-109, B-820, BH-118
7 Khanewal MG-6, NIAB-846d, CIM-707, Sitara-12, NIAB-2008e, S-12, MNH-554, FVH-57
8 Vehari Sitara-008, NIAB-777d, CIM-600, FH-142, TCD-3, CIM-482a, MNH-93, VH-259
9 Lodhran FH-113, CRSM-38d, TS-103, CYTO-177, FH-628b, FH-87, FH-657, MNH-516
10 Bahawalnagar Neelam-121c, AH-151d, Tarzan-3, B-842, CIM-465c, RH-500, SLS-1, Tarzan-1
11 Bahawalpur Ali Akbar-802, S-14 , MNH-786a, Leader-1, FDH-170b, NIAB-78, B-821, NIAB-26
12 DG Khan IR-1524, NIBGE-1e, VH-305, FH-113, TSR-2375, Karishma, CIM-467, VH-137
13 Rajanpur GN-2085, NIAB-846e, IUB-13, MS-240, MNH-465, BH-95, FH-649, MNH-536
14 Muzaffargarh CIM-496c, Desi Ravib, FH-Lalazar, 149-F, S-12, FH-629, MVH-518, VS-135
15 Rahim Yar Khan Ali Akbar-703, FDH-170b, AC-134, MM-58, CIM-448a, B-803, FVH-49, NIAB-846

Sr. No. = Serial number; a = American cultivar; b = local cultivars; c = short duration; d = medium duration;
e = heat tolerant.
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4.2. Analysis of Observed Data

Relationship between observed phenological stages and phases’ data of cotton crop with average
temperature was determined with the help of linear regression equation, in which year was used as
independent variable. With the assist of maximum phenological stages at each location, windows for
warming trends were gained. For instance, time window for any phenological phase like S-M was
from the earlier sowing date to the most recent physiological maturity for the period of last years at
each location. In this procedure, the measured warming trend was independent from the corresponded
phenological stages and phases variations.

Correlation of phenological with average temperature of month for the period of month of
happening of phenological stages was determined to assess that whether mean monthly temperature
influence on phenological stages. Subsequent linear regression equation was used to determine the
influence of temperature on cotton crop phenology:

OPnt = antTnt + bnt + εnt (1)
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In Equation (1), observed phenological phases (days) or stages (DOY; day of year) are represented
by ‘OPnt’ for corresponding nth agricultural weather station or location in respective t year.
‘Tnt’ represents to average daily temperature in centigrade during the relevant phenological stage
or phase for particular stations in t year. Regression coefficient (days ◦C−1) of phenological stage
or phase responding to temperature is represented by ‘ant’ variable. Variables ‘bnt’ and ‘∈nt’ stand
for intercept and error term for each particular station, respectively. Cotton phenological stages and
phases responding to temperature and agronomic management variations are considered by regression
coefficient (ant).

4.3. CSM-CROPGRO-Cotton Model Descriptions

CSM-CROPGRO-Cotton model was used to isolate outcome of cultivar, management and
temperature from the climate warming on phenology changes in cotton phenological stages and phases
in fifteen locations. The observed data were compared to simulated data sets. CSM-CROPGRO-Cotton
model was calibrated and validated for fifteen locations. Thus total fifteen varieties were calibrated
and evaluated. The most commonly grown variety for in a particular location was identified and used
for model simulations. After that 1980 to 1982 observed data were used for model calibration and 1983
to 1985 for model validation. Then validated model was applied to simulate the A and M dates for
individual location using historical weather data for 1980–2015. The CSM-CROPGRO-Cotton model
needed following files for simulation runs; (1) weather file (FILE.WTH) with daily solar radiation,
maximum air temperature, minimum air temperature, and precipitation; (2) soil file having soil
physical and chemical properties; (3) crop management file and (4) genetic coefficients file. DSSAT
version 4.6 was used for the purpose of this research study [54,55]. The detailed information can be
found in earlier publications [19,56].

4.4. Phenology Simulation with CSM-CROPGRO-Cotton Model and Calculation of Growing Degree Days

The CSM-CROPGRO-Cotton model was employed for simulation of cotton phenology (stages and
phases) based on cumulative degree days (GDDs) and crop variety particular GDDs demand for every
developmental stage. Photoperiod sensitivity effect the phenology before anthesis. Total accumulation
of growing degree days for phenological phases S-A and A-M is measured by following formula:

ATT = ∑n
i = 1 DTT (2)

In this equation, accumulated thermal time (ATT) per day is represented by daily thermal time
(DTT) and n represents to number of days of crop phenology.

With the help of only one cultivar and keeping similar crop management practices during the
years, crop phenological stages and phases were simulated to determine the separate influence of
agronomic management practices, variety and temperature on crop phenology. Crop phenology such as
anthesis, physiological maturity dates and sowing to maturity phase were predicted from 1980 to 2015
in all selected fifteen locations in upper and lower Punjab, Pakistan. Only one, mostly grown cultivar
during 1980–1982 at every location was used for the purpose of calibration of CSM-CROPGRO-Cotton
model. Thus, for overall calibration of CSM-CROPGRO-Cotton model at various 15 selected locations,
total 15 cultivars were used. After this, crop phenological observed data from 1983 to 1985 was used for
the purpose of validation of DSSAT CSM-CROPGRO-Cotton model. Then, crop model was employed
to predict crop phenological stages and phases during 1980 to 2015 with the help of same variety
and agronomic management practices at every year. Influence of temperature on simulated crop
phenological phases such as S-A, A-M, and S-M was determined by linear regression analysis:

SPnt = CntTnt + dnt + εnt (3)

In Equation (3), simulated phenological phases (days) or an event (day of year) is represented by
‘SPnt’ for corresponding nth agricultural weather station or location in respective t year. ‘Tnt’ represents
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to average daily phenological phase temperature in centigrade during the relevant phenological phase
for particular stations in t year. Regression coefficient (days ◦C−1) of phenological phase responding
to temperature is represented by ‘cnt’ variable. Variables ‘dnt’ and ‘∈nt’ stand for intercept and error
term for each particular location, respectively. Cotton predicted phenological phases responding to
temperature and agronomic management variations are considered by regression coefficient (cnt).
Crop management data including; varieties, sowing dates, seed rates, amount and time of irrigation
and method of application, amount and time of fertilizer, organic amendment, tillage and chemical
applications commonly used by farming community of each location. Historical weather data and soil
physico-chemical properties data were obtained from each location. All data about crop management,
weather and soil data were input in CSM-CROPGRO-cotton model for calibration, evaluation and
its application.

Comparison between models predicted and observed crop phenological stages such as anthesis
and physiological maturity dates in years (1983–1985) of model validation at 15 locations is shown in
Figure 9. The performance of CSM-CROPGRO-Cotton model was good as model simulated anthesis
and physiological maturity dates well matched with observed phenology data (slope = 0.87, R2 = 0.84,
p < 0.01) and (slope = 0.85, R2 = 0.83, p < 0.01), respectively (Figure 9).
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4.5. Difference among Observing and Simulating Crop Phenological Respond to Temperature

In Equation (1), variable ant is regression coefficient which shows the respond of crop phenology
to variety change, planting date and temperature. While in Equation (3), only effect of temperature
on simulated crop phenology is reflected by variable cnt regression coefficient. If the difference
(ant − cnt) between regression coefficients is showed by negative value, then it means that local farming
community grown short duration varieties in last years. If difference is positive then it point out that
local farmers changed to longer thermal time requirement cultivars during last decades. Paired t-test
was applied to determine the significance difference between regression coefficients.

5. Conclusions

The warming trend caused the changes in the field-observed phenological stages and phases of
the cotton crop in Punjab, Pakistan, for the duration of 1980 to 2015 at 15 cotton-growing locations.
Observed phenological stages S, E, A, and M occurred earlier by an average of 5.35, 5.08, 2.87 and
1.12 days decade−1, respectively. Observed S, E, A, and M were negatively correlated with the air
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temperature by an average of −2.03, −1.93, −1.09 and −0.42 days ◦C−1, respectively. The negative
influence of the warming trend was partially diminished by the adaptation of growing new evolved
cultivars with higher heat accumulation or growing degree day requirements. Approximately one-third
of the negative impact of the enhanced temperature on the phenology of cotton was compensated for
with the help of evolving new cultivars with higher total growing degree day requirements.
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