Supplementary Materials: Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

Dilek Killi and Matthew Haworth

 Table S1: Chlorophyll a fluorescence parameters and formulas used in the fluorescence transient analysis.

Parameters	Formulas and Definition
Fo	Minimal fluorescence from a dark-adapted leaf
Fm	Maximal fluorescence from a dark-adapted leaf
$\mathbf{F_v}$	Maximal variable fluorescence from a dark-adapted leaf. $F_v = F_m - F_o$
\mathbf{V}_{J}	Relative variable fluorescence at 3 ms. $V_J = (F_{2 ms} - F_0)/(F_m - F_0)$
VI	Relative variable fluorescence at 30 ms. $V_I = (F_{30 \text{ ms}} - F_o) / (F_m - F_o)$
φP₀	$Fv/F_m = [F_m - F_o]/F_m = 1 - F_o/F_m =$ maximum quantum yield of PSII primary photochemistry (at t = 0), measured in samples in dark-adapted state. F_v/F_m expresses the probability that an absorbed photon will be trapped by the PSII reaction centre.
φE_{\circ}	$(1 - F_o/F_m)(1 - V_J) = Quantum yield of electron transport (at t = 0).$
$arphi \mathrm{R}_{\circ}$	$(1 - F_0/Fm)(1 - V_I)$ = Quantum yield for reduction of end electron acceptors at the PSI acceptor side.
$arphi \mathrm{D}_{\mathrm{o}}$	F_0/F_m = Quantum yield (at t = 0) of energy dissipation
ΨΕο	$1 - V_J = 1 - (F_{2 ms} - F_o)/(F_m - F_o)$. Ψ_{Eo} expresses the probability that the energy of a trapped excitation is used for electron transport beyond plastoquinone-A.
S D	$(1 - V_I)/(1 - V_J)$ = Efficiency with which an electron from the intersystem electron
$\delta \mathbf{R}_{\mathbf{o}}$	carriers moves to reduce end electron acceptors at the PSI acceptor side.
ΔV_{I-P}	$1 - V_I = (F_m - F_{30 ms})/(F_m - F_o)$, I–P phase. This parameter indicates relative contribution of the I-P phase to the fluorescence transient OJIP; it is regarded as a measure of the efficiency of electron flux through PSI to reduce the final acceptors of the electron transport chain, i.e., ferredoxin and NADP.
ABS/RC	(1 – ChlRc/Chltot)/(ChlRc/Chltot) = Absorption flux (of antenna chlorophylls) per reaction centre (RC).
PLABS	$(\text{RC}/\text{ABS}) \times [\varphi_{P_0}/(1 - \varphi_{P_0})] \times [\Psi E_0/(1 - \Psi E_0)]$. Performance index on absorption bases; absorption of antenna Chls of PSII. This measure incorporates photochemical and non-photochemical processes, such as absorption and trapping of excitation energy, electron transport beyond the plastoquinone-A and dissipation of excess excitation energy.
РІ тот	Performance Index total (PITOT) is the potential for energy conservation from photons absorbed by PSII to the reduction flux (RE) of PSI end acceptors. The Pitot is a multi- parametric indicator of four measures of photosynthetic electron transport: (1) the concentration of reaction centres; (2) the quantum yield of PSII photochemistry; (3) the capacity for uptake of electrons in the electron chain between PSII and PSI; (4) the efficiency with which an electron can transfer from the reduced intersystem electron acceptors to the PSI end electron [1,2]. PITOT = PIABS [$\delta_{Ro}/(1 - \delta_{Ro})$] where $\delta_{Ro} = (1 - V_J)/(1 - V_J) = (F_m - F_I)/(F_m - F_J)$. δ_{Ro} is the efficiency of an electron can transport from a reduced PQ to PSI end electron acceptor.

TR _o /RC	$M_{\circ}(1/V_{J})$ = Trapping flux (leading to plastoquinone-A reduction) per RC.
ET _o /RC	$M_{o}(1/V_{J})\Psi_{o}$ = Electron transport flux (further than plastoquinone-A) per RC.
RC/CS _o	$F_{\circ} \varphi P_{\circ} (V_J/M_{\circ})$ = Density of RCs (plastoquinone-A reducing PSII reaction centers).
DI ₀ /RC	$(ABS/RC - TR_0/RC) = Dissipated energy flux per RC.$
Mo	Slope of the curve at the origin of the fluorescence rise. It is a measure of the rate of
	the primary photochemistry. $M_o = 4 \times (F_{300 \ \mu s} - F_o)/(F_m - F_o)$
ChlF steps	The <i>ChlF</i> induction phase has different time steps called as: $20-50 \mu s$ (O-step), 2 ms
	(J-step), 30 ms (I-step), around 0.8 s (P-step; peak) and generally denoted F ₀ , F _J and F ₁ .
	The last step (P-step) indicates the highest fluorescence intensity (Fm), when
	saturating light is used.

References

- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In *Chlorophyll a Fluorescence*; Papageorgiou, G., Govindjee, F.C., Gantt, E., Golbeck, J., Golden, S., Eds.;. Springer: Dordrecht, The Netherlands, 2004; pp. 321–362.
- 2. Strasser, R.J.; Tsimilli-Michael, M.; Qiang S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. *Biochim. Biophys. Acta (BBA) Bioenergy.* **2010**, *1797*, 1313–1326.