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Abstract: The phenolic composition of leaves from Phyllanthus acuminatus L., a plant commonly
used in Costa Rica as traditional medicine, was studied using UPLC-ESI-MS on an enriched
phenolic extract. A total of 20 phenolic compounds were identified, comprising eight
flavonoids (two flavanones—pinocembrin isomers and six derivatives from apigenin, chrysin,
quercetin, and kaempferol); seven ellagitannins, two flavan-3-ols (prodelphinidin B dimer and
(epi)gallocatechin); and three phenolic acids (ellagic acid, trimethylellagic acid, and ferulic acid).
All of these compounds are reported for the first time in P. acuminatus, while previously reported
in the genus Phyllanthus. Antioxidant evaluation was performed for P. acuminatus phenolic extract
obtaining DPPH results with a remarkably low IC50 value of 0.15 µg/mL. Also, cytotoxicity on
gastric AGS and colon SW20 adenocarcinoma cell lines was evaluated, and highly promising results
were obtained, with IC50 values of 11.3 µg/mL and 10.5 µg/mL, respectively. Furthermore, selectivity
index values obtained when comparing cytotoxicity on normal Vero cells was SI > 20 for both
cancer cell lines, indicating a particularly high selectivity. Additionally, Justicidin B, a metabolite
extensively studied for its antitumoral activity, was isolated from a non-polar extract of P. acuminatus,
and comparatively evaluated for both bioactivities. The DPPH value obtained for Justicidin B was
moderate (IC50 = 14.28 µg/mL), while cytotoxicity values for both AGS (IC50 = 19.5 µg/mL) and
SW620 (IC50 = 24.8 µg/mL) cell lines, as well as selectivity when compared with normal Vero cells
(SI = 5.4 and 4.2 respectively), was good, but lower than P. acuminatus extract. These preliminary
results suggest that P. acuminatus enriched phenolic extract containing flavonoids, ellagitannins,
flavan-3-ols, and phenolic acids, reported for the first time in this plant, could be of interest for
further cancer cytotoxicity studies to elucidate structure–bioactivity relationships, and the molecular
mechanisms and pathways.
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1. Introduction

The search for new drugs, or the combinatory effects of these, looking for a synergistic effect
that can target several human health problems, is urged and mandatory. Efforts on synthetic
medication to treat cancer and tumorigenesis, in recent years, have involved mainly the approach of
changing functional groups on natural precursors in order to augment the potency of their effects.
However, despite relative efficiency in treating targeted diseases, their use remains associated with
important collateral effects.

Extracts of several botanical origins have been shown as promising resources for obtaining new
isolated metabolites, as well as sources of mixtures of compounds with differential and synergistic
effects at biochemical, cellular, and physiological levels. Synergic assessment of plant polyphenols,
particularly flavonoids, has taught us that often centuries-old multi-drug combinations of traditional
medicine are superior to the single modified constituent trends observed in recent literature and
medical practice [1].

Phyllanthus acuminatus belongs to the most diversified genus of Phyllantaceae family
sensu lato, which is widespread globally, and comprises circa 14 different species in Costa
Rica [2], however, this plant has been particularly used in traditional medicine at local level [3].
P. acuminatus is used as icthioside piscicide, in order to hunt fishes [4], suggesting an important
insight on its biological activity. In fact, both, antitumor and antimalarial activities have been
reported [5]. Regarding metabolites, a majority of lignans has been reported in this plant,
such as phyllanthocindiols, deacetylphyllanthostatins, and deacetylphyllanthosides [6], as well
as phyllanthostatins and phyllantosides, including Justicidin B [7–9], with attributed potent
antitumoral activity.

In recent literature, sufficient evidence on polyphenols has been reported to be considered a
serious option for the management of non-communicable diseases, such as cancer and infections,
supporting the potential use of complex multi-target approach to treat diseases with polyphenols.
In fact, there is increasing evidence that these compounds have multiple molecular targets,
modulate pro-inflammatory gene expression, also interacting with phospholipid membranes [10],
and modulating pathways related to chronic inflammation and energy metabolism [11], among their
studied anticancer activity [12].

The literature reported for polyphenols in P. acuminatus is scarce, as well as their antioxidant
and cytotoxic effects. Most studies regarding antineoplastic activity in vivo and in vitro have been
performed with the above-mentioned lignan metabolites. For instance, since the first study in murine
lymphocyte leukemia P388 [7], among aryl naphthalene lignans, Justicidin B has been of special interest,
because of its promising effects in cancer cells. For instance, this lignan showed strong cytotoxic effects
on chronic myeloid leukemia (LAMA-8 and K-562) and chronic lymphoid leukemia (SKW-3) [13],
and furthermore, it induced programmed cell death on breast cancer cell lines MDA-MB-231 and
MCF-7 [14], and exhibited antiplatelet potency [15].

There are no specific reports on the ecological interaction of flavonoids from P. acuminatus and from
Phyllanthus genus. However, flavonoids have been reported to have a role protecting plants against
insect pests, influencing their behavior, growth, and development [16], and against UV damage,
acting as screens that absorb UV radiation and transfer light energy to or from other molecules,
via sensitization [17]; and to act as antipathogenic compounds that can be non-specific and result from
their antioxidant properties [18].

This evidence and the scarcity of phenolic data lead us to perform a comparative study, aiming to
obtain an enriched phenolic extract of P. acuminatus, in order to characterize its phenolic contents
through UPLC-ESI-MS, and to evaluate its antioxidant properties and cytotoxic activity on gastric
AGS and colon SW620 cancer cell lines, specially targeted by polyphenols [19]; as well as to
isolate Justicidin B, reported as a highly potent antitumoral metabolite, in order to assess also its
bioactivity effects, and to perform comparative data analysis.
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2. Results and Discussion

2.1. Phenolic Profile by UPLC-ESI-MS Analysis

The extraction process, described in the Materials and Methods section, allowed us to obtain
a phenolic enriched extract from P. acuminatus leaves. Table 1 summarizes the results of
UPLC-ESI-MS analysis. Twenty compounds (Figure 1) were tentatively identified by comparing
the fragmentation peaks with those reported in the literature, all of these compounds are reported
for the first time in P. acuminatus, while previously reported in the genus Phyllanthus. As shown
in Table 1, these compounds comprise eight flavonoids, including two flavanones—pinocembrin
and six derivatives from apigenin, quercetin, and kaempferol; seven ellagitannins, two flavan-3-ols
(prodelphinidin B dimer and (epi)gallocatechin); and three phenolic acids (ellagic acid,
trimethylellagic acid, and ferulic acid).

Peaks 1 (Rt = 3.89 min), 2 (Rt = 11.50 min), and 3 (Rt = 14.72 min) show negative molecular ion
peaks [M − H]− at m/z 633.0717, 633.0705, and 633.0701 (C27H21O18), respectively. The identified
isomers are all part of the galloyl-HDDP-glucose type [20], corresponding tentatively to three
isomeric ellagitannins, gemin D, phyllanemblinin B, and corilagin, respectively, all of them previously
reported in the genus Phyllanthus [6]. In fact, for peak 3, as shown in Figure 2a, the 463 amu
(atomic mass units) fragment was consistent with the loss of a galloyl acid, and the 301 amu fragment
was consistent with the loss of the galloyl-glucose, which is coincident with the fragmentation
previously reported for corilagin (3) [21,22].

On the other hand, Peak 2 also shows fragments at 463 amu and 301 amu, but additionally,
an important peak is observed at 615 amu [M − H-H2O]. Thus, the loss of galloyl acid and
galloyl-glucose, similar to corilagin, would correspond in turn to phyllanemblinin B (2) (Figure 2b).
Peak 1 does not show the fragment at 463 amu attributed to the loss of galloyl bonded to a glucose,
indicating the structure of gemin D (1) (Figure 2c), since this isomer does not have a glucose moiety
and generates the loss of a fragment at 301 amu due to the structure bonded to the HHDP unit.
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Table 1. Phenolic characterization of P. acuminatus extract.

No. Tenative Identification tR (min) λmax (nm) [M − H]+ Formula Error (ppm) MS2

1 Gemin D 3.89 216, 265 633.0717 C27H21O18 1.738 [633]: 275(18), 301(100), 249(15)

2 Phyllanemblinin B 11.50 216, 278 633.0705 C27H21O18 3.633 [633]:463(26), 301(100), 275(15), 614(62),
615(24)

3 Corilagin 14.72 221, 269 633.0701 C27H21O18 4.265 [633]: 463(27), 301(100), 275(15)

4 Prodelphinidin B dimer 5.89 205, 270 609.1242 C30H25O14 −0.328 [609]:305(50), 423(85), 441(100), 483(28),
591(18)

5 (epi)galocatequina 8.84 205, 270 305.0657 C15H13O7 1.311 [305]: 125(24), 165(30), 219(77), 179(100),
261(41), 287(12), 247(13), 221(84), 167(10)

6 1′,3′,5′-Trihydroxybenzene 1′-O-[4,6-(S)
-HHDP]-β-Glucoside 6.42 199, 271 589.0815 C26H21O16 −1.478 [589]: 301(100)

7 1′,3′,5′-Trihydroxybenzene 1′-O-[4,6-(S)
-HHDP-β-Glucosyl-β-Glucosyl]-β-Glucoside 11.09 204, 264 913.1857 C45H37O21 −3.285 [913]: 625(100), 463(13)

8 Geraniin 18.03 230, 276 951.0667 C41H27O27 −4.676 [951]: 933(100)

9 Phyllanthusiin C 21.92 222, 278 925.0905 C40H29O26 −4.540 [925]: 301(100), 435(15)605(10)907(13)

10 quercertin-3-O-rutinósido 27.28 219, 255, 349 609.1430 C27H29O16 4.268 [609]:343(8), 301(100), 300(39)

11 quercetin-3-O-hexoside 27.58 221, 254, 347 463.0857 C21H19O12 4.319 [463]: 301(100), 300(35)

12 kaempferol-3-O-rutinoside 31.95 221, 271 593.1487 C27H29O15 −2.866 [593]: 285(100)

13 kaempferol-3-O-hexoside 32.22 221, 265 447.0917 C21H19O11 2.237 [247]: 285(69), 284(100), 255(17), 327(18)

14 Ellagic acid 35.75 221, 265 300.9979 C14H5O8 1.661 [301]: 257(100), 229(60), 301(28), 284(23),
185(28), 255(12), 201(11)

15 O-trimethyl ellagic acid 39.74 222, 243, 353, 366 343.0443 C17H11O8 −3.207 [343]: 328(100)

16 Apigenin derivative 44.98 199, 227, 287 575.1381 C27H27O14 3.477 [575]: 515(80), 455(16), 371(11), 343(10),
311(100)

17 Chrysin derivative 48.55 223, 289 559.1428 C27H27O13 4.292 [559]:499(100), 295(57)

18 Pinocembrin 7-O-[4”,6”-(S)
-hexahydroxydibenzoyl]-b-D-glucopiranoside 56.67 226, 282 719.1230 C35H27O17 −2.503 [719]: 301(100)

19 Pinocembrin 7-O-[3”-O-galloyl-4”,6”-(S)
-hexahydroxydibenzoyl]-β-D-glucopiranoside 61.31 223, 282 871.1323 C42H31O21 −4.018 [871]: 301(100), 569(13), 827(13)

20 Ferulic acid 70.53 224 193.0490 C10H9O4 −3.698 [193]: 178(70), 149(100), 134(62)
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Figure 2. Structure and fragments of: (a) Gemin D (1); (b) Pinocembrin (2); and (c) Coraligin (3).

Peak 4 (Rt = 5.89 min) and peak 5 (Rt = 8.84 min) show negative molecular ion peaks
[M − H]− at m/z 609.1242 (C30H25O14) and m/z 305.0657 (C15H13O7), respectively, corresponding to
flavan-3-ol structures. In fact, peak 5 presents a fragmentation pattern common for an (epi)gallocatechin
monomeric unit (5), because of characteristic fragments at m/z 261, 221, 219, 179, 167, 165, consistent
with the loss of CO2, C4H4O2, C4H6O2, C6H6O3, C7H6O3, and C7H8O3, respectively. The loss of
C4H4O2 and C4H6O2 occurs because of the fragmentation of the flavan-3-ol A ring. C6H6O3 loss is
due to the fission of the heterocyclic ring, while neutral fragments C7H6O3 and C7H8O3 are released
through a retro-Diels–Alder fission [23]. In turn, peak 4 corresponds to prodelphinidin B dimer (4),
since the MS2 spectrum shows an ion at m/z 483, which is the product of the heterocyclic ring fission,
while m/z 441 belongs to the retro-Diels–Alder fission, and further loss of water originates the fragment
observed at m/z 423 [23], as shown in Figure 3.
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Peak 6 (Rt = 6.42 min) and peak 7 (Rt = 11.09 min) show negative molecular ion peaks [M − H]−

at m/z 589.0815 (C26H21O16) and m/z 913.1857 (C45H37O21) respectively, with a similar fragmentation
pattern in agreement with an ellagitannin structure, including 1,3,5-trihydroxybenzene and HHDP
moieties. For instance, peak 6 shows (MS2 spectrum) a fragment at m/z = 301 [M − H-288],
which undergoes further fragmentation in a pattern that matches that of the HHDP group [24,25].
The loss of 288 amu is consistent with a hexose bonded to an 1,3,5-trihydroxybenzene, which leads to
the identification of the compound as 1′,3′,5′-trihydroxybenzene 1′-O-[4,6-(S)-HHDP]-β-glucoside (6),
as shown in Figure 4 [26].
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In a similar way, peak 7 shows fragments at m/z 301 that indicate the presence of the
HHDP unit. As shown in Figure 5, the MS2 fragment at m/z 625 ([M − H]-288) is consistent
with the loss of a glucose molecule bonded to a 1,3,5-trihydroxybenzene. Further losses of 162
amu at m/z 463 [M − H-288-162] and m/z 301 [M − H-288-162-162] are due to the loss of
additional hexoses. Therefore, the compound is tentatively identified as 1′,3′,5′-trihydroxybenzene
1′-O-[4,6-(S)-HHDP-β-glucosyl-β-glucosyl]-β-glucoside (7).
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β-glucosyl]-β-glucoside (7).

Peak 8 (Rt = 18.03 min) shows a negative molecular ion peak [M − H]− at m/z 951.0667, and it is
tentatively assigned to Geraniin (8), ellagitannin with formula C21H28O27. In fact, as shown in Figure 6,
the peak at m/z 933 corresponded to loss of H2O, and the fragments at m/z 915 and 897 match the
successive loss of H2O, while the fragments at m/z 443 and 445 derive from the loss of galloyl and
HDDP groups [27].
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Peak 9 (Rt = 21.92 min) shows a negative molecular ion peak [M − H]− at m/z 925.0905, and it is
tentatively assigned to ellagitannin Phyllanthusiin C (9), whereas the peak at m/z 907 is due to the
water loss in the geminal alcohol, which after further loss of HDDP, forms the fragment at m/z 605,
as shown in Figure 7. The additional loss of a galloyl group originates the fragment at m/z 435.
The peak at m/z 301 corresponds to the ionized HDDP unit [25].
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Two flavonoids correspond to peak 10 (Rt = 27.28) and peak 11 (RT = 27.58), which show a negative
molecular ion peak [M − H]− at m/z 609.1430 and m/z 463.0857, respectively. Peak 10 was identified
as quercetin-3-O-rutinoside (10), whose loss of the glycosylated unit yields the peak at m/z 301,
followed by a fragmentation (Figure 8) with a pattern previously reported for the same compound [28],
while peak 11 was assigned to quercetin-3-O-glucoside (11), because the main fragment corresponds
to the loss of a hexose (m/z = 301, [M − H-162]) [25].
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Peaks 12 and 13 were identified as kaempferol derivatives. For instance, Peak 12 (Rt = 31.95 min)
shows a negative molecular ion peak [M − H]− at m/z 593.1487, and it was identified as
kaempferol-3-O-rutinoside (12) [29]; and peak 13 (Rt = 32.22 min), which shows a negative
molecular ion peak [M − H]− at m/z 447.0917, was identified as kaempferol-3-O-hexoside (13) [30].
Fragmentation for both molecules show the loss of glycosides generating signals that correspond to
kaempferol (m/z 284 and 285), as shown in Figure 8.

Peaks 14 and 15 have similar fragmentation patterns in agreement with an ellagic acid moiety,
as shown in Figure 9. For instance, peak 14 (Rt = 35.75 min) corresponds to ellagic acid (14),
which shows a negative molecular ion peak [M − H]− at m/z 300.9979, characterized by fragments at
m/z 257 [M−H-CO2]− and m/z 229 [31]. In turn, Peak 15 (Rt = 39.74 min) shows a negative molecular
ion peak [M − H]− at m/z 343.0443, and corresponds to O-trimethyl ellagic acid (15), whose fragments
at m/z 328, 313, and 298 match the successive loss of methyl groups (–CH3) [32].
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Peaks 16 (Rt = 44.98 min) and 17 (Rt = 48.55 min) correspond also to flavonoids, specifically to
apigenin and chrysin derivatives. In fact, peak 16 showed a negative molecular ion [M − H]− at m/z
575.1381 (C27H27O14), and a fragment at m/z 515 corresponding to [M − H-60] which was previously
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reported [33] for this type of structure (Figure 10). According to Wu et al. [34], the fragment observed
at m/z 311 corresponds to apigenin derivative (16). The fragment at m/z 293 arose from the successive
loss of water. Two more peaks, observed at m/z 161 and m/z 149, originated from the fragment
identified at m/z 311, due to the breakdown of the C ring, with each peak corresponding to one of the
fragments generated.
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In a similar way, peak 17 shows a negative molecular ion peak [M − H]− at m/z 559.1428
(C27H27O13), which in turn shows a fragmentation pattern similar to the previous peak. For instance,
the peak at m/z 499 originating from the loss of 60 amu [M − H-60] [33], and the peak at m/z 295,
arises from a fragmentation similar to the one described by Wu et al. [34], with an oxygen in the
aglycone instead of the glycoside, which leads to the tentative identification of chrysin (17) as aglycone
(Figure 11).
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Peaks 18 and 19 were assigned to ellagitannin derivatives of flavanone pinocembrin,
previously reported in the genus Phyllanthus [6]. In fact, peak 18 (Rt = 56.67 min) shows
a negative molecular ion peak [M − H]− at m/z 719.1230 (C35H27O17), and was assigned to
Pinocembrin 7-O-[4”,6”-(S)-hexahydroxydibenzoyl]-b-D-glucopiranoside (18), for which the main
fragment at m/z = 301 corresponds to the HDDP group [35]. Peak 19 (Rt = 61.31 min) shows
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a negative molecular ion peak [M − H]− = 719.1230 (C42H31O21) consistent with Pinocembrin
7-O-[3”-O-galloyl-4”,6”-(S)-hexahydroxydibenzoyl]-β-D-glucopiranoside (19), which besides the
fragment at m/z 301 previously explained, exhibits fragments at m/z 569 due to HDDP loss, and at
m/z 827 after the loss of a CO2 molecule, as shown in Figure 12 [25].
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Finally, Peak 20 (Rt = 70.53 min) shows a negative molecular ion peak [M − H]− at m/z 193.0490,
and MS2 fragments at m/z 178 [M − H-H2O], 149 [M − H-CO2], and 134 [M − H-H2O-CO2],
corresponding to ferulic acid [36].

2.2. Isolation and Characterization of Justicidin B

As described in the Methods and Materials section, fractioning with Sephadex LH-20 of the
non-polar extract of P. acuminatus, allowed the isolation of a compound characterized by 1H-NMR,
13C-NMR and 2D-(HMBC, HSQC, COSY)-NMR data coincident with reports from the literature [37–39]
on aryl naphthalene lignan Justicidin B (20) C21H16O6 (Figure 13), a metabolite previously reported in
P. acuminatus [7] and extensively studied because of its high antitumoral potential against different
cancer cell lines [40], thus enabling a comparison of bioactivities among this metabolite and the
phenolic extract, as described in the following sections.
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2.3. Antioxidant Activity

DPPH is widely used as an indicator of antioxidant activity, although is not present naturally
in the body, because it is a reliable assay that can give a preliminary appraisal of the antioxidant
capacity of the agent under test [41]. As a second assay with better correlation to physiological radicals,
our study used the ORAC method, which measures antioxidant scavenging activity against a peroxyl
radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), a hydrophilic alkyl
peroxyl radical similar to the ones formed in biological systems, particularly in the process of lipid
peroxidation [42].
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Results obtained for antioxidant activity evaluation of both P. acuminatus extract and isolated
Justicidin B metabolite, as well as ascorbic acid used as positive control, through DPPH and ORAC
methodologies, are summarized in Table 2.

Table 2. Antioxidant activity of P. acuminatus phenolic extract and Justicidin B metabolite.

Sample DPPH 1,2 IC50 (µg/mL) ± SD ORAC 1,2 (mmol TE/mg Extract) ± SD

P. acuminatus extract 0.15 a ± 0.01 2.76 a ± 0.05
Justicidin B 14.28 b ± 0.30 0.95 b ± 0.02

Ascorbic Acid 3.74 c ± 0.05 1.62 c ± 0.07
1 Different superscript letters in the same column indicate differences are significant at p < 0.05 using ANOVA
with a Tukey post hoc test; 2 Results represent average ± standard deviation from three independent runs for each
sample (n = 3).

In both methodologies, P. acuminatus extract showed better results than Justicidin B and
ascorbic acid, used as positive control. While no previous data has been reported for ORAC, the DPPH
IC50 value of 14.28 µg/mL obtained for Justicidin B is in agreement with the moderate scavenging result
previously reported in the literature in similar assay conditions [43]. Of special interest is the DPPH
value for P. acuminatus extract (IC50 = 0.15 µg/mL), which is superior to DPPH values reported for
Phyllanthus species in similar assay conditions, such as those reported for a phenolic-enriched extract
of P. niruri (IC50 = 6.40 µg/mL) [44], and aqueous extracts of P. emblica (IC50 = 6.99–7.72 µg/mL) [45].

As described, the phenolic characterization of P. acuminatus extract indicated flavonoids and
ellagitannins as main components, which have been previously reported as metabolites of interest for
their antioxidant activity. For instance, flavones and ellagitannins have shown better antioxidant
properties than other important phenolics, such as anthocyanins [46]; and, on the other hand,
ellagitannins-enriched extracts exhibited greater inhibition than crude extracts from R. idaeus and
R. chamaemorus [47].

2.4. Cytotoxicity Evaluation

Table 3 summarizes the IC50 values for the cytotoxicity of P. acuminatus phenolic extract
and Justicidin B on AGS human gastric adenocarcinoma, SW620 human colon adenocarcinoma,
and Vero monkey normal epithelial kidney cell lines. IC50 values indicate that there is significant
difference (one-way analysis of variance, ANOVA) between cytotoxicity values (p < 0.05) against
gastric AGS adenocarcinoma cells and SW620 adenocarcinoma cells between P. acuminatus extract
and Justicidin B metabolite, showing superior values for the plant extract. Also, Figure 14 shows
dose-response curves.

Table 3. Cytotoxicity of P. acuminatus extract and Justicidin B to gastric (AGS) and colon (SW620)
adenocarcinoma cells as well as to control Vero cells.

Sample
IC50 (µg/mL) ± S.D. 1

AGS 2 SW620 2 Vero 2

P. acuminatus extract 3 11.3 a,* ± 0.7 (SI = 5.4) 10.5 a,* ± 0.5 (SI = 20.1) 226.6 a,♦ ± 4.2
Justicidin B 3 19.5 b,* ± 2.2 (SI = 4.2) 24.8 b,* ± 2.1 (SI = 21.5) 104 b,♦ ± 6

1 Results are presented as mean ± SD of three independent experiments. 2 Different superscript letters in the
same column indicate differences are significant at p < 0.05 using ANOVA with a Tukey post hoc test. 3 Different
superscript signs in the same row indicate differences are significant at p < 0.05 using ANOVA with a Tukey post
hoc test.

In fact, the results obtained in the cytotoxic assay show that P. acuminatus extract exhibits a strong
cytotoxic response in both AGS and SW620 cell lines (IC50 = 11.3 µg/mL and 10.5 µg/mL respectively).
The isolated Justicidin B IC50 values indicate also good cytotoxicity (AGS: 19.5 µg/mL, SW: 24.8 µg/mL),
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however, the extract values are higher than those of Justicidin B for both in vitro cell phenotypes.
Regarding normal Vero cells, ANOVA shows significant difference for both samples when comparing
to cancer cells with lower cytotoxicity results, with the extract results indicating better values
(IC50 = 226.6 µg/mL) compared to Justicidin B (IC50 = 104 µg/mL).Plants 2017, 6, 62  12 of 19 
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Regarding aryl naphthalene lignans, a similar study on Justicidin B using MTT assay with
72 h of incubation, showed moderate cytotoxicity on MDA-MB-231 and MCF-7 breast cancer cell
lines (converted values of 38.91 and 14.09 µg/mL, respectively) [14] While no previous data has
been reported for P. acuminatus extracts, the assessment of cytotoxicity has been performed for
other species in the genus Phyllanthus. For instance, a study in similar MTT assay conditions
performed on P. niruri phenolic extract indicated IC50 values of 113.2 µg/mL on the same cell line,
AGS gastric, and 145.2 µg/mL on SW620 colon tumor cells [44], while on other adherent cell lines,
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MTT assay evaluation of hydro-methanolic extracts of P. amarus and P. virgatus on Hep G2 hepatic
carcinoma, with measurements performed after 24 h of incubation, reported lack of cytotoxicity
(IC50 > 250 µg/mL) [48].

Concerning the selectivity of the cytotoxic activity of samples between cancerous and normal cells,
our results indicate significant differences (ANOVA, p < 0.05) between IC50 values for both samples
in both AGS and SW620 adenocarcinoma cell lines, compared to IC50 values for normal Vero cells.
When evaluating the selectivity index (SI), defined as the ratio of IC50 values of normal cells to cancer
cells (AGS or SW620), P. acuminatus extract showed the highest selectivity result for SW620 colon cancer
cells (SI = 21.5), followed closely for AGS gastric cancer cells (SI = 20.1), while Justicidin B results
showed SI of 5.4 and 4.2 respectively, thus, lower selectivity values than P. acuminatus extract for both
AGS and SW620 cancer cell lines. When comparing these selectivity results with reports using similar
MTT assay conditions, Justicidin B displayed non-specific cytotoxicity in normal peripheral blood
mononuclear cells (PMBC), HepG2 hepatoma, and PC3 prostrate tumor cell lines [40], while P. niruri
phenolic extract showed selectivity values of 2.2 and 2.8, respectively, for AGS gastric and SW colon
cancer cells [44]. Although selectivity (SI ≥ 3) and cytotoxicity (IC50 ≤ 20) results for P. acuminatus
extract on AGS gastric and SW620 colon cancer cells fall within the parameters of the National
Cancer Institute (NCI) [49,50] for plant extracts to be considered promising in the preliminary assay,
further studies on mechanisms of action are needed.

The fact that polyphenols have control over several signaling pathways that affect different
processes at cellular and tissue level, makes a synergic approach a conducive way to interpret
the events mediated by polyphenolic profile. For instance, referring to the type of phenolic
compounds present in the P. acuminatus extract, studies on quercetin and kaempferol flavonoid
derivatives indicated that these compounds bioactivities—such as anti-oxidant, anti-inflammatory,
and anti-proliferative—could act in a synergistic manner, and may repress carcinogenesis and cancer
progression [51–53]. On the other hand, the flavone chrysin has been reported to induce apoptosis
in several cancer cells [54], such as U87-MG malignant glioma [55], and U937 leukemia cells [56,57].
Also, flavone apigenin derivatives, such as vitexin, have been reported to induce apoptosis and inhibit
autophagy on hepato-carcinoma cells (HCC) [58]. With respect to the other main group of polyphenolic
compounds present in P. acuminatus extract, ellagitannins, such as pinocembrin derivatives, have shown
to act on multiple molecular targets that are related to the inflammatory pathway in cancer cells [59].
In clinical studies, pomegranate juice rich in ellagitannins administered to patients with prostate cancer
led to a decrease in the rate of rise of prostate specific antigen after primary treatment [60].

The diverse structure contents of P. acuminatus enriched phenolic extract could suggest the
preliminary results on cytotoxicity and selectivity towards AGS gastric and SW620 colon cancer cells,
are due to a multi-targeted, synergistic effect, however, further studies are needed to elucidate
mechanisms of action.

3. Materials and Methods

3.1. Materials, Reagents, and Solvents

Phyllanthus acuminatus leaf plant material was acquired from a local Agricultural Producers
Association in the Caribbean region of Costa Rica. The plant was identified with the support of
the Costa Rican National Herbarium, and a voucher is deposited there. P. acuminatus material
was rinsed in water and cut into small pieces. Subsequently, it was dried in a stove at 40 ◦C
until completely dry, and after being ground, it was preserved at −5 ◦C. Among reagents,
2,2′-azobis(2-methyl-propionamidine)-dihydrochloride (AAPH), fluorescein, ascorbic acid, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypsin-EDTA solution and Sephadex
LH-20 gel were provided by Sigma-Aldrich (St. Louis, MO, USA), while amphotericin B,
penicillin–streptomycin, and Eagle’s minimum essential medium (MEM, 10% fetal bovine serum),
were purchased from Life Technologies (Carlsbad, CA, USA). AGS human gastric adenocarcinoma,
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SW 620 human colorectal adenocarcinoma and Vero monkey normal epithelial kidney cell lines were
obtained from American Type Culture Collection (ATCC, Rockville, MD, USA). DMSO was provided
by Sigma-Aldrich (St. Louis, MO, USA), while MTBE, dichloromethane, chloroform, and methanol
were purchased from Baker (Center Valley, PA, USA).

3.2. Extraction of P. acuminatus Secondary Metabolites

The process followed for obtaining a phenolic-enriched extract from P. acuminatus was formerly
described on other plants by our group [61], involving different organic solvents to optimize separation
of compounds in a preliminary effort for characterization. Briefly, plant dried material was first
extracted in a mixture of methyl tert-butyl ether (MTBE) and methanol (MeOH) 90:10 (v/v) at 25 ◦C
during 30 min in ultrasound. Afterwards, it was extracted for 24 h in order to obtain a non-polar
extract of the samples. After filtration, the extraction was repeated once. The extracts were combined,
and the solvents evaporated in a rotavapor to dryness, and subsequently washed with MeOH in order
to extract any polyphenols. The residual plant material was extracted with MeOH at 25 ◦C during
30 min in ultrasound, and then extracted for 24 h. After filtration, the extraction was repeated twice.
The three methanol extracts were combined with the previous MeOH washings, and were evaporated
in a rotavapor to dryness. Finally, the dried extract was washed with hexane, MTBE and chloroform
consecutively in order to obtain a phenolic rich extract.

On the other hand, the non-polar extract after the MeOH washings, was concentrated and
dissolved in CH2Cl2/MeOH 70:30 (v/v) and extracted twice with water 50:50 (v/v). The aqueous
phase was extracted twice with CH2Cl2 50:50 (v/v), and the organic phase was evaporated in a
rotavapor to dryness. The extract was fractionated using Sephadex LH-20, allowing isolation of
24 mg (0.01%) of lignan 20, with the following NMR data. 1H-NMR (CDCl3) δ (ppm) 3.82 (s, 3H),
4.05 (s, 3H), 5.38 (d, J = 1.0 Hz, 2H), 6.06 (d, J = 1.5 Hz, 1H), 6.10 (d, J = 1.5 Hz, 1H), 6.83 (dd, J = 7.9,
1.7 Hz, 1H), 6.86 (d, J = 1.7 Hz, 1H), 6.97 (d, J = 7.9 Hz, 1H), 7.11 (s, 1H), 7.19 (s, 1H), 7.70 (s, 1H);
and 13C-NMR (CDCl3) δ (ppm) 55.99 (MeO-C5), 56.22 (MeO-C4), 68.19 (C9), 101.40 (O–CH2–O),
106.01 (C6), 106.16 (C3), 108.38 (C5′), 110.73 (C6′), 118.42 (C7), 123.63 (C2′), 128.56 (C1′), 129.02 (C1),
133.33 (C2), 139.68 (C8′), 139.82 (C8), 147.70 (C4′), 147.74 (C3′), 150.23 (C5), 151.98 (C4), 170.12 C9′).

3.3. UPLC-ESI—MS Analysis

The UPLC-MS system used to analyze the phenolic composition of the P. acuminatus extract
consisted of an LTQ Orbitrap XL mass spectrometer with an Accela 1250 binary Pump, a PAL HTC
Accela TMO autosampler, a PDA detector (ThermoFisher Scientific, San Jose, CA, USA), and a G1316A
column compartment (Agilent, Palo Alto, CA, USA). Separation was carried out on a Hypersil Gold
AQ RP—C18 UHPLC column (200 mm × 2.1 mm i.d., 1.9 µm, Thermo Fisher Scientific, Waltham,
Massachusetts) with an UltraShield pre-column filter (Analytical Scientific Instruments, Richmond,
CA, USA) at a flow rate of 0.3 mL/min. Mobile phases A and B consist of a combination of 0.1% formic
acid in water (v/v), and 0.1% formic acid in acetonitrile (v/v), respectively. The linear gradient is from
4% to 20% B (v/v) at 40 min, to 35% B at 70 min and to 100% B at 71 min, and held at 100% B to 75 min.
The UV–vis spectra were acquired from 200–700 nm.

Negative electrospray ionization mode was used, and the conditions were set as follows:
sheath gas, 70 (arbitrary units); aux and sweep gas, 15 (arbitrary units); spray voltage, 4.8 kV;
capillary temperature, 300 ◦C; capillary voltage, 15 V; tube lens, 70 V. The mass range was from
100 to 2000 amu with a resolution of 30,000, FTMS AGC target at 2 × 105, FT-MS/MS AGC target
at 1 × 105, isolation width of 1.5 amu, and max ion injection time of 500 ms. The most intense ion
was selected for the data-dependent scan to offer their MS2 to MS5 product ions, respectively, with a
normalization collision energy at 35%.
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3.4. DPPH Radical-Scavenging Activity

A solution of 2,2-diphenyl-1-picrylhidrazyl (DPPH) (0.25 mM) was prepared using methanol
as solvent. Next, 0.5 mL of this solution were mixed with 1 mL of sample or ascorbic acid used
as positive control, at different concentrations, and incubated at 25 ◦C in the dark for 30 min.
DPPH absorbance was measured at 517 nm. Blanks were prepared with 1 mL of each sample
concentration and 0.5 mL of methanol instead of DPPH. The percentage of the radical-scavenging
activity of the sample was plotted against its concentration to calculate IC50, which is the amount of
sample required to reach the 50% radical-scavenging activity. The samples were analyzed in three
independent assays each one in triplicate.

3.5. ORAC Antioxidant Activity

The ORAC (Oxygen Radical Absorbance Capacity) antioxidant activity was determined following
a method previously described [62] using fluorescein as a fluorescence probe. Briefly, 0.05 g of
each sample to be measured is mixed with 10 mL of methanol/HCl (1000:1, v/v) and, if needed,
sonicated until complete dissolution, for 5 min. Afterwards, the mixture was centrifuged and filtered.
The reaction was carried out in 75 mM phosphate buffer (pH 7.4) at 37 ◦C. The final assay mixture
contained AAPH (12 mM), fluorescein (70 nM), and 20 µL of either Trolox (1–8 µM) or sample
(extract or Justicidin B) at different concentrations. Blanks were prepared adding 20 µL of phosphate
buffer instead of sample, and positive controls were prepared adding 20 µL of ascorbic acid at different
concentrations, instead of sample. Fluorescence was recorded every minute for 98 min in black 96-well
untreated microplates (Nunc, Denmark), using a Polarstar Galaxy plate reader (BMG Labtechnologies
GmbH, Offenburg, Germany) with 485-P excitation and 520-P emission filters. Fluostar Galaxy
software version 4.11-0 (BMG Labtechnologies GmbH, Offenburg, Germany) was used to measure
fluorescence. Fluorescein was diluted from a stock solution (1.17 mM) in 75 mM phosphate buffer
(pH 7.4), while AAPH and Trolox solutions were freshly prepared. Samples were evaluated in three
independent experiments with different concentrations of each sample (or positive control) analyzed
in triplicate.

Fluorescence values obtained were normalized to the curve of the blank (no antioxidant). The area
under the fluorescence decay curve (AUC) was calculated from the normalized curves, and the net
AUC was then established. Subsequently, regression equation between antioxidant concentration and
net AUC was obtained. Finally, ORAC value was estimated by dividing the slope of the latter equation
by the slope of the Trolox line. ORAC values were expressed as mmol of Trolox equivalents (TE)/g
of extract.

3.6. Evaluation of Cytotoxicity

The AGS, SW620, and Vero cells were grown in MEM (10% FBS) in the presence of glutamine
(2 mmol/L), penicillin (100 IU/mL), streptomycin (100 µg/L), and amphotericin B (0.25 µg/m),
at 37 ◦C, in a humidified atmosphere (5% CO2). Briefly, 100 µL of 1.5× 105 cells/mL (suspension) were
seeded overnight into 96-well plates to reach 100% confluency. Subsequently, the cells were exposed
for 48 h to 50 µL of samples in concentrations varying 1.5–500 µg/mL in MEM (DMSO 0.1% v/v).
Controls to establish 100% of viability were prepared, adding 50 µL of MEM (DMSO 0.1% v/v)
instead of samples. Afterwards, the medium was eliminated, cells were washed with PBS (100 µL)
and incubated with 100 µL of a MTT solution (0.5 mg/mL, final concentration) in PBS, for 2 h at
37 ◦C. Then, MTT was removed, and the formazan crystals were dissolved in 100 µL of ethanol 95%.
Absorbance was read at 570 nm in a microplate reader. DMSO was diluted in media in the same
way as the extracts and incubated with the cells for 48 h to be used as control. Dose–response curves
were established, and IC50 was calculated. Samples were tested in three independent experiments
with different doses of each sample analyzed in triplicate.
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4. Conclusions

This study represents the first detailed MS analysis of phenolic-enriched extract from P. acuminatus.
Using UPLC-ESI-MS techniques, 20 phenolic compounds were identified, comprising eight flavonoids,
(two flavanones—pinocembrin isomers and six derivatives from apigenin, chrysin, quercetin and
kaempferol); seven ellagitannins, two flavan-3-ols (prodelphinidin B dimer and (epi)gallocatechin); and
three phenolic acids (ellagic acid, trimethylellagic acid and ferulic acid). These findings constitute the
first report on the diversity of phenolics in P. acuminatus. DPPH and ORAC antioxidant methods were
evaluated both in the extract and the isolated aryl naphthalene lignan Justicidin B, with P. acuminatus
extract showing a particularly high value (IC50 = 0.15 µg/mL). Based on these results, due to
antioxidant properties of flavonoids resulting in antipathogenic effects that can be non-specific [18],
further studies on these properties could be promising. P. acuminatus phenolic-enriched extract
also showed cytotoxicity and selectivity on AGS gastric and SW620 colon adenocarcinoma cell
lines with SI > 20 for both cell lines when compared to normal cells, with lower values (SI > 4)
for Justicidin B. Since polyphenols could work in a synergistic manner, purification or fractioning
of P. acuminatus phenolic extract could be of interest to further evaluate the structure–bioactivity
relationship. Also, studies using solvents adequate for human health consumption, such as ethanolic
or aqueous phenolic-enriched extracts, are important to assess the potential anticancer bioactivity of
P. acuminatus phenolic extracts and components. The results on the cell lines studied could suggest
potential health effects of P. acuminatus extract on gut-related diseases, considering that polyphenols are
metabolized by the gut [19,63]. However, further research is required to understand the mechanisms
of action and pathways.
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