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Abstract: Wheat yields have plateaued in recent years and given the growing global population
there is a pressing need to develop higher yielding varieties to meet future demand. Genetic
manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase
yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf
processes in wheat hinders advancements in this area. Two promoters, one driving the expression of
sedoheptulose-1,7-bisphosphatase (SBPase) and the other fructose-1,6-bisphosphate aldolase (FBPA)
from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter
gene. Both promoters were shown to be functionally active in wheat in both transient assays and
in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza)
showed that both promoters controlled gus expression throughout leaf development as well as in
other green tissues. The availability of these promoters provides new tools for the expression of genes
in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to
improve yields.
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1. Introduction

Over time, agricultural yields of our major crops, including wheat, have risen in line with demand
due to improvements brought about through breeding and farming practices. World-wide, wheat is
one of the most important agricultural crops providing in excess of 20% of the calories consumed
on a daily basis [1]. However, yields of wheat have stagnated in recent years, while at the same
time an estimated 70% increase in global supply will be needed by 2050 to meet the needs of the
increasing global population [2–5]. Given that there is limited availability of land for cultivation,
it will be necessary to develop higher yielding crop varieties in order to meet the predicted increases
in demand [4,6]. This challenge is exacerbated further by the fact that improvements in yield will
have to be realized with fewer resources and in a changing climate, where over the next forty years
atmospheric CO2 levels are predicted to increase from the current level of 400 ppm to 550 ppm [7,8].

Recently, Driever et al. [9] generated transgenic wheat plants with increased yield through
improvement of photosynthetic efficiency. These authors demonstrated that the over-expression of
sedoheptulose-1,7-biphosphatase (SBPase) in wheat, an enzyme in the of the Calvin–Benson cycle,
resulted in an increase in total biomass and dry seed yield (30–40% higher than wild type (WT)) in
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greenhouse-grown plants. This increase in yield was achieved either through a higher number of seeds
being formed per ear (fewer tillers, at high plant density), or a larger number of ears being produced per
plant (more tillers, at lower plant density) depending on the growing density [9]. Under field conditions,
where environmental conditions can change rapidly, such a significant increase may be optimistic
and manipulations involving multiple target genes of the Calvin–Benson cycle, photorespiration [10]
and electron transport [11,12] may be required. Such multigene stacking approaches have been
demonstrated in Arabidopsis [13] and tobacco [14] where a synergistic increase in biomass was
observed. Due to the absence of a well-defined molecular tool-box in wheat, the simultaneous
over-expression of multiple genes is more problematic.

Constitutive promoters are commonly used in plant studies to (over-)express genes of interest.
Many of these promoters were identified in viruses such as the cauliflower mosaic virus (CaMV) 35S
promoter [15,16] or the figwort mosaic virus (FMV) promoter [17,18]. Constitutive over-expression of
transgenes can potentially result in gene silencing due to co-suppression [19–21] or alternatively have
a negative impact on plant development, due to ectopic expression of the introduced gene. In response
to this it was recognized that it would be important to identify and characterize promoters able to direct
expression of the transgene in specific tissues. As early as 1989, the light-regulated and leaf-specific
Solanum tuberosum ST-LS1 promoter was identified [22,23] as well as a number of Arabidopsis and
tobacco photosynthetic tissue specific promoters [13,22], tomato fruit promoters [24–26], guard cell
specific promoters [27–29] and promoters specific to seed endosperm [30–34]. Unlike many other
species, for wheat there has been a dearth of promoters where the expression is restricted to green
tissues. One reason for this is that it has proved to be difficult to use promoters from dicotyledonous
species to drive transgene expression in wheat.

Currently, the maize ubiquitin 1 [35] and the rice actin 1 constitutive promoters [36] are frequently
used to direct expression of transgenes in wheat. Additionally, the semi-constitutive rice tungro virus
promoter [37,38] has been used to express genes in the aerial parts of the wheat plant [9]. More recently,
the rubisco small subunit (Rubisco) gene promoter from wheat was shown to direct expression in
immature wheat embryos and tobacco leaves in transient assays [39]. Although this demonstrates the
possibility that wheat promoters can be used to target transcripts to photosynthetic tissues, further
work is needed to demonstrate that the wheat Rubisco promoter can function in leaves in stable
transgenic wheat plants. A study using the rice and maize rubisco small subunit promoters in wheat to
down-regulate expression of genes involved in photorespiration produced disappointing results [40].
Additional promoters will also be needed if we are to undertake multigene approaches. The reason for
this is that it has been shown that the use of repetitious elements in transgenic constructs can have
a negative impact on the stability and expression of the introduced genes [41]. The establishment
of a robust tool-kit containing a number of well characterized promoters to use in future studies
is therefore essential to facilitate multigene modification of traits in wheat. As a step towards the
development of these genetic tools the aim of this paper is to provide information on new promoters
for expression of genes in wheat leaves. We focused on the genes encoding the Calvin–Benson
cycle enzymes, sedoheptulose 1,7-bisphosphatase (SBPase) and fructose 1,6-bisphosphate aldolase
(FBPA), known to be expressed in green tissues [9,42,43]. Given that it has not proved possible to
use promoter sequences from dicots in wheat and that using wheat gene sequences has also not
always been successful in leaf tissue, we chose to identify gene sequences from the monocot grass
Brachypodium distachyon (B. distachyon). The rationale underlying this choice is that B. distachyon is
(1) a close relative of wheat and (2) that a fully annotated genome is available [44,45]. The results
presented in this paper provide a clear demonstration that the promoters of the SBPase and FBPA
genes from B. distachyon are functional in stably transformed transgenic wheat and direct expression in
green leaf tissues.
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2. Materials and Methods

2.1. Construct Generation for Transient Expression Analysis in Nicotiana benthamiana Leaves

In order to isolate the DNA fragment of the SBPase promoter (Gene ID: Bradi2g55150)
and FBPA promoter (Gene ID: Bradi4g24367) from the B. distachyon genome (see Phytozome
website (https://phytozome.jgi.doe.gov/pz/portal.html)), specific primers (pSBPase fwd CACC
TCGACGTCCATATGGCCCA; pSBPase rev TGCTGCGATGCGAGCTGC; pFBPA fwd CACC
TCATTGGACGTGTTGATGTGC; pFBPA rev TGTTTCTGGCTCCAAAGG) designed from a region 2 kb
upstream of the respective start codons were used (Supplementary Figures S4 and S5). The resulting
2 kb amplified products were cloned into pENTR/D as per manufacturer’s instructions (Invitrogen,
Paisley, UK). The full-length promoter sequence was introduced into the pGWB3 gateway vector [46]
(Supplementary Figure S1A AB289766) by recombination to make pGW:pSBPase::GUS (Supplementary
Figure S1B) and pGW:pFBPA::GUS (Supplementary Figure S1C), respectively.

2.2. Construct Generation for Transient and Stable GUS Expression Analysis in Wheat

In order to analyze the expression of the SBPase and FBPaldolase promoters from B. distachyon
in wheat tissue, the promoters were amplified using specifically designed primers (pSBPase fwd2
TTggcgcgccTCGACGTCCATATGGCCCA; pSBPase rev2 TTacgcgtTGCTGCGAT GCGAGCTGC; pFBPA
fwd2 TcccgggTCATTGGACGTGTTGATGTGC; pFBPA rev2 TTgaattcTGTTTC TGGCTCCAAAGG),
with the addition of restriction enzyme sites (AscI and MluI sites in case of the isolation of SBPase promoter,
and XmaI and EcoRI sites in the case of FBPA). The amplified sequences were cut with the relevant
enzymes and then cloned separately into the pRRes14.041::GUS vector (supplied by Rothamsted Research,
Harpenden, UK; Supplementary Figure S2A) at the equivalent sites to make pRRes:pSBPase::GUS
Supplementary Figure S2B) and pRRes:pFBPA::GUS (Supplementary Figure S2C).

2.3. Construct Generation for Stable Expression of a Small FLAG-Tagged Protein in Wheat Leaves

To evaluate the variation in transcript levels and the level of associated protein accumulation driven
by these two promoters, a small 11 kDa protein (codon optimized Porphyra umbilicalis cytochrome c6

protein (AFC39870) [12]) with a FLAG tag (DYKDDDDK) was used. The pRRes:pSBPase::GUS and
pRRes:pFBPA::GUS constructs (Supplementary Figure S2B,C) were cut with restriction enzymes NcoI and
EcoRV removing the intron and the gus reporter sequence. The FLAG-tagged cytochrome c6 protein was
cloned into the respective sites generating plasmids pSBPase::FLAG (Supplementary Figure S3A) and
pFBPA::FLAG (Supplementary Figure S3B).

2.4. Agrobacterium-Mediated Transient Expression in Nicotiana benthamiana Leaves

Transient expression was carried out using 4- to 5-week-old N. benthamiana leaves [47].
Agrobacterium tumefaciens cultures (strain GV1301) carrying the promoter::GUS binary vectors or
P19 plasmid were grown overnight at 28 ◦C in Luria Broth media with the appropriate selection
criteria. Cultures were centrifuged at 4500× g for 15 min at room temperature and gently re-suspended
in infiltration buffer (5 mM MES, 5 mM MgSO4, pH 5.7, 100 mM acetosyringone) to an optical density
of OD600 = 0.6. Prior to infiltration, suspensions of A. tumefaciens carrying the binary plasmids which
included the gus gene were mixed in a 1:1 ratio with the A. tumefaciens suspension harboring the viral
silencing suppressor (P19) in the binary plasmid pBIN19-p19 [48]. The final mixtures of A. tumefaciens
cells were infiltrated into the underside of two leaves from 4- to 5-week-old wild-type leaves from
N. benthamiana plants. For controls, leaves were infiltrated with A. tumefaciens carrying the P19 binary
plasmid only. Treated plants were housed in a 24 ◦C plant growth room using the 12 h/12 h light–dark
cycle for three days [49,50].

https://phytozome.jgi.doe.gov/pz/portal.html
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2.5. Transient Expression in Wheat Leaves

Immature inflorescence sheath leaves which surround the young inflorescence were used as target
tissue as these are metabolically active and are known to demonstrate good transient expression [51].
Young tillers were collected from ~6-week-old wheat plants (cv. Cadenza) cutting below the base node.
A section ~10 cm long which contained the immature inflorescence (ranging in length 0.3–1.0 cm)
was cut from each tiller and the ends were sealed with Parafilm® (Sigma-Aldrich, Gillingham, UK).
The trimmed stems were surface sterilized using 70% v/v ethanol for 3 min and 10% v/v domestic
thin bleach (sodium hypochlorite content of 4–6%) for 3 min followed by several repeat washes with
sterile, distilled water to remove the bleach. Sheath leaves were isolated by cutting away the outer
leaf layers to expose the immature inflorescence and approximately 1–1.5 cm of the young sheath
leaf closest to the inflorescence was removed. The isolated leaves were plated on L7 medium [52]
supplemented with 3% w/v sucrose, 0.5 mg/L 2,4-D (Sigma-Aldrich, UK) and 10 mg/L AgNO3

(Sigma-Aldrich, UK), solidified with 5 g/L AgargelTM (Sigma-Aldrich, UK) in 9 cm petri dishes,
placing sufficient leaf sections to cover the central 2 cm2. The prepared leaves were transformed on
the same day as isolation. Particle bombardment was carried out according to Sparks and Jones [53].
Essentially, each promoter::GUS construct was precipitated onto 0.6 µm gold particles (Bio-Rad, Perth,
UK). The coated particles were delivered into immature leaves using the Bio-Rad PDS-1000/HeTM

particle gun with a rupture pressure of 650 psi and a vacuum of 28–29′ ′ Hg. Bombarded tissues were
cultured at 22 ◦C with a 12 h photoperiod. After 48 h, bombarded tissue was stained to assess GUS
activity as described below.

2.6. Histochemical GUS Assays

Histochemical localization of GUS activity in situ was assayed according to Jefferson et al. [54].
Infiltrated and wild type N. benthamiana leaves or bombarded wheat tissues were immersed in GUS
reaction buffer (1 mM X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronide), 100 mM phosphate buffer
pH 7.0, 0.1% v/v Triton X-100, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6. The wheat leaves were vacuum
infiltrated for a few minutes to promote penetration of the GUS reaction buffer. Tissues were then
incubated at 37 ◦C overnight. Chlorophyll was removed from the leaves by soaking in several changes
of 70% v/v ethanol until the blue GUS staining was visible. Tissue from wild type plants (WT) and
plants transformed with the bar only construct (CN) were used as a control in this analysis.

2.7. Production and Selection of Transgenic Wheat Plants

The recombinant plasmids pRRes:pSBPase::GUS, pRRes:FBPA::GUS (Supplementary Figure S2),
pSBPase::FLAG and pFBPA::FLAG (Supplementary Figure S3) were introduced into wheat cv.
Cadenza by particle bombardment of the scutellum of immature embryos, as described [53].
Essentially, each promoter::GUS construct was precipitated onto 0.6 µm gold particles (Bio-Rad,
UK) alongside a selectable marker construct pRRes1.111 which contains the bar gene under
control of the maize ubiquitin promoter with nos terminator to allow the selection of transformed
material [35,55]. The coated particles were delivered into immature wheat scutella as described
for transient expression analysis above. Bombarded tissues were cultured at 22 ◦C with a 12 h
photoperiod following the subculture and selection regime as in Sparks and Jones [53]. A total
of twenty-three independent transgenic lines were generated and confirmed to be carrying the
pRRes:pSBPase::GUS construct and fifteen plants were confirmed to be carrying the pRRes:pFBPA::GUS
construct using primers for gus: GusFwd: 5′ACTACGGGAAAGGACTGGAA′3 and GusRev:
5′GTCACAACCGAGATGTCCTC′3. The amplification reactions included 30 cycles of 1 min at
94 ◦C, 30 s at 57 ◦C and 45 s at 72 ◦C. Fifteen selected lines for construct pSBPase::FLAG (from
a pool of 43 independent lines) and fifteen selected lines for construct pFBPA::FLAG (from a pool
of 23 independent lines) were chosen and verified for the introduction of the cytochrome c6-FLAG
tagged sequence using primers C6Fwd: 5′CCATGGCCTCCAACTCCCTCATGTCCTGC′3 and C6Rev:
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5′CCAGCCCTTCTCGGACTGGGAGAGC′3. The presence of the selectable marker was verified using
primers BarFwd: 5′GTCTGCACCATCGTCAACC′3′ and BarRev: 5′GAAGTCCAGCTGCCAGAAAC′3.
The amplification protocol for the cytochrome c6-FLAG tagged sequence and selectable marker are as
follows: reactions included 30 cycles of 1 min at 94 ◦C, 30 s at 57 ◦C and 30 s at 72 ◦C. These plants
were self-pollinated and T1 and T2 plants used for further selection of stably transformed plants.
Several lines were also retained as controls which had gone through transformation. These lines either
contained no foreign DNA or had only the selectable marker bar construct present. Tissue was taken
from transgenic lines, T1 and T2, at various stages of development to study gus expression; young
leaves (~3 leaf stage), flag leaves, floral tissues and roots were assessed using a histochemical GUS
assay as described above [54].

2.8. Plant Growth Conditions

Seeds of the T1 and T2 generations were germinated and seedlings were grown in compost
(Levington F2S, Fisons, Ipswich, UK) in a climate controlled room for 3 weeks (22 ◦C, 12 h photoperiod).
Selected seedlings were then transferred into 4 L pots (1 plant per pot), to a controlled environment
greenhouse (25–32 ◦C day/18 ◦C night), with a 16 h photoperiod of natural irradiance (supplemented
with high pressure sodium lamps, to a minimum light level of 600 µmol m−2 s−1). All plants were
regularly watered and moved to minimize spatial variation of growth conditions [9].

2.9. RNA Isolation, cDNA Synthesis and qPCR

Leaf material (0.1 g fresh weight) was collected in 1.5 mL Eppendorf tubes and stored at
−80 ◦C. Tissue was ground on dry ice in an Eppendorf tube and total RNA extracted from wheat
leaf tissue as previously described [56] using the NucleoSpin® RNA Plant Kit (Macherey-Nagel,
Fisher Scientific, Loughborough, UK) and cDNA generated using the Fermentas RevertAid
Reverse Transcriptase kit as per manufacturer’s instructions (Fermentas Life Sciences, Paisley, UK).
Expression of the construct was determined from cDNA by qPCR and expressed relative to the
gene expression of the wheat endogenous SBPAse [9]. Cytochrome c6 was amplified using primers
Fwd: 5′ATCGACGCCATCACCTACCAGG′3 and Rev: 5′TCCTCGATGTCCTCGTCCACG′3 and
the endogenous wheat SBPase with primers Fwd: 5′TCCAAGAACGAGATCATCCG′3 and Rev:
5′TTAGGCGGTGGCGCCGACGGTGG′3. qPCR reactions were performed using SensiFast SYBR
No-ROX mix (Bioline Reagents Ltd., London, UK) as specified by the manufacturer. The amplification
reactions included 45 cycles of 5 s at 94 ◦C, 10 s at 60 ◦C and 5 s at 72 ◦C and determined from nine
technical reps. Fold expression was determined according to Pfaffl [57]. The PCR reaction of 25 µL
total volume contained the equivalent of 100 ng of RNA transcribed into cDNA.

2.10. Protein Extraction and Western Blot Analysis for FLAG Protein

Leaf samples (0.2 g fresh weight) were ground in liquid nitrogen, extracted and quantified
essentially as described by Harrison and Willingham [58,59]. Total protein (8 µg) of each sample was
loaded onto a 12% w/v SDS-PAGE gel, separated and transferred onto a nitrocellulose membrane.
The resulting membranes were probed using FLAG antibodies (Sigma-Aldrich, Gillingham, UK)
and detected by ECL chemiluminescence detection reagent (Thermo Scientific, Rockford, IL, USA)
using horseradish peroxidase conjugated secondary antibody and visualized by chemiluminescence
(PEQLAB Ltd., FUSION FX chemiluminescence detection system, Sarisbury Green, Fareham, UK).

3. Results

3.1. Identification and Analysis of Brachypodium distachyon SBPase and FBPA Promoters

To identify the promoter sequences from the B. distachyon SBPase (Bradi2g55150) and FBPA
(Bradi4g24367) genes, the phytozome database (https://phytozome.jgi.doe.gov/pz/portal.html) was
searched. A two-kilobase region upstream of the start codon (ATG) of both genes was isolated

https://phytozome.jgi.doe.gov/pz/portal.html
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(Figure 1 and Supplementary Figures S4 and S5). The isolated promoter sequences were analyzed
using PlantCare software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to identify
and characterize the regulatory elements present in the promoters and these elements were compared
with published material. Both promoters also contain a number of other cis-acting elements previously
shown to be involved in light responsiveness (Figure 1 and Table 1).

Figure 1. Schematic representation of a two-kilobase upstream region of the sedoheptulose-1,
7-bisphosphatase (SBPase) and fructose-1,6-bisphosphate (FBPA) genes from B. distachyon showing
potential regulatory motifs. ATG denotes the codon initiating translation of the SBPase and
FBPA proteins.

3.2. Agrobacterium-Mediated Transient Expression Analysis in Nicotiana benthamiana Leaves

To test the functionality of the SBPase and FBPA promoters in our chimearic gene constructs,
the N. benthamiana transient assay system was used. Our results showed that both of these promoters
were able to drive expression of the β-glucuronidase gene (gus) in young leaves of N. benthamiana
using the transcriptional fusion constructs pGW:pSBPase::GUS and pGW:pFBPA::GUS (Supporting
Figure S1). Leaves of Agrobacterium-infiltrated plants were subjected to GUS staining and a clear, strong
blue product was observed in the infiltrated leaves, which indicated gus expression driven by the
SBPase promoter (Figure 2A) and FBPA promoter (Figure 2B). In comparison, no GUS coloration was
observed in WT control leaves (Figure 2C).

Figure 2. Histochemical GUS assay of agroinfiltrated N. benthamiana leaves. The transient expression
assays were performed on four- to five-week old N. benthamiana leaves, incubated at 24 ◦C in
16 h/8 h light/dark for 72 h after infiltration prior to GUS staining: (A) gus expression driven by
the SBPase promoter; (B) gus expression driven by the FBPA promoter; and (C) control (wild type:
non-infiltrated leaf).

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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3.3. Transient Expression Analysis in Wheat

As a precursor to stable transformation in wheat, transient expression studies were carried out to
test the functionality of both promoters to drive gus expression in wheat leaves using the constructs
pRRes:pSBPase::GUS and pRRes:pFBPA::GUS (Supplementary Figure S2). Both promoters were shown
to drive gus expression in wheat leaves. Many blue spots or patches were observed signifying that the
gus transcript is being generated and translated into a functional protein (Figure 3).

Figure 3. Histochemical GUS assay for transient expression of B. distachyon SBPase and FBPA promoters
in wheat leaves. The transient assays were performed by particle bombardment of young wheat leaves
which were incubated at 22 ◦C in 12 h/12 h light/dark for 48 h prior to GUS staining: (A) gus
expression driven by the SBPase promoter; (B) gus expression driven by the FBPA promoter; (C) control
leaf bombarded without DNA.

3.4. Stable Expression Analysis in Wheat

To study gus expression driven by the B. distachyon SBPase and FBPA promoters at different stages
of wheat development and to confirm the suitability of these promoters for expressing transgenes
in wheat, stably transformed lines were generated by particle bombardment of wheat scutella using
constructs pRRes:pSBPase::GUS and pRRes:pFBPA::GUS.

Samples were taken for GUS staining from a range of tissues from the T1 transgenic plants,
including leaves (at two different growth stages: seedlings and flag leaves), roots and flowers.
Three independent SBPase promoter transgenic lines (R2P2, R5P3 and R9P2; Figure 4A) and three
independent FBPA promoter lines (R3P1, R3P4 and R5P1; Figure 4B), were analyzed and intense
GUS staining detected in leaves and flowers, but, as would have been expected no expression was
seen in the roots. GUS stained leaves of two positive lines expressing either the pRRes:SBPase::GUS
or pRRes:FBPA::GUS gene constructs were subject to microscopic investigation. GUS staining was
evident in both mesophyll and guard cells, but not in the midrib or veins of these plants (Figure 4C).
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Figure 4. Histochemical analysis of GUS activity in T1 wheat lines stably transformed with the
B. distachyon SBPase or FBPA promoter constructs. gus expression driven by (A) SBPase promoter and
(B) FBPA promoter in tissue from young seedlings, from flag leaves of mature plants and in flowers and
roots. WT = wild type infiltrated tissue is used as a control. (C) Microscopic observation of localization
of gus expression in T1 wheat leaves of two independent lines for each construct compared to plants
transformed with the bar (Nos:Basta) selectable marker gene construct only (pRRes1.111).

To confirm the stability and suitability of the B. distachyon SBPase and FBPA promoters to drive
the expression of gus in the next generation, GUS coloration was analyzed in T2 progeny arising
from the lines studied above (Figure 5). Histochemical staining of leaves at three different growth
stages (seedling, elongation and flag leaves), flowers and root tissues was carried out. GUS staining
showed strong positive blue coloration in all three growth stages of leaves and in flowers of wheat
plants, driven by either the B. distachyon SBPase promoter or FBPA promoter (Figure 5). Once again,
no histochemical coloration of root tissue was observed with either promoter.
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Figure 5. Histochemical analysis of GUS activity in T2 wheat lines stably transformed with the
B. distachyon SBPase or FBPA promoter constructs. Leaves were taken for GUS staining at three
different growth stages (seedling, elongation and flag leaf) together with samples from different tissues:
flowers and roots. Three different lines per promoter were analyzed and compared to WT (wild type)
and CN (control plants transformed with bar gene only).

3.5. Evaluation of the SBPase or FBPA Promoters to Drive Expression of an Introduced Coding Sequence
from Algae

To determine the range of expression levels that can be obtained using these promoters in stably
transformed wheat, the SBPase or FBPA upstream sequences were fused to the coding sequence of
a cytochrome c6-FLAG reporter (Supplementary Figure S3). The cytochrome c6-FLAG tagged construct
was used to demonstrate successful expression of a potentially useful transgene other than gus in
planta. Thirty confirmed primary transformed plants were analyzed by qPCR and a range of transcript
levels obtained. Transcript levels were compared to the expression of the endogenous wheat SBPase
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gene. The SBPase promoter::cytochrome c6-FLAG transcript levels ranged from 0% to 76% of SBPase
(Figure 6A) and the FBPA promoter::cytochrome c6-FLAG transcript levels ranged from 9% to 77%
of SBPase (Figure 6B) in the first 30 transformed lines. Immunoblot analysis of seven selected FBPA
promoter::CFLAG lines demonstrated that transcript levels also leads to an accumulation of protein
(Figure 6C).

Figure 6. Analysis of transcript expression of the codon optimized P. umbilicalis cytochrome c6 [12])
with a FLAG tag (CytC6-FLAG) gene driven by the B. distachyon (A) SBPase or (B) FBPA promoters
in stably transformed wheat T0 lines. Relative expression levels and range of expression in these
30 independent transgenic plants compared to the expression of the endogenous SBPase in the same
plants. Data are presented as a % of the endogenous SBPase expression and standard error of nine
technical reps are shown. (C) FLAG-tagged protein accumulation in a selection of FBPA promoter
wheat lines.

4. Discussion

In this study we have identified and tested two promoters from B. distachyon in wheat and shown
that they can be used to drive the expression of the gus gene in mesophyll tissue and that expression is
stable through subsequent generations. High levels of expression of introduced transgenes in wheat
leaves have been difficult to achieve. Attempts to use dicot promoters, those from rice and even
from wheat itself have often not been successful, with the promoters either failing or being ineffectual
(author’s unpublished results). The work here has demonstrated that B. distachyon promoter sequences
are functional in wheat, identifying a source of alternative promoters to those currently in use in
wheat transformation, offering tissue-specificity to drive selected transgenes. We have also shown
that N. benthamiana can be used to test promoters from B. distachyon prior to introduction into wheat.
This is consistent with recent results which have shown that the rubisco small subunit gene promoter
from wheat was functional in tobacco [39]. In plants expressing the FLAG-tagged cytochrome c6

protein under the control of either the SBPase or FBPA promoter, a range of transcript levels were seen
between the individual independent primary transformants. This result is not unexpected and has
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been attributed to chromosome position, copy number or the presence of repeat sequences [60–62] and
is known as “the position effect” [60,63–65]. The expression levels of this introduced gene can be as
high as 80% of that of the endogenous SBPase transcript. The latter point is important as although
GUS staining provides a convenient visual result for gene expression and tissue distribution, it did not
provide information on the levels of expression relative to an endogenous gene. Although gus transcript
levels could have been analyzed, it was important to demonstrate that these promoters could drive the
expression of additional relevant transgenes and drive both transcript and protein accumulation.

In this study we isolated a two-kilobase genomic region, directly upstream of the initiating ATG
for the B. distachyon SBPase and FBPA genes, with the view that this region would contain both
the core promoter elements (required for basal expression) and the cis-acting regulatory elements
found in the extended region upstream of the core. Comparison of these two-kilobase genomic
sequences to published literature allowed the identification of a number of DNA regulatory sequences.
The SBPase and FBPA promoters were found to contain putative TATA and CAAT box sequences
which, although not found in all plant genes, when present form part of the core region of the promoter.
In the SBPase gene a motif (TCTATCTTCT) located 41 bp upstream of the transcription initiation site
(indicated by the asterisk Figure 1) is a probable candidate for the TATA-box sequence [66]. In the
FBPA promoter two candidate TATA-box sequences (ATTCATATCC; TCATATCCTT) are found 61 bp
and 26 bp upstream of the transcription initiation site respectively [66]. Both the SBPase and FBPA
promoters identified in this study contain a putative CAAT-Box [67]. The CAAT-Box contains the
sequence 5′-CCAAT-3/5′-CAAAT-3 at its core and is a cis-acting regulatory element that potentially
binds a number of different transcription factors. CAAT-Boxes are generally found upstream of the
TATA box and although their position can be variable they are often reported to be 70–80 bp upstream
(Table 1).

Directly relevant to this study it is interesting to note that both the SBPase and FBPA promoters
also contain a number of YACT Mesophyll Expression Module (MEM) 1-motifs which have been shown
to direct expression in mesophyll cells [68]. The function of the MEM motif was demonstrated in genes
functioning in the C4 photosynthetic pathway which requires expression of genes to be separated
spatially between bundle sheath and mesophyll cells. There is evidence that the gene sequences are
also found in the C3 species but functional analysis in these plants remains to be confirmed [69].

There is very little information available on the regulation of expression of genes encoding
enzymes of the Calvin–Benson cycle in wheat, with the exception of SBPase and FBPase [70,71].
However, there is a large literature demonstrating the role of light in regulating the expression of
a number of Calvin–Benson cycle genes, across a range of species and this has led to the identification of
a number light regulatory motifs. For example analysis of the GapB promoter (B subunit of chloroplast
glyceraldehyde 3-phosphate dehydrogenase) from Arabidopsis thaliana in transgenic tobacco revealed
that the ATGAA(G/A)A consensus sequence is necessary for light induced expression of the GapB
gene [72]. The SBPase promoter contains two copies of these repeat sequences (ATGAAAA) and
the FBPA promoter contains one similar motif (ATGAAGC). The GapA promoter (A subunit of
chloroplast glyceraldehyde 3-phosphate dehydrogenase) contains 3 copies of a similar sequences
CAAATGAA(G/A)A, denoted as the Gap Box; the deletion of just one of these copies results in
a six-fold decrease in light induction and deletion of all three copies resulted in total loss of light
induction [73]. Very similar sequences are also found in both the SBPase (AAAATGAAAA) and
FBPA (CATATGAAGC) promoters isolated in this study. The Gap Box is not sufficient alone to
confer light induction but it acts together with the Activation Element (AE) Box [74], with the
consensus AGAATTCT sequence found in both the GapA and GapB promoters [75]. Here we have
identified similar sequences in the SBPase (AGAACTCT; AGAATTCT; AGAAATAT) and FBPA
(AGAAACAC; AGAAACAG; AGAATTGT; AGAATGTC) promoters (Table 1) indicating a similar
regulatory mechanism might exist in monocot species.

Both the SBPase and FBPA promoters were shown to contain a number of elements involved
in directing light responsive gene expression (G-Box; CACGTG [76–82]; CACGTA). The G-box
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has been found in the promoters of circadian-regulated genes in plants [83,84] and is essential for
phytochrome-regulated induction of transcription [77,85]. The related E-box core element (CANNTG),
which has a significant overlap with the G-Box, is important in mammalian circadian promoters [86,87].
Interestingly in plants, the E-box CANNTG is involved in seed-specific expression of the French bean
phaseolin [88], the 2S storage protein of Douglas-fir [89] and endosperm expression in coffee [34,90]
was present in the B. distachyon SBPase promoter. A number of experiments have shown that the E-Box
is an integral part of the circadian clock’s transcription-translation feedback loop [91,92]. Furthermore,
a CT-region (CTRR) located approximately 23 bp upstream of the E-Box is considered to be essential
for E-Box binding, transactivation and transcription of circadian genes in mice [91,92]. Each of the four
E-Boxes identified here in the SBPase promoter have an identifiable CTRR domain 21, 9, 12 and 7 bp
upstream of the E-Box. Corresponding E-box sequences were also identified in the FBPA promoter
and were found to be in similar positions to those identified in the SBPase promoter. The first, second,
third and fourth of these E-Boxes also followed identifiable CTRR domain at positions 13, 21, 14 and
14 bp upstream respectively [91]. Both the SBPase and FBPA promoter contain a single non-canonical
E-Box previously shown to be essential for circadian expression in skeletal muscle [93] (Table 1).

Regulatory cis-acting elements previously shown to be involved in light responsiveness were
also identified in both promoters (**ACGT** and *ACGT***). The motifs identified here are all similar
to regulatory sequences previously identified in Arabidopsis [94]. These same sequences are also
responsive to UV, drought and abscisic acid (ABA) and overlap with the G-Box motif CACGTC
described in several plant promoters [65–73]. Other light responsive elements (Box-1 [95,96]) have
also been identified in the SBPase and FBPA promoters as well as the light-responsive GAG-motif
identified in the FBPA promoter [95]. Furthermore, sequences similar to the PI-box and T-Box identified
in the GapB promoter [97] were present. The T-Box has also been identified in the geranylgeranyl
pyrophosphate synthase promoter from Ginkgo biloba [98]. Mutations in the PI-Box and T-Box resulted
in a reduction in light-activated gene transcription [97]. Furthermore, we also identified the SP1
motif in both the SBPase and FBPA promoters: SP1 is a light-responsive element previously identified
in promoters from Zea mays [99] and G. biloba [98]. Although this analysis provides circumstantial
evidence that the SBPase and FBPA promoters are regulated by light through a number of cis-acting
motifs, further work is required to provide a functional demonstration that this aspect of the regulation
is maintained in transgenic wheat.

Table 1. Cis-acting elements analysis of 5′-upstream regulatory elements and their positions in the
B. distachyon SBPase and FBPA promoters identified by PLANTCARE and literature search.

Name of the
Element Signal Sequence pSBPase Position pFBPA Position Functional Description Reference

Activation
Element
(AE)-box

AGAAAC(A/T)(A/T) 790, 859, 995 419, 1323, 1698,
1734

The AE Box and Gap Box act
together and are essential

components of light
responsive elements

[74,75]

ACGT-Box **ACGT**
*ACGT***

1214, 1289, 1852,
1934 1584 Responsive to light, UV,

drought and ABA [88]

Box-1 TTTCAAA
TTTGAAA 876 1163 Light responsive element [89,90]

CATT motif
GCATTC
CCAAT
CAAAT

1554 1559
1892

Part of a light responsive element.
Evolutionarily conserved in

eukaryotic organisms, including
fungi, plants, and mammals

[67]

MEM1-motif
YACT

CACT
TACT

241, 340, 755, 949,
1004, 1314, 1319,
1586, 1724, 1729,
1751, 1756, 2070
229, 593, 1082,

1569

205, 424, 857,
1176, 1260, 1988

226, 881, 982, 1046,
1243, 1250, 1600,
1666 1951, 1959

CACT key component of the
Mesophyll Expression Module

(MEM) 1 found in the
cis-regulatory element in the

phosphoenolpyruvate
carboxylase promoter of the

C4 dicot Flaveria trinervia

[68]
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Table 1. Cont.

Name of the
Element Signal Sequence pSBPase Position pFBPA Position Functional Description Reference

E-Box CANNTG 769, 848, 1587,
1703

687, 775, 954, 1536,
1840

An integral part of the circadian
clock’s transcription–translation

feedback loop
[86,87]

Non-canonical
E-Box CAGCTT 515 1006

An integral part of the circadian
clock’s transcription–translation

feedback loop
[93]

GAG-Motif AGAGAGT 146
Light responsive element

identified in the rbcS promoter
from Poplar

[95]

Gap-Box ATGAA(G/A)A 724, 1709 830

Identified in the GapB promoter.
Deletion of these repeats
abolished light induction

completely

[73]

Gap-Box CAAATGAA(G/A)A 721 827

GapA promoter contains three
sequences. Deletion of just one
results in a six-fold decrease in

light induction

[74]

G-Box

CACGTA
CACGTG
CACGTC

GTACGTG
TACGTG

CACATGG
CCACGTAA

1852, 1935
1585
598

1584

The G-box has been identified
in the promoters of

circadian-regulated genes in
plants and is important for

phytochrome-regulated
transcriptional induction. Confers
high-level constitutive expression

in dicot and monocot plants

[76–84]

TAAAGSTKST1 TAAAG 941, 954 129

Target site for trans-acting StDof1
protein controlling guard

cell-specific gene expression;
KST1 gene encodes a K+ influx

channel of guard cells

[100]

PI-Box

GTGATCAC
GTGATCAG
GTGATCAA
TTGATCAC

1036 804
1847

Identified in the GapB promoter.
Mutation resulted in a reduction

in light-activated gene
transcription

[97]

T-Box ACTTTG 242
Identified in the GapB promoter.

Mutation results in a reduction in
light-activated gene transcription

[97,98]

SP1 CC(G/A)CCC 1013 1510 Light responsive element
identified in Zea mays [98,99]

TGACG-motif TGACG 1288, 1742

Cis-acting regulatory
element involved in the

MeJA-responsiveness. Mutation
of the motif in the 35S promoter
causes a 50% drop in expression

in tobacco leaves

[101]

5. Conclusions

Here we present clear evidence that the genomic sequences from the promoter and associated
upstream regulatory regions of both the B. distachyon SBPase and FBPA genes are capable of driving
expression of transgenes in wheat leaves. Importantly, we show successful expression of the
GUS reporter gene in multiple independent lines in both the T1 and T2 generations of transgenic
wheat. Moreover, our data indicate that the levels of transcript expression attained when the algal
cytochrome c6 gene is introduced into transgenic wheat, under the control of either the SBPase or
FBPA promoter, can be close to that of the endogenous SBPase gene. Recent research has demonstrated
that manipulating photosynthesis using multigene approaches can significantly increase biomass and
seed yields in Arabidopsis and tobacco. The results presented here provide strong evidence that the
B. distachyon SBPase and FBPA promoter sequences can be used as tools for the production of transgenic
wheat, including multigene manipulation, with the goal of improving yield to meet global demand.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/7/2/27/s1.
Figure S1. Schematic of transcriptional gene fusion construct of the B. distachyon SBPase and FBPA promoters with
the β-glucuronidase (gus) reporter for expression analysis in N. benthamiana leaves. Genomic DNA of B. distachyon
leaves was used to amplify the native promoters of SBPase and FBPA. They were cloned into the pENTR vector
(Invitrogen). The resulting product was transferred into the (a) pGWB3 vector by LR recombination to make (b)
pGW:pSBPase::GUS and (c) pGW:pFBPA::GUS, Figure S2. Schematic of transcriptional gene fusion constructs
of the B. distachyon SBPase and FBPA promoters with the β-glucuronidase (gus) reporter for expression analysis
in wheat leaves. Genomic DNA of B. distachyon leaves was used to amplify the native promoters of SBPase and
FBPA and they were cloned into the corresponding restriction sites (pSBPase was cloned into the Mlul and AscI
restriction sites and pFBPA was cloned into the EcoRI and XmaI restriction sites) of the (a) pRRes14.041::GUS
vector to make (b) pRRes:pSBPase::GUS and (c) pRRES:pFBPA::GUS, Figure S3. Schematic of transcriptional
gene fusion constructs of the B. distachyon SBPase and FBPA promoters and coding sequences fused to the
cytochrome c6-FLAG sequence for expression analysis in wheat leaves. The cytochrome c6-FLAG-tagged protein
was cloned into the NcoI and EcoRV restriction sites of vector pRRes:pSBPase::GUS and pRRes:pFBPA::GUS,
simultaneously removing the intron and gus reporter gene to generate (a) pSBPase::FLAG and (b) pFBPA::FLAG
respectively, Figure S4. Sequence and regulatory motifs in the 2 kb upstream region of the B. distachyon SBPase
gene. The different coloured boxed sequences represent the promoter motifs (see Figure 1), Figure S5. Sequence
and regulatory motifs in the 2 kb upstream region of the B. distachyon FBPA gene. The different coloured boxed
sequences represent the promoter motifs (see Figure 1).
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