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Abstract: Recent in vivo assays of the responses of Rubisco to temperature in C3 plants have revealed
substantial diversity. Three cultivars of soybean (Glycine max L. Merr.), Holt, Fiskeby V, and Spencer,
were grown in indoor chambers at 15, 20, and 25 ◦C. Leaf photosynthesis was measured over the range
of 15 to 30 ◦C, deliberately avoiding higher temperatures which may cause deactivation of Rubisco,
in order to test for differences in temperature responses of photosynthesis, and to investigate in vivo
Rubisco kinetic characteristics responsible for any differences observed. The three cultivars differed
in the optimum temperature for photosynthesis (from 15 to 30 ◦C) at 400 µmol mol−1 external CO2

concentration when grown at 15 ◦C, and in the shapes of the response curves when grown at 25 ◦C.
The apparent activation energy of the maximum carboxylation rate of Rubisco differed substantially
between cultivars at all growth temperatures, as well as changing with growth temperature in two
of the cultivars. The activation energy ranged from 58 to 84 kJ mol−1, compared with the value of
64 kJ mol−1 used in many photosynthesis models. Much less variation in temperature responses
occurred in photosynthesis measured at nearly saturating CO2 levels, suggesting more diversity in
Rubisco than in electron transport thermal properties among these soybean cultivars.
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1. Introduction

The temperatures at which crop leaves accomplish photosynthesis vary diurnally, seasonally,
and with geographic location. Intraspecific variation in the response and acclimation of photosynthesis
to temperature has been studied extensively since the first infra-red CO2 analyzers came into use
in plant physiology [1,2]. Photosynthetic response and acclimation to temperature has often been
studied in crop species, such as barley, broad bean, soybean, sunflower, tomato, and turnip [3].
Intraspecific variation in responses to brief, extreme temperature events has also been documented in
maize, soybean, tomato and wheat [4–7]. However, studies of intraspecific variation in photosynthetic
response or acclimation to temperature in crops are rare. Intraspecific variation in response or
acclimation of photosynthesis to temperature could prove a useful avenue for crop improvement or for
the matching of plant physiological characteristics with climate. That strategy may avoid the inverse
relationship between leaf size and photosynthetic rate commonly found in studies of intraspecific
variation in photosynthesis in crops, which limits the usefulness of photosynthetic rate itself as a
selection criterion [8].

Photosynthesis of C3 species measured at high light and at the current atmospheric CO2

concentration has an optimum temperature which may vary with species, and sometimes with growth
temperature [9–11]. Growth at different temperatures may also affect the maximum photosynthetic rates
without changing the shape of the temperature response curves or the optimal temperature [3,10,11].
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Several recent studies have found considerable variation in the kinetic properties of Rubisco which
affected the response of photosynthesis to temperature [10,12–16], but none of these studies compared
cultivars of soybean.

Soybean (Glycine max L. Merr.), while of sub-tropical origin, is grown in North America from
southern Canada to the gulf coast states of the southern United States of America. Mean monthly
temperatures during soybean growing seasons range from about 15 ◦C in the north to about 27 ◦C in
the south, while midday mean temperatures during the growing seasons range from a low of about
20 ◦C in the early season in the north to about 32 ◦C in mid-season in the southern part of this range.
Thus, soybeans grown in North America are subject to a wide range of both growth and midday
temperatures, even without considering extreme temperature events.

This study examined photosynthetic responses to temperature in three cultivars of soybean when
grown at three growth temperatures in order to determine whether significant variation in response
exists within soybeans, and to identify which kinetic parameters may be involved in any such variation.
The hypothesis was that there would be insignificant variation in photosynthetic response to moderate
temperatures among these soybean cultivars.

2. Results

The net rate of CO2 assimilation (A) measured at 400 µmol mol−1 CO2 was highest at temperatures
which ranged from 15 to 30 ◦C, depending upon the cultivar and the growth temperature (Figure 1).
The 20 ◦C growth temperature produced leaves with the highest A, for measurement temperatures
of 25 and 30 ◦C, for all three cultivars. The shape of the response of A to measurement temperature
was least affected by growth temperature in Fiskeby V, and most affected in Spencer (Figure 1). Only
Spencer had highest A at 15 ◦C when grown at 15 ◦C. For the other two cultivars, highest A at 15 ◦C
occurred in leaves grown at 20 ◦C.
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When grown at 15 ◦C, A at a sub-stomatal CO2 concentration (Ci) of 200 µmol mol−1, increased
between 25 and 30 ◦C in Fiskeby V, and decreased between 25 and 30 ◦C in the other two cultivars
(Figure 2). Two-way ANOVA indicated significant effects of cultivar, temperature and their interaction
(Table A1). In contrast, values of A obtained at a measurement Ci of 500 µmol mol−1 increased from 15
to 30 ◦C in all three cultivars (Figure 2). Effects of cultivar and temperature were significant, but the
interaction term was not significant (Table A2). For all measurement CO2 conditions, A was highest in
Spencer and lowest in Fiskeby V at all temperatures, with Holt intermediate.
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Figure 2. Values of A measured at either sub-stomatal CO2 concentration (Ci) = 200 µmol mol−1, or at
Ci = 500 µmol mol–1 CO2 for three soybean cultivars grown at 15 ◦C. Each point represents a mean for
3 or 4 leaves. Statistical comparisons are given in Tables A1 and A2.

When grown at 20 ◦C, A did not differ between cultivars at any temperature or measurement
CO2 condition, and increased between 15 and 30 ◦C (Figure 3). For each measurement CO2 condition,
two-way analysis of variance indicated a significant effect of measurement temperature, but no cultivar
effects and no interaction effects (Tables A3 and A4).
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Figure 3. Values of A measured at either Ci = 200 µmol mol−1, or at Ci = 500 µmol mol−1 CO2 for
three soybean cultivars grown at 20 ◦C. Each point represents a mean for 3 or 4 leaves. Statistical
comparisons are given in Tables A3 and A4.

At the growth temperature of 25 ◦C, A at the measurement Ci = 200 µmol mol−1 changed
much less with temperature in Spencer than in Holt or Fiskeby V (Figure 4). For measurements
at Ci = 200 µmol mol−1, effects of cultivar, temperature, and their interaction were all significant
(Table A5). At 500 µmol mol−1 measurement Ci, all three cultivars had similar increases in A with
temperature (Figure 4), with only the effect of temperature being significant (Table A6).

Mesophyll conductance did not vary substantially with either cultivar or growth temperature,
but increased strongly with measurement temperature (Table 1). Because mesophyll conductance did
not vary among cultivars or with growth temperature, the values of respiration in the light (Rl) and
CO2 concentration at which carboxylation equals photorespiratory CO2 release (Γ*), which were only
used for the calculation of mesophyll conductance, are not shown.

The activation energy of the maximum carboxylation capacity of Rubisco (VCmax) was, in all
cases, lower by 2 to 3 kJ mol−1 when based on the CO2 concentration at Rubisco (Cc) compared with
Ci. The activation energy of VCmax based on Ci was consistently lower in Spencer than in the other
cultivars (Figure 5). The activation energy did not change substantially with growth temperature in
Spencer, but increased at growth temperatures of 20 and 25 ◦C in Fiskeby V and Holt (Figure 5).
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comparisons are given in Tables A4 and A6.

Table 1. Mesophyll conductance to CO2 movement from the intercellular airspace to the site of fixation
(gm) in three soybean cultivars grown at three temperatures, and measured over the range of 15 to
30 ◦C. Values are means for 3 or 4 leaves. Values followed by different letters are different at p = 0.05,
using analysis of variance on log transformed data in order make variances homogeneous.

Cultivar
Growth

Temperature (◦C)
Mesophyll Conductance (mol m−2 s−1)

Measurement Temperature (◦C)

15 20 25 30

Holt 15 0.40d 0.93c 1.6b 2.4a
Fiskeby V 15 0.30d 0.72c 1.3b 2.6a
Spencer 15 0.28d 1.10c 1.5b 2.5a

Holt 20 0.31d 0.93c 1.7b 2.4a
Fiskeby V 20 0.35d 0.77c 1.5b 2.3a
Spencer 20 0.41d 0.95c 1.8b 2.6a

Holt 25 0.38d 0.85c 1.8b 2.3a
Fiskeby V 25 0.45d 0.75c 1.7b 2.3a
Spencer 25 0.33d 0.85c 1.6b 2.5a
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Figure 5. The activation energy (Ea) of the maximum carboxylation capacity (VCmax) of Rubisco based
on Ci, for three cultivars of soybean grown at three temperatures (15, 20, or 25 ◦C). Each column
represents a mean for 3 or 4 leaves. Different letters indicate significant differences at p = 0.05, using
analysis of variance.

3. Discussion

This work indicated a wide range of responses of photosynthesis to growth and measurement
temperature within only three commercial cultivars of soybean. Photosynthetic rates at high light
and at air levels of CO2 varied by at least a factor of 1.8 among the three cultivars at all measurement
temperatures examined (15 to 30 ◦C), and the optimum temperatures for photosynthesis at air levels of
CO2 ranged from at least 15 to 30 ◦C.

The large impact that differences in the activation energy of VCmax can have on responses of
photosynthesis to temperature is illustrated in Figure 6, which shows photosynthetic rates at a Cc of
250 µmol mol−1 for a fixed value of VCmax at 15 ◦C, combined with different activation energies of
VCmax. At 30 ◦C, a 1.33× range in activation energy (from 60 to 80 kJ mol–1) would result in a 1.56×
range in A. The range of activation energy values for VCmax (58 to 84 kJ mol−1) observed in this study is
comparable to the variation among herbaceous species found by Hikoska et al. [10], and those reviewed
by Kattge and Knorr [17], and also to that reported from temperature acclimation experiments with
quinoa [18]. Others have also found variation in the activation energy of Rubisco among species from
different climates [14], within the Triticeae [15] and within the Paniceae [16].

In addition to differences in the response of the VCmax of Rubisco to measurement temperature among
the soybean cultivars studied here, approximately two-fold variation in the value of VCmax measured at
15 ◦C also occurred among these three cultivars when grown at 15 and 25 ◦C (Figures 2 and 4). Variation
in the response of VCmax to growth temperature among species and ecotypes is well known [3,19], but
the possibility of intraspecific variation in crop species has received little attention to date. The cultivar
Spencer had the highest photosynthetic rates of the three cultivars at air levels of CO2 when grown
and measured at the lowest temperature, suggesting that it was well adapted to lower temperatures.
The cost of this adaptation to low temperatures was presumably a larger investment in Rubisco protein
per unit leaf area [9,11]. The other two cultivars could achieve as high rates of photosynthesis at
high temperatures as Spencer despite presumably lower investment in Rubisco protein, because of
their higher activation energies of VCmax of Rubisco. Among these soybean cultivars, intraspecific
variation in the temperature dependence of VCmax was much larger than differences in the temperature
dependence of maximum rates of electron transport Jmax. Consequently, the ratio of VCmax to Jmax

varied substantially among the cultivars, and with growth and measurement temperature, rather
than being relatively constant, as suggested by some studies [20,21]. The temperature dependence of
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photosynthesis at current air levels of CO2 was much more closely related to VCmax than to Jmax in
these soybean cultivars, but that could change with rising atmospheric CO2.
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of Rubisco.

Based on photosynthetic rates measured at current air levels of CO2, the cultivar Spencer seemed
the best adapted to cool growth and measurement temperatures, as it had the highest rates of the
three cultivars when grown at 15 ◦C and measured at 15 and 20 ◦C. The cultivar Holt seemed the best
adapted to warm temperatures, having the highest photosynthetic rate among the three cultivars when
measured at 30 ◦C, for plants grown at 25 ◦C. It may be useful to consider photosynthetic adaptation to
temperature as an additional criterion for developing soybean cultivars for different locations.

4. Materials and Methods

Seeds of three cultivars of soybean (Glycine max L. Merr.), Holt, Fiskeby V, and Spencer were
obtained from the USDA germplasm collection, and were grown in indoor, controlled environment
chambers. Seeds were sown in 15 cm diameter plastic pots filled with a medium grade of vermiculite.
Pots were flushed daily with a complete nutrient solution containing 14.5 mM nitrogen. Plants
were grown in two M-12 chambers made by Environmental Growth Chambers (Chagrin Falls, Ohio)
equipped with metal halide and high pressure sodium lamps. Twelve hours per day had light at
1000 µmol m−2 s−1 photosynthetic photon flux density (PPFD). Air temperature was controlled at
15, 20, or 25 ◦C, with respective dew point temperatures of 8, 13, and 19 ◦C. Constant temperatures
were chosen in order to avoid possibly stressful low night temperatures for the low temperature
treatment. All three cultivars were grown together in each chamber, with temperatures randomly
assigned to chambers in successive “runs”. Each “run” had three pots of each cultivar, with one plant
per pot. A total of nine “runs” were grown in order to obtain data on all of the various photosynthetic
parameters. Photosynthetic characterization was accomplished using third main stem trifoliolate
leaves within a few days after those leaves had reached maximum area, when tests showed that
photosynthetic properties were stable over several days.
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Basic responses of photosynthesis to temperature were obtained by measuring responses of A
to external CO2 concentrations from 100 to 1200 µmol mol−1 at temperatures of 15, 20, 25, and 30 ◦C.
In all cases, 1200 µmol mol−1 CO2 was saturating to A. Higher temperatures, which could lead to
deactivation of Rubisco [22], were deliberately avoided. These measurements were made on three
or four plants of each cultivar for each growth temperature. The small number of replicate plants
was justified by the low leaf to leaf variation, as indicated by low values of residual mean squares
(Tables A1–A6), as can also be seen in the example of an A vs. Ci curve in Figure A1. Gas exchange
measurements were made with a CIRAS-3 portable photosynthesis system (PPSystems, Amesbury
MA) operated within a controlled environment chamber. During the gas exchange measurements, leaf
temperature was controlled to ± 0.3 ◦C, the PPFD was 1500 µmol m−2 s−1, and the leaf to air water
vapor pressure deficit ranged from about 0.9 kPa at 15 ◦C to about 1.4 kPa at 30 ◦C. The temperature of
the controlled environment chamber was set to match the target leaf temperature, and the chamber
PPFD was 1000 µmol m−2 s−1.

Responses of A to sub-stomatal CO2 concentration (Ci) were determined using either traditional
steady-state measurements at external CO2 concentrations of 400, 100, 150, 200, 250, 300, 400, 500,
600, 800, 1000, and 1200 µmol mol−1 sequentially, or transient measurements during linear ramping
of CO2 concentrations from 100 to 1200 µmol mol−1 [23]. The CO2 ramping technique compares
apparent CO2 fluxes for an empty chamber with those when a leaf is present to obtain values of A at
approximately 6 µmol mol−1 CO2 intervals. Because stomatal conductance did not change during the
CO2 ramping, values of Ci could be calculated for each value of A. Details of the CO2 ramping method
using the CIRAS-3 instrument, and examples comparing A vs. Ci curves obtained by ramping and by
steady-state measurements are given in Bunce (2018) [23]. The advantage of the CO2 ramping method
is that a complete A vs. Ci curve could be obtained in about 5 min, compared with about 30 min for a
steady-state response curve. For each cultivar, growth temperature, and measurement temperature,
comparisons were made of A vs. Ci curves obtained on the same leaf by the two methods to verify that
photosynthetic parameters obtained by both methods did not differ substantially in this experiment.

Mesophyll conductance (gm) for CO2 movement from intercellular airspace to the site of fixation
was measured for each growth and measurement temperature in all cultivars. Mesophyll conductance
was determined from the oxygen sensitivity of photosynthesis in the Rubisco-limited region [24].
Because that method of measuring gm depends upon knowing values of respiration in the light (Rl)
and the CO2 concentration at which carboxylation equals photorespiratory CO2 release (Γ*), Rl and Γ*
were also measured. Γ* was measured from the intersection of A vs. Ci curves at high and low PPFD,
using the precautions detailed by Walker and Ort (2015) [25]. Rl was determined by extrapolating A vs.
Ci curves measured at 2% O2 to zero Ci. The values of Rl and Γ* measured for each leaf were then used
to calculate gm by the oxygen sensitivity method [24]. Prior work in soybean indicated that gm did not
vary with Ci [26]. The CO2 concentration at Rubisco (Cc) was then calculated from A and Ci, using
Cc = Ci – A/gm for each set of values of A and Ci.

The maximum carboxylation capacity of Rubisco (VCmax) was then estimated from the initial
slopes of A vs. Ci and A vs. Cc curves for each leaf, growth temperature, and measurement temperature,
using the temperature response functions of Bernacchi et al. [27]. The temperature dependencies of
VCmax based on Ci and Cc were summarized by their activation energies over the range of 15 to 30 ◦C.
Activation energy was calculated as the slope of 1/VCmax vs. 1/T (in ◦K). No deactivation term was
used, since high temperatures causing deactivation were not used in this study.

Responses of photosynthesis to CO2 for each cultivar, growth temperature, and measurement
temperature were summarized as A at an external CO2 (Ca) of 400 µmol mol−1, which is approximately
the current atmospheric CO2, A at Ci = 200 µmol mol−1 as an indication of VCmax, and A at
Ci = 500 µmol mol−1, as an indication of the electron transport-limited A (Jmax). These parameters
were calculated for each leaf from the A vs. Ci response curves, and two-way ANOVA was used to test
for effects of cultivar, temperature, and their interaction separately for the three growth temperatures,
for each photosynthetic parameter.
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Appendix A

Table A1. Analysis of variance for photosynthetic rates measured at 200 µmol mol–1 Ci for three
soybean cultivars grown at 15 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 278 139 196 <0.0001

Temperature 3 8.19 2.73 3.85 0.0221

C × T 6 51.6 8.60 12.2 <0.0001

Residual 24 17.0 0.708

Table A2. Analysis of variance for photosynthetic rates measured at 500 µmol mol−1 Ci for three
soybean cultivars grown at 15 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 890 445 113 <0.0001

Temperature 3 1091 364 92.5 <0.0001

C × T 6 66.5 11.1 2.82 0.0320

Residual 24 94.3 3.93

Table A3. Analysis of variance for photosynthetic rates measured at 200 µmol mol−1 Ci for three
soybean cultivars grown at 20 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 0.945 0.472 0.484 0.626

Temperature 3 418 139 143 <0.0001

C × T 6 7.05 1.18 1.20 0.327

Residual 36 35.2 0.976

Table A4. Analysis of variance for photosynthetic rates measured at 500 µmol mol−1 Ci for three
soybean cultivars grown at 20 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 41.0 20.5 0.616 0.546

Temperature 3 2413 714.6 21.5 <0.0001

C × T 6 186 30.9 0.929 0.486

Residual 36 1198 33.3

Table A5. Analysis of variance for photosynthetic rates measured at 200 µmol mol−1 Ci for three
soybean cultivars grown at 25 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 3.50 1.75 3.00 0.0687

Temperature 3 303 101 173 <0.0001

C × T 6 93.5 15.6 26.7 <0.0001

Residual 36 14.0 0.583



Plants 2019, 8, 443 10 of 11

Table A6. Analysis of variance for photosynthetic rates measured at 500 µmol mol−1 Ci for three
soybean cultivars grown at 25 ◦C.

Source Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Cultivar 2 30.5 15.3 14.1 <0.0001

Temperature 3 3068 1023 944 <0.0001

C × T 6 149.5 24.9 23.0 <0.0001

Residual 24 26.0 1.08
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