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Abstract: Oxygen (O2)-evolving photosynthetic organisms oxidize the reaction center chlorophyll,
P700, in photosystem I (PSI) to suppress the production of reactive oxygen species. The oxidation
of P700 is accompanied by alternative electron flow in PSI (AEF-I), which is not required for
photosynthetic linear electron flow (LEF). To characterize AEF-I, we compared the redox reactions
of P700 and ferredoxin (Fd) during the induction of carbon dioxide (CO2) assimilation in wheat
leaves, using dark-interval relaxation kinetics analysis. Switching on an actinic light (1000 µmol
photons m−2 s−1) at ambient CO2 partial pressure of 40 Pa and ambient O2 partial pressure of 21 kPa
gradually oxidized P700 (P700+) and enhanced the reduction rate of P700+ (vP700) and oxidation rate
of reduced Fd (vFd). The vFd showed a positive linear relationship with an apparent photosynthetic
quantum yield of PSII (Y[II]) originating at point zero; the redox turnover of Fd is regulated by LEF
via CO2 assimilation and photorespiration. The vP700 also showed a positive linear relationship with
Y(II), but the intercept was positive, not zero. That is, the electron flux in PSI included the electron
flux in AEF-I in addition to that in LEF. This indicates that the oxidation of P700 induces AEF-I.
We propose a possible mechanism underlying AEF-I and its physiological role in the mitigation of
oxidative damage.

Keywords: charge recombination; cyclic electron flow; ferredoxin; photosystem I; P700; reactive
oxygen species

1. Introduction

Suppression of the carbon dioxide (CO2) assimilation efficiency of photosynthesis under conditions
of high light intensity, low/high temperature, or drought decreases the regeneration efficiency of
the electron acceptor (NADP+) in photosystem I (PSI) and increases the risk of the accumulation of
electrons in PSI of thylakoid membranes [1–5]. The reaction center chlorophyll (Chl), P700, is the
electron source in PSI and drives the electron transport reaction from plastocyanin (PC) to NADP+

through ferredoxin (Fd). In the sunflower (Helianthus annuus), exposure of intact leaves to repetitive
short-pulse high light intensity (rSP-illumination treatment) in the dark inactivates the PSI electron
transport reaction [6]. Short-pulse illumination causes the accumulation of electrons on the acceptor
side of PSI, which stimulates the production of reactive oxygen species (ROS) such as superoxide
radicals and singlet oxygen [6–8]. By contrast, the rSP-illumination treatment under steady-state actinic
light (AL) oxidizes P700, but does not lead to the accumulation of electrons or inactivation of PSI.
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These data suggest that the accumulation of electrons on the acceptor side of PSI increases the risk of
ROS production, which inactivates PSI and CO2 assimilation [9–11].

Photosynthetic organisms employ diverse molecular mechanisms for the oxidation of P700 in PSI.
The stimulation of photo-excited P700 (P700*) oxidation and/or suppression of the reduction of oxidized
P700 (P700+) during the turnover of P700 in PSI accelerates P700 oxidation. Additionally, flavodiiron
(FLV)-dependent electron flow and photorespiration stimulate P700* oxidation to maintain P700 in an
oxidized state [10]. Furthermore, photosynthetic linear electron flow (LEF) during CO2 assimilation and
photorespiration induces the accumulation of protons (H+) in the lumen of the thylakoid membrane.
The acidification of the luminal side suppresses cytochrome b6/f -complex-catalyzed plastoquinol
oxidation, which contributes to the oxidation of P700 [4,12]. The accumulation of H+ is controlled by
ATP synthase-mediated utilization of ADP and Pi in the thylakoid membrane during CO2 assimilation
and photorespiration [10,13–16]. These molecular mechanisms that lead to the oxidation of P700 are
collectively referred to as the P700 oxidation system [10].

Enhanced electron fluxes in both FLV-dependent electron flow and photorespiration contribute
to the oxidation of P700 in PSI, as described above. On the other hand, we have observed that P700
oxidation is accompanied by excess electron flow in PSI, which is not driven by LEF; this excess
electron flow is referred to as the alternative electron flow in PSI (AEF-I) [17,18]. In this study,
we performed a molecular characterization of AEF-I in wheat (Triticum aestivum) leaves using the
DUAL/KLAS-NIR spectrophotometer (Walz, Germany), a novel spectrophotometer that specifically
detects P700+, oxidized PC (PC+), and reduced Fd (Fd−) [19,20]. During the induction of AEF-I, we
evaluated the relationship among the redox states of P700, PC, and Fd. Furthermore, we studied
the relationship among the reduction rates of both P700+ and PC+ and oxidation rate of Fd− using
dark-interval relaxation kinetics (DIRK) analysis [1,21]. These analyses helped us understand the
mechanism that regulates the activation of AEF-I and the relationship between P700 oxidation and AEF-I
activity. Furthermore, we investigated the physiological function of P700 oxidation in photosynthetic
organisms. The redox turnover rate of P700 was much higher than that of Fd and showed an absolute
dependence on the electron flux in the LEF in wheat leaves. In other words, electron flux in AEF-I was
induced by P700 oxidation and functioned within PSI. On the other hand, P700 oxidation contributed
to the oxidation of Fd−, thus revealing a novel function of P700 oxidation. We propose a molecular
mechanism for AEF-I and its physiological function in the mitigation of oxidative stress by suppressing
the production of ROS in PSI.

2. Results

2.1. Effect of Ambient CO2 Partial Pressure on the Reduction Rates of PC+ and P700+ and Oxidation Rate of Fd−

To modulate the electron flux in the LEF in wheat leaves, we manipulated the partial pressure
of ambient CO2 (pCO2). Generally, a reduction in pCO2 decreases the electron flux in the LEF,
thus oxidizing the reaction center Chl, P700, in PSI [17,18]. This situation is advantageous, as it
enhances our understanding of the effects of P700 oxidation on the relationship between P700+

reduction rate and Fd- oxidation rate.
We set pCO2 at 40, 20, and 5 Pa in a stepwise manner, with a photon flux density of 1000 µmol

photons m−2 s−1 and an ambient oxygen partial pressure (pO2) of 21 kPa, in wheat leaves. The typical
kinetics of the reduction of PC+ and P700+ and oxidation of Fd− at the highest and lowest pCO2

(40 and 5 Pa, respectively) were obtained using DIRK analysis after the electron flux in LEF reached
a steady state, which was determined based on the stable values of quantum yield of PSII (Y[II])
(Figure 1) [21,22].
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Figure 1. DIRK analysis of the decay of oxidized P700 (P700+), PC (PC+), and reduced Fd (Fd−) in
wheat leaves after turning off actinic light (AL) illumination. Changes in the redox state of P700, PC,
and Fd were monitored using a Dual/KLAS-NIR spectrophotometer [19,20]. To determine the reduction
rates of P700+ and PC+ and oxidation rate of Fd− in wheat leaves under the illuminated condition, AL
was transiently turned off at time zero for 400 ms. The initial slope of the decrease in P700+, PC+, and
Fd− at time zero indicated the reduction rates of P700+ and PC+ and oxidation rate of Fd−. The initial
slope changes of P700+, PC+, and Fd− were characterized by averaging 70 sets of measurements at
25 ◦C leaf temperature, 21 kPa pO2, and 1000 mol photons m−2 s−1 light intensity, with either 40 Pa
pCO2 (A) or 5 Pa pCO2 (B) for 110 ms after the AL was turned off. These data were obtained at a steady
state, which was confirmed by the achievement of stable Y(II).

The steady-state level of P700+ under AL illumination at 40 Pa pCO2 (Figure 1A) was lower than
that at 5 Pa pCO2 (Figure 1B). Additionally, the steady-state level of PC+ at 40 Pa pCO2 (Figure 1A)
was slightly lower than that at 5 Pa pCO2 (Figure 1B), whereas the steady-state level of Fd− at 40 Pa
pCO2 was higher than that at 5 Pa pCO2 (Figure 1B).

In the DIRK analysis, AL illumination was transiently turned off for 400 ms. From the decay of
oxidized P700 (P700+), oxidized PC (PC+) and reduced Fd (Fd−), reduction rates of P700+ and PC+ and
oxidation rate of Fd− under AL illumination were estimated [21]. The rate of decrease in P700+ and
PC+ and the reduction rate of P700+ and PC+ at 40 Pa pCO2 (Figure 1A) were higher than those at 5 Pa
pCO2 (Figure 1B). Similarly, the rate of decrease in Fd− and the oxidation rate of Fd− at 40 Pa pCO2

(Figure 1A) was higher than that at 5 Pa pCO2 (Figure 1B). These results indicate that the turnover
rates of redox reactions of P700+, PC+ and Fd− at 40 Pa pCO2 are higher than those at 5 Pa pCO2.

We plotted the steady-state levels of P700+, PC+, and Fd− against Y(II) (Figure 2). Lowering the
pCO2 decreased Y(II), indicating the suppression of LEF activity. With the reduction in Y(II), the level
of PC+ increased (linear regression line: intercept = 90 ± 3 [p < 0.001]; slope = −29 ± 18 [p > 0.1];
coefficient of determination = 0.176 [p > 0.1]), whereas that of Fd− decreased (linear regression line:
intercept = 35 ± 4 [p < 0.001]; slope = 16 ± 18 [p > 0.1]; coefficient of determination = 0.066 [p > 0.1]).
Like PC+, the level of P700+ also increased in response to the decrease in Y(II) (linear regression
line: intercept = 74 ± 3 [p < 0.001]; slope = −120 ± 14 [p < 0.001]; coefficient of determination
= 0.845 [p < 0.001]), which was consistent with the results of both Golding and Johnson [17] and
Miyake et al. [18]. Furthermore, the level of non-photochemical quenching of Chl fluorescence (NPQ)
increased with the decrease in Y(II) (Figure S1). The decrease in pCO2 induces lumen acidification of
thylakoid membranes, which drives NPQ induction and P700 oxidation.

Next, we evaluated the reduction rates of both P700+ and PC+ and the oxidation rate of Fd− under
steady-state conditions, using DIRK analysis (Figure 3). It is assumed that the initial rates of the redox
changes in these components after the introduction of transient darkness reflect their rates of reduction
(P700+ and PC+) or oxidation (Fd−) during illumination right before the darkness [21]. The relative
reduction rates of P700+ (vP700) and PC+ (vPC) and relative oxidation rate of Fd− (vFd), obtained from
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the initial 5 ms changes after turning off AL, were expressed as the percentage relative to the maximal
level of each component. Initial changes of Fd− oxidation was estimated under different pCO2 values,
while simultaneously measuring Y(II), and plotted against Y(II). The relative rate of Fd− oxidation
clearly showed a positive linear relationship with Y(II) (linear regression line: intercept = 0.3 ± 0.3
[p > 0.05]; slope = 41.1 ± 1.3 [p < 0.001]; coefficient of determination = 0.987 [p < 0.001]). These results
indicate that the turnover rate of Fd is determined by the photosynthetic LEF, which includes both
CO2 assimilation and photorespiration; these results are consistent with those of a previous study
examining Arabidopsis thaliana leaves [22].Plants 2019, 8, x FOR PEER REVIEW 4 of 12 
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Figure 2. Relationships of P700+, PC+, and Fd− with an apparent Y(II) in wheat leaves. Levels of
P700+, PC+, Fd− and Y(II) were measured simultaneously at 25 ◦C leaf temperature, 21 kPa pO2, and
1000 mol photons m−2 s−1 light intensity by changing the pCO2 from 40 Pa to 20 Pa and then to 5 Pa
in a stepwise manner. Data for P700+, PC+, and Fd− were collected from five plants. A decrease in
pCO2 lowered Y(II). The steady states for measurements at several pCO2 values were confirmed by the
achievement of stable Y(II). Open circle, PC+; closed circle, P700+, reverse triangle, Fd−.Plants 2019, 8, x FOR PEER REVIEW 5 of 12 
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Figure 3. Relationships of vPC, vP700 and vFd with the apparent Y(II) in wheat leaves. Data points
were expressed as relative changes (%) for 5 ms as initial changes from five plants (n = 5) after turning
off of the AL, as described in Figure 1. A decrease in pCO2 lowered Y(II). Open circle, vPC; closed
circle, vP700; reverse triangle, vFd.
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Furthermore, the relative reduction rate of P700+ (vP700) showed a positive linear relationship
with Y(II) (linear regression line: intercept = 16.6 ± 1.4 [p < 0.001]; slope = 92 ± 7 [p < 0.001]; coefficient
of determination = 0.932 [p < 0.001]) (Figure 3). Unlike the relationship of vFd with Y(II), the intercept
of the linear relationship of vP700 with Y(II) was not zero, indicating potential turnover of P700 in PSI
at lower electron flux in LEF, as shown at zero of Y(II). This suggests that Fd-independent electron flow
in PSI could function under suppressed photosynthesis.

The relative reduction rate of PC+ (vPC) also showed a positive linear relationship with Y(II)
(linear regression line: intercept = −0.1 ± 0.8 [p > 0.1]; slope = 15 + 4 [p < 0.01]; coefficient of
determination = 0.534 [p < 0.01]) (Figure 3). Like Fd, the redox reaction of PC was mainly determined
by LEF.

2.2. AEF-I Functions in the Induction of Photosynthesis

We showed that Fd-independent electron flow, which is referred to as AEF-I, functioned within
PSI (Figure 3). Next, we tried to detect the electron flux in AEF-I during the induction of photosynthesis.
When the AL was switched on, both P700 and PC were oxidized with a lag time in the first phase
(phase I) (Figure 4A,B), reaching maximum oxidation (75% and 90%, respectively) at approximately
80 s in the second phase (phase II). In the third phase (phase III), the level of P700+ declined by
approximately 40%, whereas that of PC+ remained largely unchanged. Illumination using AL rapidly
increased the level of Fd− to approximately 85% of that in phase I (Figure 4C). On the other hand,
approximately 45% of Fd− was oxidized at 80 s in phase II, and the level of Fd− gradually decreased in
phase III.
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Figure 4. Responses of P700+, PC+, and Fd− during the induction of photosynthesis in wheat leaves.
Wheat leaves were illuminated using AL, which was turned on at 0 s. Levels of P700+ (A), PC+ (B), and
Fd− (C) were measured simultaneously at 25 ◦C leaf temperature, 40 Pa pCO2, 21 kPa pO2, and 1000
mol photons m−2 s−1 light intensity. Data represent mean ± standard deviation (SD; n = 5). I, phase I;
II, phase II; III, phase III.

We evaluated the changes in vP700, vPC, and vFd by DIRK analysis during the photosynthesis
induction, where the redox changes of P700, PC and Fd showed three phases (phase I, II, and III:
Figure 4). These facts suggested that each redox reaction rate would change in three phases (Figure 5).
On AL illumination, vP700 increased to a maximum at approximately 250 seconds, with a lag time in
phase I (Figure 5A). By contrast, vPC decreased considerably to levels approximating zero (Figure 5B),
probably because of the rapid oxidation of PC− by P700+, the level of which was in excess of 20%,
as described above [21,23]. Change in vFd exhibited a complex pattern; vFd decreased rapidly from 3
to 2 (%/5 ms) over 20 s in phase I after the AL was switched on, then increased from 2 to 5 (%/5 ms)
in phase II, and continued to increase in phase III, reaching a maximum of 12 (%/5 ms) at 800 s
(Figure 5C). The pattern of increase in vFd resembled that observed in Y(II) during the induction of
CO2 assimilation (Figure S2) [24]. In the lag phase of the induction of CO2 assimilation (phases I
and II), the behavior of Y(II) did not match that of the net CO2 fixation rate, where an increased Y(II)
showed that photorespiration would function. Photorespiration would start when the AL was switched
on and would drive the photosynthetic LEF as a major electron sink in the lag phase (Figure 5C).
A rapid start of photorespiration during the induction of CO2 assimilation has been demonstrated
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previously [25]. The increase in vFd in phase III was likely driven by the activated photosynthesis and
photorespiration [24].
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Figure 5. Responses of vP700, vPC, and vFd during the induction of photosynthesis in wheat leaves.
Wheat leaves were illuminated using AL, which was turned on at 0 s. Values of vP700 (A), vPC (B),
and vFd (C) were measured simultaneously at 25 ◦C leaf temperature, 40 Pa pCO2, 21 kPa pO2, and
1000 mol photons m−2 s−1 light intensity, as described in 4.3. The transient (400 ms) darkness for the
DIRK analysis was introduced at the indicated time points. Data represent mean ± SD (n = 5). I, phase
I; II, phase II; III, phase III.

The behavior of the increase in vFd differed from that of vP700. Since vFd reflects the electron
flux in LEF and vP700 can function independent on vFd (Figure 3), rapid increase of vP700 in phase II
would show the activation of AEF-I. That is, during the induction of photosynthesis, AEF-I functions
with the oxidation of P700 (Figure 4).

3. Discussion

We examined the effect of P700 oxidation on the redox state of Fd and activation of AEF-I.
Switching on the AL to induce CO2 assimilation reduced Fd to approximately 90%; subsequently,
the level of Fd− decreased to 45%, while that of P700+ increased to approximately 80% (Figures 4 and 5).
These results indicate that the limitation of P700 turnover in PSI shifted from the acceptor side to the
donor side [4,10,12,26]. The donor side limitation of P700 turnover was induced by enhanced LEF,
as observed by the increase in vFd (phase II in Figures 4 and 5), which contributed to P700 oxidation.
The oxidation of P700 then induced AEF-I (Figures 5 and 6).

We presume that charge recombination in PSI drives AEF-I (Figure 6). Once P700 is excited to P700*,
it undergoes charge separation to produce P700+ and an electron [27–30]. The electrons released from
P700* flow toward Fd via four electron-transfer cofactors: A0A/A0B, A1A/A1B, Fx, and [FA/FB] [31–35].
The electrons accumulated in these cofactors then flow toward P700+; this phenomenon is referred to
as a charge recombination. During this phenomenon, P700+ functions as an electron sink in the PSI
of thylakoid membranes. The reduced electron-transfer cofactors A0A/A0B, A1A/A1B, Fx, and [FA/FB]
recombine with P700+ in approximately 30 ns, 20 µs, 0.5–2 ms, and 100 ms, respectively. In the present
study, the half-time of the reduction of P700+ was in the same range as the recombination rate of P700+

with Fx or [FA/FB]. We propose that the AEF-I is driven by charge recombination of P700+ with the
reduced form of Fx or [FA/FB] in PSI (Figure 6).

These electron-transfer cofactors in PSI donate electrons to O2 to produce superoxide
radicals [6–8,36–38]. The O2 reduction rate constants of these cofactors are in the order of
106 M−1 s−1 [32]. The apparent Km for O2 in the photoreduction of O2 by PSI in thylakoid membranes
is approximately 20 µM, which is approximately 1/10 of the O2 concentration in water equilibrated
with atmospheric O2 (20.95%) [39]. This means that the photoreduction of O2 to superoxide radicals in
thylakoid membranes is not limited by the availability of O2, but by that of electron donors on the
reducing side of PSI. The accumulation of electrons in the electron-transfer cofactors, A0A/A0B, A1A/A1B,
Fx, and [FA/FB], is dangerous for chloroplasts, as this enables the production of ROS. The recombination
of these cofactors with P700+ inhibits the interaction between PSI and O2.
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Figure 6. Hypothetical pathway of the AEF-I. Photo-excited P700 (P700*) donates an electron to the
first electron carrier, A0, to produce P700+. Subsequently, P700+ accepts an electron from PC in PSII to
regenerate P700. A0 donates the electron to the second electron carrier, A1. Thereafter, the electron
flows to ferredoxin (Fd) through the third and fourth electron carriers, Fx and FA/FB, respectively.
Empty arrows represent P700 turnover in the photo-oxidation reduction cycle. Solid arrows indicate
electron flow. Dotted arrows indicate electron flow during charge recombination (please see text for
further details). Charge recombination is one of the mechanisms of additional electron flow. This figure
is a modification of original figures published previously [27–35].

The charge recombination reactions between electron-transfer cofactors and P700+ are exergonic.
The mid-point potentials of these cofactors are lower than that of P700+ [32]. Therefore, these
recombination reactions dissipate energy as heat, which contributes to the alleviation of PSI
photoinhibition under excess light energy [40].

It has been suggested for a long time that photosynthetic organisms operate Fd-dependent
cyclic electron flows around PSI [41–44]. It is possible that Fd is an electron donor for Fd-quinone
oxidoreductase (FQR) and NADH dehydrogenase (NDH). FQR requires protein cofactors, such as
PGR5/PGRL1. Recently, a positive linear relationship between vFd and photosynthetic LEF rate
during steady-state photosynthesis was demonstrated in Arabidopsis mutants deficient in PGR5/PGRL1
and NDH [22]. This also supports the hypothesis that Fd turnover is mainly determined by CO2

assimilation and photorespiration. Thus, both FQR- and NDH-dependent cyclic electron flows show
negligible activity compared with photosynthetic LEF [45].

Furthermore, our conclusion that AEF-I is not driven by PGR5/PGRL1 or NDH is strongly
supported by previous studies. Yamamoto et al. [46] clearly showed the recovery of AEF-I in PSI after
the recovery of the P700 oxidation system. The Arabidopsis PGR5-deficient mutant did not maintain
P700 in its oxidized state, nor did it show any AEF-I under fluctuating light [46]. A double mutant
lacking PGR5 and overexpressing FLV recovered AEF-I. The FLV stimulated the photosynthetic LEF and
oxidized P700 in PSI, which induced the electron flux in AEF-I in both wild-type and PGR5-deficient
Arabidopsis plants. This was further confirmed by the introduction of FLV in PGR5 deficient rice
(Oryza sativa) plants [47]. Based on these studies, we conclude that AEF-I is not driven by PGR5/PGRL1
or NDH.

We propose a new physiological function of P700 oxidation. The oxidation of P700 suppresses the
accumulation of electrons in the electron-transfer cofactors on the acceptor side of PSI by stimulating
charge recombination in PSI, as described above. The oxidation of P700 also suppresses electron flow
to Fd, as observed in the induction of Fd oxidation. The Fd− donates electrons to O2 to produce a
superoxide radical [48]. The superoxide radical disproportionates to O2 and H2O2, the latter of which
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is reduced by Fd− to form the hydroxy radical, the most dangerous ROS [48]. Thus, P700 oxidation
protects PSI by enhancing charge recombination, i.e., AEF-I, which suppresses the accumulation of
electrons on the acceptor side of PSI, including Fd.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

The winter wheat cultivar ‘Norin 61′ was used in this study. Seeds were incubated on wet
cotton at 4 ◦C for three days to promote synchronized germination. The moistened seeds were grown
in a mixture of soil (Metro-Mix 350; Sun Gro Horticulture, Bellevue, WA, USA) and vermiculite
(Konan, Osaka, Japan) in pots (7.5 cm length × 7.5 cm width × 6 cm depth). Plants were grown under
standard air-equilibrated conditions in an environmentally controlled chamber set at 25 ◦C day/20 ◦C
night temperature, 16 h light/10 h dark photoperiod, and 700–800 µmol photons m−2 s−1 light intensity.
Plants were watered every other day with 0.1% Hyponex solution (N:P:K = 5:10:5; Hyponex, Osaka,
Japan). Plants were grown for at least six weeks, and fully expanded mature leaves were harvested for
further analysis.

4.2. Simultaneous Measurements of Chl Fluorescence and Gas Exchange

Chl fluorescence and gas exchange were measured simultaneously using Dual PAM-100 and
GFS-3000 systems equipped with a 3010-DUAL gas exchange chamber (Heinz Walz, Effeltrich,
Germany). The absolute pCO2 and pO2 were maintained at 40 Pa, and 21 kPa, respectively, and leaf
temperature was maintained at 25 ± 1 ◦C. The relative humidity of the gas entering the leaf chamber
was set at 60%. Chl fluorescence parameters were calculated as follows [1]:

NPQ = (Fm/Fm’)−1 (1)

Y(II) = (Fm’−Fs)/Fm’, (2)

where, Fm represents the maximum fluorescence yield; Fm’ represents the maximum variable
fluorescence yield, and Fs represents the steady-state fluorescence yield.

4.3. Simultaneous Measurements of P700+, PC+, Fd−, and Chl Fluorescence

The redox states of P700, PC, Fd, and Chl fluorescence were simultaneously measured at 25 ◦C leaf
temperature, 21 kPa pO2, and 1000 µmol photons m−2 s−1 light intensity by changing the pCO2 using
a DUAL/KLAS-NIR spectrophotometer and GFS-3000 gas exchange system (Heinz Walz, Effeltrich,
Germany) [19,20]. Leaf temperature was maintained at 25 ± 1 ◦C, and relative humidity of gas entering
the leaf chamber was set at 60%. The maximum levels of P700 oxidation (100%) and PC oxidation
(100%) were determined by illuminating saturated pulse light under far-red light, which reflected the
maximum amounts of photo-oxidized P700 and photo-oxidized PC [19,20]. The maximum level of
Fd reduction (100%) was determined by illuminating saturated pulse light on dark-adapted leaves
under weak AL, which reflected the maximum amount of Fd− [19,20]. The rapid changes in P700+,
PC+, and Fd− were determined by DIRK analysis [1,21,22].

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/6/152/s1,
Figure S1: Relationship of non-photochemical quenching of chlorophyll fluorescence (NPQ) with the apparent
quantum yield of PSII (Y[II]) in wheat leaves, Figure S2: Response of the net CO2 assimilation rate and Y(II) to
illumination by actinic light in wheat leaves.
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Abbreviations

Chl chlorophyll
Fd ferredoxin
LEF photosynthetic linear electron flow
NPQ non-photochemical quenching of chlorophyll fluorescence
PC plastocyanin
pCO2 partial pressure of CO2
PSI photosystem I
PSII photosystem II
Y(II) quantum yield of photochemical energy conversion in PSII
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