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Abstract: In wireless sensor networks (WSNs), the location information of sensor nodes
are important for implementing other network applications. In this paper, we propose
a range-free Localization algorithm based on Neural Network Ensembles (LNNE). The
location of a sensor node is estimated by LNNE solely based on the connectivity information
of the WSN. Through simulation study, the performance of LNNE is compared with that
of two well-known range-free localization algorithms, Centroid and DV-Hop, and a single
neural network based localization algorithm, LSNN. The experimental results demonstrate
that LNNE consistently outperforms other three algorithms in localization accuracy. An
enhanced mass spring optimization (EMSO) algorithm is also proposed to further improve
the performance of LNNE by utilizing the location information of neighboring beacon and
unknown nodes.

Keywords: localization; wireless sensor networks; neural network ensembles; mass
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1. Introduction

Wireless sensor networks (WSNs) are the collections of spatially distributed autonomous inexpensive
sensors with limited resources that are deployed in two or three dimensional geographic domains and
cooperatively monitor physical or environmental conditions [1]. In WSNs, the geographic location
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information of sensor nodes is important for many WSN applications such as network management,
monitoring, target tracking, geographic routing, etc. Although the position of a sensor can be easily
acquired with an integrated Global Positioning System (GPS) module, it is extremely expensive to have
GPS modules equipped on all the sensor nodes in WSNs. An alternative solution is that only a limited
number of nodes called beacon nodes or anchor nodes can equip GPS modules to accurately acquire their
positions [2]. The beacon nodes will then assist the positioning of other nodes without GPS modules
(called unknown nodes) based on a localization algorithm.

The localization algorithms proposed for WSNs can be divided into range-based and range-free
categories according to the type of input data. The range-based algorithms compute the positions
of unknown nodes based on the assumption that the absolute distance between an unknown node
and a beacon node can be estimated from ranging measurements such as Received Signal Strength
Indication (RSSI) [3,4], Time of Arrival (ToA) [5], Time Difference of Arrival (TDoA) [6,7], or Angle
of Arrival (AoA) [5,8,9]. However, to achieve accurate measurements, normally extra special and
expensive ranging hardware are required. Measurements such as RSSI can utilize the existing device
in sensor node but are not accurate. On the other hand, range-free algorithms, such as Centroid [10],
APIT [11], SeRLoc [12], Multidimensional Scaling [13], Ad-Hoc Positioning System (APS) [14], only
use the connectivity or proximity information to localize the unknown nodes. The range-free algorithms
generally require only simple operations and do not need additional hardware, which makes them
attractive to be applied for WSNs.

Recently, a number of machine learning based localization techniques have been proposed [15–18].
Instead of using the geometric properties to find the unknown nodes’ locations, the machine learning
based methods utilize the known locations of beacon nodes as training data to construct a prediction
model for localization purpose. The learning algorithms employed to build the prediction model include
Neural Networks (NN) [15,18] and Support Vector Machines (SVM) [16,17,19]. The input data to the
learning algorithms can be signal strengths [16,18,19]) or hop-count information [15,17].

In this study, we propose to use the ensemble of neural networks to build the sensor position prediction
model based on the hop-count information. An ensemble of multiple predictors has been shown, which
has better performance than a single predictor in average [20–22]. Based on our study, we demonstrate
that the localization accuracy can be significantly improved by using neural network ensemble (NNE)
compared with a single NN based localizer.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of previous works in
localization for WSNs. In Section 3, we describe the proposed LNNE, a range-free localization algorithm
based on neural network ensembles. Section 4 presents the simulation results. Finally, the conclusions
are drawn in Section 5.

2. Related Work

In this section, we briefly review some related works on range-free and machine learning based
localization algorithms.

Bulusu et al. [10] proposed the Centroid algorithm to estimate the nodes’ location. In the algorithm,
the beacon nodes are placed in a grid configuration while an unknown node’s location is estimated as
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the centroid of the locations of all beacon nodes heard. The Centriod algorithm is simple and easy to
implement but the localization accuracy heavily relies on the percentage of deployed beacon nodes.

Another well-known range-free localization algorithm is DV-Hop proposed by Niculescu and
Nath [14]. In DV-Hop, each beacon node computes the Euclidean distances to other beacon nodes
and estimates its average hop length with the hop-count information. The unknown nodes then utilize
the average hop length estimates to determine their distances to beacon nodes and apply lateration to
calculate the location estimates.

Nguyen et al. [16] first applied machine learning technique to the sensor network localization
problem. The signal strength measured by the sensor nodes were used to define the basis functions
of a kernel-based learning algorithm, which was then applied to the localization of the unknown nodes.
In [19], Shilton et al. also considered the localization in WSN as a regression problem with the received
signal strengths as input. They applied a range of support vector regression (SVR) techniques and found
that ε-SVR had the best performance.

Tran and Nguyen [17] proposed LSVM, a range-free localization algorithm based on SVM learning.
The algorithm assumes that a sensor node may not communicate directly with a beacon node and only
connectivity information is used for location estimation. A modified mass spring optimization (MMSO)
algorithm was also proposed to further improve the estimation accuracy of LSVM.

A neural network based localization algorithm was proposed in [18]. The RSS values between an
unknown node and its adjacent beacon nodes were used as the input to the neural network. The trained
neural network then mapped the RSS values to the estimated location of the unknown node. The
approach requires that the unknown can hear from beacon nodes directly to measure the RSS values.
Thus, the beacon nodes have to be placed regularly in a grid.

Chatterjee [15] developed a Fletcher–Reeves update-based conjugate gradient (CG) multilayered feed
forward neural network for multihop connectivity-based localization in WSN. The method adopts the
same assumptions as [17] and has better performance than LSVM. It has been shown in [15] that the
neural network based localizer has better performance than LSVM and a diffusion-based method.

In this paper, we aim to improve the performance of single neural network based localizer of [15] by
using the ensemble of neural networks.

3. Methods

In this section, we present the proposed localization algorithm based on NNEs. The algorithm adopts
similar modest assumptions as [15,17]: (1) there are beacon nodes in the network; (2) a sensor node may
not communicate with beacon nodes directly; (3) the localization algorithm only utilizes the connectivity
information.

3.1. Network Model

We consider a large scale WSN with N nodes, S = {S1, S2, ..., SN}. All nodes in the network have
the same transmission range r. The network is deployed in a 2-D geographical area of size D ×D. We
assume that there are M (M < N ) beacon nodes in the network that know their own locations. The
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remaining (N −M ) unknown nodes can estimate their own locations by using a localization algorithm.
We assume that each node can communicate with a beacon node through a multihop path as in [15,17].

3.2. Localization with Neural Network Ensembles (LNNE)

3.2.1. System Architecture

In the LNNE system, two NNEs with the same architecturesX-NNE and Y -NNE are used to estimate
the x and y coordinates respectively. In the following, we use X-NNE as an example to illustrate
the system.

The architecture of X-NNE is shown in Figure 1. The X-NNE consists of K component neural
network where each component neural network is a three-layer feed forward neural network (FFNN)
with nh nodes in the hidden layer. The number of nodes in the input layer, ni, is M , which is the same
as the number of beacon nodes. The input of each node in this layer is the number of hops from a sensor
node Si to the corresponding beacon nodes Sj , h(Si, Sj)(1 ≤ i ≤ N, 1 ≤ j ≤ M). The number of
nodes in the output layer of each component network, no, is one, which is the estimated x coordinate.
Each component neural network is trained with different initial weights connecting three layers. The
final output of the NNE is the combination of the outputs of all component neural networks, which is
computed by the combination module.

Figure 1. X-NNE architecture.

Two combination rules are considered in this study:
(1) Mean rule: The output of the X-NNE is the average of the outputs of all component neural

networks, which is defined as

Xest−Si
=

1

K

K∑
k=1

xest−Si,k
(1)

where Xest−Si
is the estimated x coordinate, xest−Si,k

is the estimated x coordinate of kth component
neural network, k = 1, 2, , K.
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(2) Median rule: The output of the X-NNE is the median of the outputs of all component neural
networks, i.e., Xest−Si

=Median(xest−Si,k
), k = 1, 2, , K.

3.2.2. Component Neural Network

The component neural network used in the localization system is a three layer Fletcher–Reeves
update-based conjugate gradient FFNN with M input nodes, nh hidden nodes, and one output node.
In this study, we set the number of hidden nodes nh as round(M+1

2
). Each component neural network

has the same architecture. Figure 2 shows an example of the kth component neural network for X-NNE.

Figure 2. A component neural network of X-NNE.

The input vector of each component neural network is HSi
= [h(Si, S1), h(Si, S2), ..., h(Si, SM)],

where h(Si, Sm)(1 ≤ m ≤ M) is the hop-count length of the shortest path between sensor node Si and
beacon node Sm. The output of the network is as follows

xest−Si,k
= fo{

nh∑
n=1

wnfh{
M∑

m=1

vmnh(Si, Sm)}} (2)

where vmn(1 ≤ m ≤ M, 1 ≤ n ≤ nh) are the weights connecting input layer to hidden layer,
wn(1 ≤ n ≤ nh) are the weights connecting hidden layer to output layer, fh{•} and fo{•} are the
activation functions for the hidden layer and the output layer respectively.

The connection weights of each component neural network have to be adjusted through
a learning algorithm based on the training data. The training data set for X-NNE is
{(HS1 , xS1,k), (HS2 , xS2,k), ..., (HSM

, xSM ,k)}, where xSm,k is the x-coordinate of the beacon node
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Sm(1 ≤ m ≤ M). The back propagation (BP) method is the widely used learning algorithm that
tries to minimize the error function of the network, which is defined as

E =
1

2

M∑
m=1

(xSm,k
− xest−Sm,k

)2 (3)

During the training process, the weights of the network are updated as follows:

Wt+1 = Wt + αPt (4)

Pt = −
∂Et

∂Wt

(5)

where α represents the learning constant that defines the step length of each iteration in the negative
gradient direction. The weights of the network are adjusted iteratively until the error function converges
to a minimum. The BP method is easy to implement but has a slow convergence speed.

The performance of the BP algorithm can be improved by allowing the learning rate change during
the training process. The conjugate gradient algorithm is such a method to accelerate the convergence
speed [23], which carries out the search along conjugate directions. The algorithm searches in the
steepest descent direction first.

P0 = −g0 (6)

The algorithm performs a linear search to determine the optimal distance to move along the current
search direction

Wt+1 = Wt + αPt (7)

The next search is then performed in the conjugate direction of the previous directions. The algorithm
determines the new search direction by combining the new steepest descent direction with the previous
search direction:

Pk = −gk + βkPk−1 (8)

where βk is the scaling constant. In the Fletcher–Reeves update [23], βk is computed as the ratio of the
norm squared of the current gradient to the norm squared of the previous gradient.

3.2.3. Protocol

The protocol used in the LNNE system consists of four phases: info phase, training phase,
advertisement phase, and localization phase.

Info phase: In this phase, each beacon node broadcasts a HELLO message to all other nodes in the
network. A receiving node can obtain the hop-count information to the sending beacon node from the
received HELLO message. The number of HELLO messages broadcasted in this phase is M .

Training phase: The training of the LNNE system is time and resource consuming. We assume that
the training is conducted in a resource-rich head beacon node, which could be the base station or the sink
node of the sensor network. In the beginning of this phase, each beacon node sends an INFO message
to the head beacon node. The INFO message of the sending node contains the hop-count information
to other beacon nodes gathered in the info phase and its true location. After the hop-count and location



J. Sens. Actuator Netw. 2012, 1 260

information of the beacon nodes are gathered, the head beacon node trains the NNEs. This phase requires
the unicast delivery of M INFO messages.

Advertisement phase: The head beacon node broadcast the information of the trained NNEs to all
the sensor nodes in the network. The size of the message depends on the number of component neural
networks and the number of hidden nodes of each component neural network.

Localization phase: After receiving the information of the trained NNEs, each unknown node
estimates its location with the hop-count information gathered in the info phase as input to the NNEs.

3.2.4. Refinement Algorithm

In [17], an algorithm modified from the mass-spring optimization (MSO) algorithm of [24] was
proposed to improve the location estimation accuracy. The MSO algorithm considers each sensor node
as a “mass” and adjusts a node’s location by using the “spring force” computed from its neighbors’
locations. The algorithm assumes that the distance between adjacent nodes is measurable. Since the
LSVM algorithm of [17] assumes no knowledge on the true distance between two nodes, the transmission
range is used in the Modified MSO (MMSO) algorithm.

The refinement of unknown node’s position of MMSO algorithm is done with the help of the
neighboring beacon nodes. To further improve the performance, we propose an enhanced mass-spring
optimization (EMSO) algorithm that utilizes the location information of both the neighboring beacon
and unknown nodes.

We denote Φ(Si) = {Sj|h(Si, Sj) = 1, Dest(Si, Sj) > r, Sj ∈ B} as the set of beacon nodes that are
1-hop neighbors of sensor node Si with the distance to Si larger than the transmission range r, where
B = {Si|Si ∈ S, 1 ≤ i ≤M} is the set of beacon nodes, Dest(Si, Sj) is the distance between two sensor
nodes Si and Sj based on their estimated locations. Ψ(Si) = {Sj|h(Si, Sj) = 1, Dest(Si, Sj) > r,

Sj ∈ U} is denoted as the set of unknown nodes that are 1-hop neighbors of Si with the distance to Si

larger than r, where U = {Si|Si ∈ S,M + 1 ≤ i ≤ N} is the set of unknown nodes. The number of
nodes in Φ(Si) and Ψ(Si) are denoted as |Φ(Si)| and |Ψ(Si)|, respectively. LetN(Si) = Φ(Si)

⋃
Ψ(Si)

be the set of all 1-hop neighbors of Si with the distance to Si larger than r.
To improve localization accuracy, we need to minimize the total energy of the system,

Et =
∑N

i=1E(Si), where E(Si) is the energy of a sensor node Si defined as

E(Si) =
∑

Sj∈N(Si)

(Dest(Si, Sj)− r)2 (9)

In the mass-spring system, the force on the sensor node Si pulled by a neighboring sensor node Sj is
defined as

~fSi,Sj
= (Dest(Si, Sj)− r)~uSi,Sj

(10)

where ~uSi,Sj
is the unit vector from Si to Sj . When computing the total force applied on the sensor node

Si pulled by all 1-hop neighboring nodes, we give a higher weight to the beacon node as the location of
beacon node is known. The total force on Si is then defined as

~FSi
= wb

∑
Sj∈Φ(Si)

~fSi,Sj
+ wu

∑
Sj∈Ψ(Si)

~fSi,Sj
(11)
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where wb = 1 and wu = 0.5 are the weights for neighboring beacon and unknown nodes, respectively.
The x-dimension and y-dimension magnitude of the total force on Si are denoted as FX,Si

and FY,Si
.

The EMSO algorithm for improving the location estimation of all unknown nodes is illustrated in
Algorithm 1. The algorithm minimizes the total energy Et by minimizing the local energy of each
unknown node. The unknown node’s estimated location is adjusted if the new location reduces the local
energy. The algorithm terminates when the maximum number of iterations T is reached. The EMSO
algorithm can be implemented in a distributed manner as shown in [24] or in a centralized way by
modifying the protocol in Section 3.2.3.

Algorithm 1 EMSO Algorithm
for i = 1 to T do

for each unknown node Sj ∈ U, concurrently do
compute E(Sj) and ~FSj

;
compute Xnew−Sj

and Ynew−Sj
;

Xnew−Sj
= Xest−Sj

+
Fx,Sj

2(|Φ(Sj)|+0.5|Ψ|) ;

Ynew−Sj
= Yest−Sj

+
Fy,Sj

2(|Φ(Sj)|+0.5|Ψ|) ;
compute Enew(Sj) based on Xnew−Sj

, Ynew−Sj
;

if Enew(Sj) < E(Sj) then
Xest−Sj

= Xnew−Sj
;

Yest−Sj
= Ynew−Sj

;
end if

end for
end for

4. Experiments

The performance of the proposed LNNE system is evaluated through a simulation study. The
simulations are carried out in MATLAB. In the simulation, the sensor nodes are placed in a 50m× 50m

square field with uniform random distribution. The communication range of each sensor node, r, is set
to 10m. For each simulation setup, the simulations are carried out on ten different sample networks. The
result is obtained as the averaging of simulations for the ten sample networks.

The performance metric used to evaluate the performance of different localization schemes is the
average localization error for all unknown sensor nodes, ALE,

ALE =

∑N
i=M+1 LE(Si)

N −M
(12)

where N is the total number of sensor nodes, M is the number of beacon nodes, and LE(Si) is the
localization error of the sensor node Si,

LE(Si) =
√
(xSi
− xest−Si

)2 + (ySi
− yest−Si

)2 (13)

The parameters used in the simulation study are summarized in Table 1.
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Table 1. Simulation Parameters.

Parameter Value

Number of Sensor Nodes, N 150/200/250/300/350/400
Beacon Ratio 0.1–0.3
Sensor Field Size 50m× 50m

Transmission Range of a Sensor Node, r 10m

Number of Component NN, K 7

4.1. Performance Comparison

The performance of the proposed LNNE system is compared with two well-known range-free
localization algorithms, Centroid and DV-Hop, as well as the localization algorithm based on signal
neural network, LSNN.

Figure 3. Sample network with 400 sensor nodes and a beacon ratio of 0.2.

4.1.1. Effects of Beacon Ratio and Network Density

In the first two studies, the sensor nodes are uniformly placed in the field without coverage hole.
Figure 3 shows a sample network with 400 sensor nodes and a beacon ratio of 0.2. We first investigate
the effect of beacon ratio on the performance of the four localization algorithms. The number of sensor
nodes in the field is set to 250. The number of beacon nodes varies from 25 to 75, which corresponds
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to a beacon ratio of 0.1 to 0.3. The simulation results are shown in Figure 4. Generally, the localization
errors of the four algorithms are decreased with the increment of beacon ratio. The proposed LNNE
outperforms other three algorithms in all cases. For LNNE, the two combination rules, mean rule and
median rule, produce comparable results. Compared with LSNN, LNNE can improve the localization
accuracy up to 20.7% as shown in Figure 5.

Next, the effect of network density on the performance of the localization algorithms is studied. The
network density is changed by varying the number of sensor nodes in the field. In the simulation, the
number of sensor nodes, N , varies from 150 to 400 while the beacon ratio is fixed at 0.2. Figure 6 shows
the simulation results. Better localization accuracy can be observed for a denser network. For all cases,
the proposed LNNE has the best performance. Similar to the previous experiment, the mean rule and
median rule achieve comparable results for LNNE. As shown in Figure 7, LNNE significantly improves
the localization accuracy compared with LSNN with an average improvement of more than 20%.

Figure 4. Performance comparison among different beacon ratios (N = 250, beacon
ratio = 0.1–0.3, no coverage holes).
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Figure 5. Performance improvement of LNNE vs. LSSN (N = 250, beacon ratio = 0.1–0.3,
no coverage holes).

Figure 6. Performance comparison among different network densities (N = 150 to 400,
beacon ratio = 0.2, no coverage holes).
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Figure 7. Performance improvement of LNNE vs. LSSN under different network densities
(N = 150 to 400, beacon ratio = 0.2, no coverage holes).

4.1.2. Effects of Coverage Holes

Due to the obstacles in the sensor field, there are normally coverage holes in the sensor network.
Similar to [15,17], we consider two cases: (1) one circular hole centered at (25, 25) with the radius of
10m; (2) five circular holes with the radius of 5m centered at (25, 25), (10, 10), (10, 40), (40, 10), and
(40, 40), respectively. In this experiment, we consider networks with 250 sensor nodes and the beacon
ratio varying from 0.1 to 0.3. Sample networks for the two cases with a beacon ratio of 0.2 are shown in
Figure 8.

Figures 9 and 10 show the performance of the four localization algorithms for the two coverage
hole cases, respectively. Similar to the case of no coverage hole in the network, LNNE achieves
significantly better performance than other three localization algorithms. The two combination rules
of LNNE produce comparable results. The effect of the coverage holes on the performance of LNNE
(median rule) is shown in Figure 11. It can be observed that the performance of LNNE degrades in most
cases because of the coverage holes, especially in the cases that a large coverage hole (obstacle) in the
network or the beacon ratio is low. However, LNNE still maintains high localization accuracy as shown
Figures 9 and 10.



J. Sens. Actuator Netw. 2012, 1 266

Figure 8. Sample networks with coverage holes (250 sensor nodes and 50 beacon nodes):
(a) 1 hole; (b) 5 holes.

(a)

(b)
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Figure 9. Performance comparison under different beacon ratios (0.1–0.3) and 1
coverage hole.

Figure 10. Performance comparison under different beacon ratios (0.1–0.3) and 5
coverage holes.
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Figure 11. Effect of coverage holes on LNNE (N = 250, beacon ratio = 0.1–0.3).

Figure 12. Performance of refinement algorithms under different beacon ratios (N = 250,
beacon ratio = 0.1–0.3, no coverage holes).
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4.2. Improving Localization Accuracy with EMSO Algorithm

The performance of the refinement algorithms is also investigated. We study the effect of MMSO
and EMSO on the performance of LSNN and LNNE. Only median rule is considered for LNNE since
the mean rule produces comparable result as shown in Section 4.1. The maximum number of iterations
for MMSO and EMSO is 100. The simulation results for networks without coverage holes are shown
in Figures 12 and 13. The results demonstrate that MMSO can significantly improve the performance
of LSNN and LNNE. EMSO can further improve the localization accuracy by utilizing the location
information of the neighboring beacon and unknown nodes. The combination of LNNE and EMSO
consistently achieves the best performance. With EMSO, the performance of LNNE can be improved by
24% on average, compared with an average improvement of 11% by MMSO.

Figure 13. Performance of refinement algorithms with different network densities (N = 150
to 400, beacon ratio = 0.2, no coverage holes).

5. Conclusions

In this paper, neural network ensembles are used to improve the localization accuracy for WSNs by
utilizing the diversity of the component neural networks. The localization system, LNNE, only utilize
the connectivity information of the network to estimate the location of sensor nodes. Simulation studies
are carried out to compare the performance of LNNE with two well-known range-free localization
algorithms, Centroid and DV-Hop, and a single neural network-based localization algorithm, LSNN.
The effects of beacon ratio, network density, and coverage holes on the performance of LNNE are
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investigated. The experimental results demonstrate that LNNE outperforms other three algorithms
in all simulation cases. The EMSO algorithm is also proposed, which can significantly improve
the performance of LNNE with the help of location information of the neighboring beacon and
unknown nodes.
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