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Abstract: This paper makes four scientific contributions to the field of fall detection in the elderly
to contribute to their assisted living in the future of Internet of Things (IoT)-based pervasive living
environments, such as smart homes. First, it presents and discusses a comprehensive comparative
study, where 19 different machine learning methods were used to develop fall detection systems, to
deduce the optimal machine learning method for the development of such systems. This study was
conducted on two different datasets, and the results show that out of all the machine learning methods,
the k-NN classifier is best suited for the development of fall detection systems in terms of performance
accuracy. Second, it presents a framework that overcomes the limitations of binary classifier-based
fall detection systems by being able to detect falls and fall-like motions. Third, to increase the trust
and reliance on fall detection systems, it introduces a novel methodology based on the usage of
k-folds cross-validation and the AdaBoost algorithm that improves the performance accuracy of
the k-NN classifier-based fall detection system to the extent that it outperforms all similar works in
this field. This approach achieved performance accuracies of 99.87% and 99.66%, respectively, when
evaluated on the two datasets. Finally, the proposed approach is also highly accurate in detecting the
activity of standing up from a lying position to infer whether a fall was followed by a long lie, which
can cause minor to major health-related concerns. The above contributions address multiple research
challenges in the field of fall detection, that we identified after conducting a comprehensive review
of related works, which is also presented in this paper.

Keywords: fall detection; elderly; machine learning; assisted living; smart homes; artificial intelli-
gence; human-computer interaction; internet of things; pattern recognition; pervasive computing

1. Introduction

People live longer these days due to advanced healthcare facilities. The population
of elderly people is increasing at a rate higher than any other age group, and there are
currently 962 million elderly people across the world [1]. According to a recent study [2],
by the year 2050, approximately 20% of the world’s population will be aged 60 years or
more. The process of aging is accompanied by a decline in physical, cognitive, and motor
skills. Due to the slow degradation of these abilities, falls can happen unexpectedly at any
moment of the day and at any place. The rate of falling increases with age. According
to [3], a fall is an unanticipated incident of coming down on the ground or floor triggered
by a push or pull, environmental features, unconsciousness, or any similar health-related
limitations or disorders. It involves an involuntary change in an individual’s posture,
resulting in the person lying on the ground. The consequences of falls can affect the
overall health, well-being, and quality of life of the elderly in multiple ways, including
limiting their abilities to perform activities of daily living (ADLs). Although there are
several definitions of ADLs, according to [4], ADLs may be broadly defined as the set of
daily routine tasks and activities essential for one’s sustenance, which a person usually
performs in their living environment. ADLs may broadly be classified into the following
five categories: personal hygiene, dressing, eating, maintaining continence, and mobility.
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On a global scale, falls are the second most common cause of accidental deaths. Falls
are also considered the most likely reason for older adults to develop traumatic brain
injuries [5]. On an annual basis, around 30% of elderly people fall at least once a year, and
the rate of falling in the elderly is expected to increase to 42% over the next few years [6,7].
Falls have severely affected the increasing aging population in the United States. In the
United States, deaths due to falls have increased by 30% since 2009. Every 11 s, an elderly
person who has fallen has to be taken to the emergency room. Every 19 min, an older
adult dies from a fall in the US. There are over 3 million cases of emergency, 800,000
hospitalizations, and more than 32,000 deaths in the elderly from falls every year [8–10].
This rate of hospitalizations and deaths from falls is expected to increase. It is predicted
that by 2030, every hour, seven older adults will die in the US after having experienced a
fall. The medical and healthcare-related costs of falls in the elderly account for a total of
USD 50 billion to the US economy on an annual basis [11].

The causes of a fall can be many, and they can be broadly categorized as internal and
external [12]. Here, external causes are related to all the environment-based factors that
can contribute to a fall. These include slippery surfaces, stairs, etc. Internal causes of a fall
refer to the individual’s factors, which include impairments in vision, cramps, weakness
in muscular skeleton structure, chronic disorders, etc. In addition to consequences from
physical injuries of minor to a major degree of severity, falls can also have a multitude
of impacts on the various aspects of well-being, such as personal, social, emotional, and
cognitive. These effects of a fall can be broadly summarized as individual—injuries,
bruises, blood clots; social life—reduced mobility leading to loneliness and social isolation;
cognitive or mental—fear of moving around, loss of confidence in carrying out ADLs; and
financial—the cost of medical treatment and caregivers.

In addition to detecting falls when the falls occur, it is also important to detect whether
a long lie follows a fall. An individual experiences a long lie when they have been lying on
the ground after a fall for more than an hour without being able to get up [13]. According
to [14], 47% of individuals who experience a fall cannot get up on their own after the fall.
To add, around 50% of elderly who experience a long lie are likely to die within the next six
months [15]. A long lie can also cause localized muscle injuries, tissue damage, pressure
injuries, nerve issues, carpet burns, dehydration, hypothermia, pneumonia, and fear of
falling, which can affect the quality of life, health, and well-being of the elderly [13]. Thus,
it is essential to track whether a fall is being followed by a long lie, as a long lie can lead to
both major and minor health-related concerns for the elderly.

Although there have been numerous recent works [16–43] related to fall detection
over the last few years, as discussed in detail in Section 2, several research challenges still
exist. These include (1) the lack of a comprehensive comparative study of different machine
learning methods to deduce the optimal machine learning method for the development of
fall detection systems and applications; (2) the high possibility for fall-like motions such
as being on all fours (both hands and legs touching the ground at the same time) being
classified as false positives, as most of the existing frameworks for fall detection have been
binary classifiers; (3) the low accuracy of the systems that focused on addressing the issue
of such false positives and studied fall-related activities; and (4) the inability of these fall
detection systems to track whether the person is experiencing a long lie after the fall.

In the work presented in this paper, we address all the above challenges. This paper
is presented as follows. In Section 2, we present a comprehensive review of recent works
in fall detection and further discuss the research challenges that exist. In Section 3, we
present our approach and the results for developing a k-nearest neighbor (k-NN)-based
multilabel classifier that can detect falls and track fall-like motions. Section 4 presents
the comprehensive comparison study where we developed, implemented, and compared
the performance characteristics of 19 machine learning methods to deduce the optimal
learning method for fall detection. In Section 5, we discuss and present the results of
the proposed methodology for improving the performance accuracy of the k-NN-based
machine learning-based approach for fall detection and fall-like motions proposed in
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Section 3, to increase the trust and reliance on such systems. It is followed by Section 6,
which includes a comparative discussion where we outline how our work addresses the
research challenges in this field and outperforms similar works in this discipline. Section 7
concludes the paper, summarizing the contributions of the same and outlining the scope
for future work.

2. Related Work

The recent research related to assisted living technologies and their related disciplines,
with a specific focus on fall detection, is outlined in this section. According to [16], assisted
living technologies may broadly be classified into three different generations. The first-
generation technologies consisted of systems and gadgets that were assistive in nature
only when they received a request or response from the user for help. An example of
a first-generation assisted living technology would be a wearable device with a panic
or help button to call for help. A user wearing that device could ask for help from a
caregiver or medical professional by pressing a button in the event of an emergency, for
instance, a fall. The major drawback of these technologies was that they were not functional
without the user’s response or request. Elderly people might sometimes be incapacitated
to press the help button due to a fall, in which case such a wearable device serves no
purpose at all. This created the need for developing the second generation of assisted
living technologies. Second-generation technologies were characterized by their abilities
to sense when the user needed any assistance. These devices tracked health-related, user
behavior-related, and user interaction-related data to trigger alarms to alert caregivers or
medical personnel. However, second-generation technologies also had limitations. First,
they could not prevent emergencies, as the alarms were triggered after the user faced an
emergency. Second, there were instances of false positives, and finally, elderly people
felt the systems were too intrusive. The third generation of assisted living technologies
has been emerging recently to address these limitations. These refer to smart assistive
systems that use a myriad of technologies such as artificial intelligence, machine learning,
sensor networks, and their related applications to detect and predict any assistive needs,
for instance, in a fall.

Next, we review the recent advances in fall detection based on these different genera-
tions of assisted living technologies. Liu et al. [17] developed a system that used the k-NN
classifier to study multimodal components of human postures to detect falls. The system
studied the ratio and difference of human body silhouette bounding box height and width
to detect falls during different activities. An inclinometer-based approach was proposed
by Sun et al. [18] for fall detection. The approach studied the angle variations recorded
by the inclinometer during walking and similar activities, including a fall. The authors
developed a threshold condition to detect falls based on the degree of angle variation
during different motions. Rafferty et al. [19] developed a thermal vision sensing framework
to study human movements and postures to detect falls. The work involved setting up
thermal vision sensors on the ceiling of the simulated IoT-based space and then using
computer vision algorithms to detect falls. The use of activity theory and recent advances
in the same were used by Castillo et al. [20] to develop a fall detection system. The system
analyzed the video feed and interpreted the accelerometer data for detecting falls during
different activities.

The work of Fu et al. [21] involved using image-processing principles and vector
analysis concepts to study the human behavior and posture data to detect falls in a simu-
lated IoT-based room. Willems et al. [22] proposed a grayscale video-data analysis-based
approach for fall detection in real-time. The approach was equipped with multiple fea-
tures, such as background subtraction, shadow removal, ellipse fitting, and calculating the
posture angle and aspect ratio to perform fall detection. Feng et al. [23] used a combination
of deep learning and other machine learning principles to develop a fall detection system.
The concept involved combining the outputs of these learning approaches based on certain
rules that the authors proposed. A PCA-based fall detection system was proposed by



J. Sens. Actuator Netw. 2021, 10, 39 4 of 27

Jokanovic et al. [24]. In the proposed approach, the authors used eigen images to classify
different types of motions, including falls. The study revealed that their work outper-
formed the feature extraction methods for fall detection published until that time. In [25],
Bian et al. proposed a support vector machine (SVM)-based machine learning classifier
for fall detection. The approach used the data from depth cameras and the associated
RGB data to train the SVM classifier to develop the machine learning model. In the fall
detection approach proposed by Ozcan et al. [26], the camera had to be carried by the user
instead of the same being mounted at strategic locations, as had been observed in previous
studies. The system used a decision tree-based approach to detect falls based on studying
multimodal components of the image data coming from the camera carried by the user.

Another decision tree-based learning approach for fall detection was proposed by
Lai et al. [27]. The approach tracked and analyzed the data coming from triaxial accelerom-
eters mounted on different body parts of the user to perform behavior analysis to detect
any anomalies such as falls. The system also studied the accelerometer data to calculate the
impact of the fall after a fall occurred. In [28], Hakim et al. proposed a methodology for
fall detection that was smartphone data-driven. The authors developed an algorithm in
Matlab that was SVM-based. The SVM classifier used the data from the built-in inertial
measurement unit (IMU) of the user’s phone to study characteristics of motion data to de-
tect falls. Tomii et al. [29] used Doppler sensors to develop a fall detection system that was
k-NN-based. The system used three such sensors and could detect falls during different
activities in different directions. Espinosa et al. [30] developed a neural network-based
approach for the detection of falls. The approach used the data from multiple cameras
and extracted a range of features using an optical flow method. This optical flow method
provided information about the relative motion between two consecutive images by inter-
preting the image data. Nakamura et al. [31] developed a fall detection system that was
neural network-driven. The approach used spectrogram images and Wi-Fi CSI data to train
this learning model to develop the fall detection classifier.

The fall detection framework proposed by Balli et al. [32] used a smartwatch for data
collection. The human behavior and activity-related data collected by this smartwatch
were interpreted and analyzed by a random forest model to detect falls. Dhole et al. [33]
developed a prototype for collecting and analyzing EEG data for fall detection. The
prototype resembled a helmet that the user wore, and the authors developed a random
forest classifier to detect falls based on this EEG data. A k-NN-based machine learning
model for tracking falls was proposed by Ramirez et al. [34]. The system extracted features
from human poses during different activities and used computer vision principles to
detect falls. Like [30], another neural network-based fall detection system was proposed
by Tahir et al. [35], which improved upon the associated computational costs without
compromising on the fall detection accuracy.

A deep learning-based approach was used by Jácome et al. [36] for the development
of a framework for studying and detecting falls. The architecture of the framework con-
sisted of two deep learning models and implemented concepts of virtualization to detect
falls. A video data-based activity analysis approach for fall detection was proposed by
Dhiraj et al. [37]. The work involved analyzing 360-degree video data of the user to an-
alyze activities to track falls. Ngu et al. [38] used a naïve bayes approach to develop a
fall detection system that used the data from a smartwatch. The work of Khan et al. [39]
involved a wearable device for fall detection. The device consisted of a camera, gyroscope,
and accelerometer that communicated with a microcomputer. The system involved using a
naïve bayes classifier to develop a binary classification model to detect falls. A gradient
boosted trees approach was proposed by Ning et al. [40] for fall detection. The system
studied human behavior and posture data to detect falls during different activities. In [41],
Cahoolessur et al. proposed another gradient boosted trees-based learning approach that
was primarily a binary classifier that could detect falls and other user activities in a sim-
ulated IoT-based environment. The authors developed a wearable device that the user
had to wear on their waist and the system used a cloud computing-based architecture to
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implement the machine learning model. Cai et al. [42] used a single-layer decision tree
that used accelerometer data and an AdaBoost approach to detect falls. Lee et al. [43] used
a similar threshold-based approach to distinguish falls from other daily activities. The
approach used the acceleration data recorded by the user’s phone and the threshold criteria
to detect falls. Table 1 summarizes these related works in terms of their source of data or
the datasets that were used for the development of the associated methodologies, as well
as whether the data came from wearables or non-wearable sensors.

Table 1. Summary of recent works in fall detection along with their source of data.

Work Data Use of Wearables Use of Non-Wearables

Liu et al. [17] Human body silhouette bounding box dimensions - X
Sun et al. [18] Angle variations from inclinometer recordings - X

Rafferty et al. [19] Thermal vision sensing - X
Castillo et al. [20] Video feed and accelerometer data X X

Fu et al. [21] Behavior and posture data - X
Williams et al. [22] Grayscale video - X

Feng et al. [23] Postural orientations - X
Jokanovic et al. [24] Eigen images during motion - X

Bian et al. [25] Depth cameras and the associated RGB information - X
Ozcan et al. [26] Video data from a movable camera X X

Lai et al. [27] Triaxial accelerometers X -
Hakim et al. [28] Inertial measurement unit (IMU) of the user’s phone X -
Tomii et al. [29] Doppler sensor data - X

Espinosa et al. [30] Data from multiple cameras - X
Nakamura et al. [31] Spectrogram images and Wi-Fi CSI data - X

Balli et al. [32] Activity and movement data from a smartwatch X -
Dhole et al. [33] EEG data X

Ramirez et al. [34] Analysis of images of different postures - X
Ahmad et al. [35] Accelerometer data X -
Jácome et al. [36] Data from resource-constrained devices (fog nodes) X -
Dhiraj et al. [37] 360-degree video data - X
Ngu et al. [38] Smartwatch activity data X
Khan et al. [39] Camera, gyroscope, and accelerometer data X X
Ning et al. [40] Human behavior and posture data X -

Cahoolessur et al. [41] Human behavior data X -
Cai et al. [42] Three-axis acceleration, three-axis angular acceleration X -

Lee et al. [43] Acceleration data collected from a smartphone, GPS
data, and WiFi signals X -

Despite the above works in this field, several research challenges need to be addressed.
They are as follows:

1. A range of machine learning methods such as random forest, artificial neural network,
decision tree, support vector machine, k-NN, gradient boosted trees, naïve bayes,
and deep learning have been used by researchers to develop fall detection systems.
Still, the best machine learning method in terms of performance accuracy for the
development of such systems and applications is unknown. Thus far, none of the
works in this field have compared the performance characteristics of different machine
learning approaches to deduce the optimal learning approach.

2. Most of the fall detection frameworks developed so far have been binary classifiers
where the framework would classify a motion or a posture as fall or not a fall. There is a
high possibility of fall-like motions such as being on all fours leading to false positives.
Such false positives can cause alert fatigue [44] in caregivers or medical personnel.
Alert fatigue can lead to caregivers or medical personal becoming desensitized to
alarms for falls, causing a decrease in quality of care or even no timely care. Therefore,
it is necessary to detect falls and such fall-like motions when monitoring human
activities.
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3. Some of the works [19–24] that focused on detecting false positives and studying fall-
like motions did not achieve high levels of performance accuracy in terms of detecting
falls. Thus, it is the need of the hour that fall detection systems be developed in a way
that minimizes false positives and can detect fall-like motions while achieving high
levels of performance accuracy so that the underlining systems are considered reliable
and can be trusted.

4. Falls can be fatal if the fall is associated with a long lie [13–15]. A long lie can be
detected by tracking whether the person who experienced a fall could get up after
the fall. None of the above works have focused on implementing such an approach.
Therefore, it is necessary for the future of fall detection systems to detect falls as well
as long lies.

Addressing the above challenges by integrating the latest advancements and technolo-
gies in human–computer interaction, artificial intelligence, machine learning, internet of
things, pattern recognition, and pervasive computing serves as the main motivation of this
work.

3. Machine Learning-Based Approach for Detecting Falls and Fall-Like Motions

This section presents the system architecture, methodology, and results of our pro-
posed k-NN-based machine learning approach for detecting falls and fall-like motions. The
motions and behavioral patterns that our system can detect include falling, lying, being on
all fours, standing up from lying, and other activities. Here, “lying” refers to the person
lying on the ground after having experienced a fall, and “other activities” refers to all kinds
of activities related to ADLs, which does not include falling, lying, standing up from lying,
or being on all fours. This approach’s methodology and system architecture is outlined in
Section 3.1, and the associated results are presented in Section 3.2.

3.1. Methodology and System Architecture of the Machine Learning-Based Approach for Detecting
Falls and Fall-Related Motions

The system architecture of this approach consists of four primary modules—posture
recognition, data collection and data preprocessing, learning module, and performance
module. Next, we outline each of these modules. The system architecture is shown in
Figure 1. The posture recognition module is associated with the functionality to detect the
user’s posture at each time instant by interpreting the motion and movement-related data
during different activities. One methodology for developing such a posture recognition
approach is by analysis of the accelerometer data (obtained from a wearable sensor) in the
X-, Y-, and Z-directions during different activities at different time instants [45].

This is done by calculating the acceleration vector and the orientation angles of
the user’s acceleration recorded for each of the three axes. Traditionally, such inertial
sensors had a dedicated system of working where a proof mass, m, was suspended on
a mechanical frame by use of a spring, km, that responded to an input force, F, that
represented the desired quantity to be measured by the sensor. This applied force would
create a displacement, x, of the present proof mass, and this displacement was measured by
the device to sense the associated force. For instance, the input force could result from the
acceleration of the proof mass, which would happen if the device were an accelerometer.
In a different scenario, the input force could be the result of Coriolis acceleration related to
the angular rotation of the proof mass, which would happen if the device were a gyroscope.
Thus, the outputs of such sensors depend on the movements, position, and orientations
of the device and the person who holds the sensor [46]. Our proposed system is based on
advanced versions of such inertial sensors, such as [47], which are sophisticated and consist
of three-axis accelerometers. A three-axis accelerometer sensor outputs the acceleration
values measured along the X-, Y-, and Z-directions, and by using the same the velocity and
orientation angle can also be computed.
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In addition to measuring the acceleration value, such sophisticated sensors also output
the relative vector projections of the acceleration vector represented in a three-dimensional
coordinate system by using their own coordinate system, which is built into the sensor
at the time of its design and development. Because of Earth’s acceleration due to gravity,
any object on the surface of the Earth gets pulled towards the center of the Earth, with
force referred to as “g”. When the accelerometer is at rest, it only measures Earth’s gravity.
These accelerometers are affixed to different locations on the person’s body, based on the
specific part of the body whose acceleration is to be measured. The “g” value is important
for the working of such sensors. Such sensors analyze this “g” value to compute the sensor
orientation angle and to differentiate between different body postures. The orientation
angle in this context refers to the angle between the acceleration vector and each of the
axes—X, Y, and Z. The formula to compute this orientation angle for the X-axis is shown
in Equation (1). In a similar manner, the orientation angles for the Y- and Z-axes can be
computed.

cos(An(x)) =
An(x)

2
√

An(x)2 + An(y)2 + An(z)2
(1)

where:

cos(An(x)) = cosine value of the angle between the acceleration vector and the X-axis
An(x) = acceleration in the X-direction
An(y) = acceleration in the Y-direction
An(z) = acceleration in the Z-direction

By computing these orientation angles, every movement, posture, and motion can
be studied in the form of a unique spatial orientation. The position on the body where
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the sensor is affixed also plays a crucial role in this scenario. For example, the position
of an accelerometer placed on the user’s chest is always perpendicular to the ground for
movements such as standing and sitting but parallel to the ground for other categories
of movements related to falls, such as lying on the ground and being in a position where
both arms and legs are touching the ground (on all fours). Based on the above system
configurations of the sensors and the associated sensor data that were used, our proposed
framework did not require that we include any forms of coordinate transformations. The
calculation of the orientation angles along the three axes helps in studying the postures,
both static and dynamic, associated with different ADLs. Here, dynamic postures refer
to the postural orientations of the user when the user is in some form of motion. Falls or
fall-related motions can be detected by interpreting the sudden variations in the values of
Equation (1), and likewise for the other two axes, with respect to time. The acceleration
pattern during a fall event is characterized by a decrease in the magnitude of acceleration
followed by a rapid increase in the same, which can be tracked and recorded. The data
collection and data preprocessing module consist of the methodology for collecting the
data and for preprocessing the same. Here, the processing steps include (1) removing the
attributes from the data that are not necessary for the development of the next module—the
learning module, which consists of the machine learning classifier, and (2) filtering relevant
information from the data using a data filter. We set up an IoT-based data collection
framework in our lab space that can be used to collect real-time Big Data associated with
different user interactions with context parameters during different ADLs [48]. The setup
consists of wireless sensors and wearables and can be used to track different activities
such as using a microwave, reading, working, relaxing, and studying, usually performed
within the premises of a smart home environment. We also obtained Institutional Review
Board (IRB) approval from our institution to carry out real-time experiments with human
subjects within this IoT-based simulated environment in our lab. However, due to the
COVID-19 situation and the associated “work from home” recommendations by various
government sectors in the United States [49], we could not collect real-time data using this
data collection framework.

Therefore, we used two datasets to validate and evaluate our proposed approach
and its associated functionalities. These datasets were specifically chosen because their
associated attributes were very similar to the real-time data that our data collection frame-
work [48] could have collected. The first dataset was developed by Kaluža et al. [50]. This
dataset consists of 164,860 rows of data collected from five individuals, denoted as A to
E, performing different activities, including falls, in an IoT-based environment. The data
capture process involved tracking the motion and behavior-related data using accelerom-
eter sensors placed on four locations—left ankle, right ankle, chest, and belt—of each of
these participants. The accelerometer sensors on these four locations were represented
in the dataset with unique IDs: 010-000-024-033, 020-000-032-221, 010-000-030-096, and
020-000-033-111, respectively. The absolute counts of the data that were obtained from
these respective sensors were 43,526, 42,973, 42,560, and 35,801, respectively. The average
value of the acceleration in the X-, Y-, and Z-directions were recorded as 2.811, 1.697, and
0.418, respectively. The data from these sensors were tracked in real-time as the participants
performed a range of activities in the simulated IoT-based space. The different activities
present in this dataset include walking, falling, lying, lying down, being on all fours, sitting,
sitting down, sitting on the ground, standing up from lying, standing up from sitting, and
standing up from sitting on the ground. The number of instances these respective activities
were found in the dataset were 32,710, 2973, 54,480, 6168, 5210, 27,244, 1706, 11,779, 18,361,
1381, and 2848, respectively. Here the activity of “lying” refers to the person being in a lying
position after having experienced a fall. In addition to these activities, the other attributes
present in this dataset included the tag numbers of the sensors, the tag identifiers, the date
and time, and the acceleration values in the X-, Y-, and Z-directions. As we were interested
in detecting falls and fall-related activities, the activities that were not related to falls were
labeled as “other activities”.
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The second dataset, developed by Tabbakha et al. [51], contains activity and human
behavior-related data collected from both wireless sensors and wearables in an IoT-based
environment. The data attributes present in this dataset include the accelerometer data,
gyroscope data, and the received signal strength indicator (RSSI) data obtained from Blue-
tooth low energy (BLE) beacons and BLE scanners. The simulated smart-home environment
in which these data were collected consisted of four rooms—kitchen, bedroom, office, and
bathroom. To collect the data as presented in this dataset, the authors developed a wearable
device by using the Linkit 7697 and the MPU6050 sensors. This wearable device tracked the
behavior-related information of the user and collected position-related data with respect
to the user’s location in each of the four rooms. A BLE beacon was incorporated into
this wearable, and Raspberry Pi-based BLE scanners were installed at different locations
of the IoT-based space. These scanners tracked the position of the user by sensing the
BLE beacon and interpreting the associated RSSI data. The authors set the advertising
interval of the BLE beacon to 100 ms with a transmitting power of up to −30 dBm. The
activities performed in each of these rooms included sleeping, changing clothes, relaxing,
moving around, cooking, eating, working, defecating, and experiencing an emergency.
The respective activities were found to occur 25, 24, 24, 47, 26, 26, 21, 31, and 71 times,
respectively. Here, as per the definition of the authors, an emergency constituted detecting
the user in a lying position (from a fall) in an environment where a user is not supposed to
lie down, for instance, in the bathroom. The data from the accelerometer and gyroscope
from the wearable were sampled at a rate of 20 Hz. A total of 20 volunteers (10 males
and 10 females) had participated in the experimental trials. The average values of the
acceleration along the X-, Y-, and Z-directions were recorded as 2244, 16,708, and 15,148,
respectively, after the completion of these experimental trials. The average value of the
gyroscope data along the X-, Y-, and Z-directions were recorded as −590.790, 250.417, and
49.963, respectively, after the completion of the data collection.

For the data preprocessing steps for [50], we referred to the findings of [45]. According
to [45], placing one accelerometer on the chest region is considered the best placement for
an accelerometer for posture recognition, as compared to (1) placing an accelerometer on
other locations on the human body, or (2) combinations of two or more accelerometers
placed at different locations on the human body. These findings helped to ensure that we
did not have to perform permutation and combination by selecting two or more sensor
arrangements out of sensors placed on the left ankle, right ankle, chest, and belt to evaluate
the optimal approach. Therefore, we filtered the data [50] to work with the readings
obtained from the chest accelerometer that recorded the motion-related information during
the different activities each of the five users performed. In other words, the data obtained
from the accelerometers placed on the left ankle, right ankle, and belt were removed from
the dataset and were not considered for this study. This data filtering and unwanted
data elimination were done using a data filter. After this process, the dataset consisted
of 35,801 rows. After that, we performed the data labeling as discussed above, where all
other activities that were not falling, lying, standing up from lying, or being on all fours
were labeled as “other activities”. After the data labeling, we had 18,138 instances of other
activities, 614 instances of falls, 11,930 instances of lying, 3968 instances of standing up
from lying, and 1151 instances of being on all fours.

To preprocess the data present in [51], we removed the attributes from the data
that were not associated with the acceleration data of the user. These attributes included
bedroom, living room, kitchen, office, bathroom, location, gyroscope-X, gyroscope-Y,
gyroscope-Z, and activity. After completing the data preprocessing steps on this dataset [51],
the remaining attributes were acceleration-X, acceleration-Y, acceleration-Z, and action,
where the “action” attribute consisted of falls and other activities. As per the data descrip-
tion of this dataset, we labeled “emergency” as “fall” and all other actions in the “action”
attribute as “not a fall” .

When working with each of these datasets, we split the data into the training set and
test set for the learning module by using a data splitter. A total of 80% of the data was
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used for training, and 20% of the data was used for testing the proposed k-NN-based
machine learning classifier. We evaluated our approach with several other ratios between
the training set and the test set and found that when 80% of the data was used for training
and the remaining 20% was used for testing, the learning method achieved the highest
performance accuracy, so we used this ratio to develop and evaluate our approach. As per
the system architecture shown in Figure 1, we implemented all the steps associated with
this methodology in RapidMiner [52]. RapidMiner is a software application development
tool that allows for the development, implementation, and testing of various data science
and machine learning-related algorithms. We used the RapidMiner Studio, version 9.9.000,
on a Microsoft Windows 10 computer with an Intel (R) Core (TM) i7-7600U CPU @ 2.80
GHz, two core(s), and four logical processor(s). The free version of RapidMiner Studio has
a data processing limit of 10,000 rows, so we used the education license of RapidMiner to
overcome this data processing limit. With the education license, there is no limit on the
number of rows in the dataset that can be processed.

As we used RapidMiner to develop this proposed methodology, we will define two
terminologies specific to RapidMiner here in a broad manner. They are “process” and
“operator”. In RapidMiner, an “operator” refers to one of the multiple building blocks
of an application associated with specific functionalities that can be changed or modified
either statically or dynamically, both by the user and by the application based on the
specific need. In RapidMiner, certain operators are already developed in the software tool,
which can be customized or updated. The tool also allows for the development of new
operators based on any specific need. A continuous, logical, and operational collection
of “operators” linearly or hierarchically representing a working application with one or
more output characteristics is referred to as a “process”. The RapidMiner process that
represents this methodology is shown in Figure 2. The “dataset” operator was used to
import the given datasets into the RapidMiner platform. Then we developed the “posture
recognition” operator as per the characteristics of the posture recognition module of the
system architecture, shown in Figure 1. This posture recognition operator was connected
to the “data preprocess” operator, which was developed to perform the necessary data
filtering and data preprocessing as outlined above. After that, the built-in “split data”
operator was used to split the data into the training set and test set, where 80% of the
data was used to train and 20% of the data was used to test the k-NN-based multilabel
classification model. This k-NN classifier was implemented using the built-in “k-NN”
operator in RapidMiner. The following is the pseudocode of the k-NN learning method:

1. Calculate “d(x, xi)” i = 1, 2, . . . .., n; where d denotes the Euclidean distance between
the points.

2. Arrange the calculated n Euclidean distances in non-decreasing order.
3. Let k be a +ve integer, take the first k distances from this sorted list.
4. Find those k-points corresponding to these k-distances.
5. Let ki denotes the number of points belonging to the ith class among k points, i.e.,

k ≥ 0.
6. If ki >kj ∀ i 6= j, then put x in class i.

To evaluate the characteristics of the learning method, we used the built-in “perfor-
mance” operator in RapidMiner. This operator can be used to calculate the overall accuracy
and the individual class precision values of a learning method, which is represented in the
form of a confusion matrix. The results of the same are further discussed in Section 3.2.
We developed two different processes in RapidMiner corresponding to the two different
datasets [50,51]. The only difference in these two processes was that the dataset operator
consisted of a different dataset each time.
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3.2. Results of the Machine Learning-Based Approach for Detecting Falls and Fall-Related Motions

This section presents the results of the RapidMiner processes as shown in Figure 2,
which was developed as per the system architecture of this approach, represented in
Figure 1. To calculate the performance accuracy of the model, the overall performance
accuracy and the respective class precision values were calculated by using the performance
operator in RapidMiner, in the form of a confusion matrix, as per Equations (2) and (3).

Overall_Accuracy =
True_P + True_N

True_P + True_N + False_P + False_N
(2)

Class_Precision =
True_P

True_P + False_P
(3)

where:

Overall_Accuracy = overall accuracy of the machine learning method
True_P = true positive
True_N = true negative
Class_Precision = sub class precision

Figure 3 shows the confusion matrix that shows the performance accuracy of the
RapidMiner process shown in Figure 2 when we imported the first dataset [50] using the
dataset operator. As shown in Figure 3, this k-NN-based multilabel machine learning
approach for detecting falls and fall-related motions achieved an overall performance
accuracy of 98.32%. It could detect the motions that correspond to falling, lying, being
on all fours, and standing up from lying, with respective class precision values of 87.72%,
98.42%, 96.09%, and 96.71%. Here, “lying” refers to the person lying on the ground after
having experienced a fall. It could also detect “other activities” with an accuracy of 99.09%.
“Other activities” comprises all activities other than falls or fall-related motions that were
present in this dataset. Figure 4 shows the confusion matrix that shows the performance
accuracy of the RapidMiner process shown in Figure 2 when we imported the second
dataset [51] using the dataset operator. It achieved an overall performance accuracy of
81.36%, with the class precision values for falls and other activities being 76.92% and
84.85%, respectively.
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After that, we performed a comprehensive comparison study of different machine
learning-based methods to deduce the best machine learning method, in terms of perfor-
mance accuracy, for the development of such fall detection systems and applications. This
study is outlined in Section 4.

4. Comparative Study of Different Machine Learning Methods to Deduce the Best
Machine Learning Method for Fall Detection Systems

As discussed in detail in Section 2, a range of machine learning approaches have been
used by previous researchers in this field. These include random forest, artificial neural
network, decision tree, support vector machine, k-NN, gradient boosted trees, naïve bayes,
and deep learning [53]. Table 2 summarizes the works that have focused on implementing
these machine learning approaches to develop fall detection systems.

Table 2. Summary of recent works in fall detection that used different kinds of machine learning
approaches.

Learning Approach Work (s)

Random forest Balli et al. [32], Dhole et al. [33]
Artificial neural network Espinosa et al. [30], Nakamura et al. [31], Tahir et al. [35]
Decision tree Ozcan et al. [26], Lai et al. [27], Cai et al. [42]
Support vector machine Bian et al. [25], Hakim et al. [28]
k-NN Liu et al. [17]
Gradient boosted trees Ning et al. [40], Cahoolessur et al. [41]
Deep learning Feng et al. [23], Jácome et al. [36]
Naïve Bayes Ngu et al. [38], Khan et al. [39]
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Even though a range of machine learning approaches have been investigated by
researchers in this field, there has not been any work done so far that compares the
performance characteristics of these approaches to deduce the best learning method in
terms of performance accuracy for the development of fall detection systems. Because of
multiple reasons such as differences in the data source, variations in the preprocessing
steps, different ratios of training and test data, and different methods of evaluating the
performance characteristics, the performance characteristics of these existing works cannot
be directly compared. There is a need for a comprehensive study that compares the
performance characteristics of different machine learning approaches by using the same
data source, the same data preprocessing steps, the same training-to-test ratios, and the
same methods of evaluating the performance characteristics to deduce the best machine
learning approach for the development of fall detection systems. We address this research
challenge in this section by performing a comprehensive comparison study by developing,
implementing, and testing the performance of different machine learning methods for fall
detection. The machine learning methods that we developed, implemented, and tested
for this study include random forest, artificial neural network, decision tree, multiway
decision tree, support vector machine, k-NN, gradient boosted trees, ID3, decision stump,
CHAID, AutoMLP, linear regression, vector linear regression, random tree, naïve bayes,
naïve bayes (kernel), linear discriminant analysis, quadratic discriminant analysis, and
deep learning [53]. We performed this study using both datasets [50,51]. The methodology
is outlined in Section 4.1, and the results of the study are presented and discussed in
Section 4.2.

4.1. Methodology for the Comparative Study of Different Machine Learning Approaches

The methodology outlined in this section is based on the system architecture shown in
Figure 1. Therefore, a separate system architecture diagram is not provided in this section.
The following are the steps associated with this study:

1. Use the dataset operator to import the datasets [50,51] into RapidMiner to develop a
process where one dataset is used each time for a process.

2. Develop an operator that can track and analyze different postural orientations of the
user by using Equation (1) and likewise calculate the orientation angles along the
other two axes to detect falls and fall-related motions.

3. Develop an operator to preprocess the data, which consists of functionalities to (a) filter
out and use the readings of the accelerometer data collected from the accelerometer
placed on the user’s chest and (b) remove any unnecessary attributes that are not
necessary for the development of the classifier.

4. Use the “split data” operator to split the data into the training set and test set, with
80% data for training and the rest for testing.

5. Develop and implement a machine learning approach out of random forest, artificial
neural network, decision tree, multiway decision tree, support vector machine, k-NN,
gradient boosted trees, ID3, decision stump, CHAID, AutoMLP, linear regression,
vector linear regression, random tree, naïve bayes, naïve bayes (kernel), linear discrim-
inant analysis, quadratic discriminant analysis, and deep learning [53] each time for
the development of this RapidMiner process. Separate RapidMiner processes were
developed for each of these learning approaches.

6. Train the learning method using the training data and implement it on the test data by
using the “apply model” operator.

7. Evaluate the performance characteristics of the learning approach in terms of overall
accuracy and subclass precision values as per Equations (2) and (3) by using the
performance operator.

8. Compare the findings of Step (7) for each of the learning methods mentioned in Step
(5) to deduce the best machine learning approach in terms of accuracy.

9. Repeat Step 8 for both datasets to detect and track the consistency in the findings.
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Even though the machine learning methods of multiway decision tree, ID3, deci-
sion stump, CHAID, AutoMLP, linear regression, vector linear regression, random tree,
naïve bayes (kernel), linear discriminant analysis, and quadratic discriminant analysis [53]
have not been very popular for the development of fall detection systems, we included
these learning approaches in our study for the comprehensiveness of the same. The re-
sults and the comparison of the associated performance characteristics of these respective
RapidMiner processes are presented and discussed in Section 4.2.

4.2. Results of the Comparative Study of Different Machine Learning Approaches

In this section, we present and discuss the results of this study, which we performed
on both datasets [50,51]. A separate RapidMiner process was developed to implement
each of the machine learning approaches as mentioned in Section 4.1, as per the system
architecture shown in Figure 1, for each of the two datasets. The respective RapidMiner
processes were similar to the RapidMiner process shown in Figure 2, with the primary
difference being in the learning model operator that was used for each of these processes.
Similar to Figure 3, which evaluates the performance characteristics of the RapidMiner
process shown in Figure 2 via a confusion matrix when the first dataset [50] was used,
we used the same approach to evaluate the performance characteristics of the respective
RapidMiner processes that were developed to implement each of these learning methods
on the two datasets. Table 3 summarizes the performance characteristics (both the overall
accuracy and the respective class precision values) of the different learning methods that
we developed to detect falls and fall-related motions by using the first dataset [50]. In this
table, for any cell that shows 0.00% as the precision, it means that that specific class or
subclass did not consist of any true detections in the test set by the specific learning method
under consideration.

Table 3. Summary of the performance characteristics of the different machine learning methods that we developed in
RapidMiner to detect falls and fall-related motions by using the first dataset [50].

Learning Approach Overall
Accuracy

Precision
(Falling)

Precision
(Lying)

Precision
(Standing Up
from Lying)

Precision (On
All Fours)

Precision
(Other Activity)

Random forest 81.97% 66.67% 80.17% 90.00% 100.00% 83.12%
Artificial neural network 86.33% 14.29% 87.24% 71.12% 75.29% 87.99%

Decision tree 81.87% 50.00% 80.51% 50.66% 76.92% 84.60%
Multiway decision tree 83.12% 0.00% 83.36% 63.34% 49.32% 85.90%
Support vector machine 76.50% 0.00% 67.34% 0.00% 0.00% 84.45%

k-NN 98.32% 87.72% 98.42% 96.71% 96.09% 99.09%
Gradient boosted trees 84.95% 0.00% 84.52% 67.20% 51.24% 88.61%

ID3 68.89% 0.00% 66.47% 66.47% 59.55% 70.39%
Decision stump 50.96% 0.00% 44.36% 0.00% 0.00% 51.20%

CHAID 68.87% 0.00% 66.44% 60.00% 59.55% 70.39%
AutoMLP 86.30% 30.43% 85.23% 70.72% 52.75% 91.45%

Linear regression 77.80% 0.00% 71.56% 0.00% 0.00% 82.58%
Vector linear regression 50.66% 0.00% 0.00% 0.00% 0.00% 50.66%

Random tree 77.29% 0.00% 76.04% 0.00% 0.00% 78.10%
Naïve Bayes 27.23% 5.69% 69.85% 12.95% 5.53% 0.00%

Naïve Bayes (kernel) 80.28% 4.00% 80.90% 47.87% 23.97% 85.08%
Linear discriminant analysis 50.66% 0.00% 0.00% 0.00% 0.00% 50.66%

Quadratic discriminant analysis 50.66% 0.00% 0.00% 0.00% 0.00% 50.66%
Deep learning 82.13% 33.33% 79.23% 56.75% 61.11% 86.61%

From Table 3, which shows the comparison of the performance accuracies of all
the machine learning methods that we developed, implemented, and tested on the first
dataset [50] for detecting falls and fall-like motions, the following can be concluded:

1. In order of decreasing overall performance accuracy, these machine learning methods
can be arranged as k-NN > artificial neural network > AutoMLP > gradient boosted
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trees > multiway decision tree > deep learning > random forest > decision tree > naïve
bayes (kernel) > linear regression > random tree > support vector machine > ID3 >
CHAID > decision stump > vector linear regression > linear discriminant analysis >
quadratic discriminant analysis > naïve bayes.

2. In order of decreasing class precision value for the detection of a falling motion, these
machine learning methods can be arranged as k-NN > random forest > decision
tree > deep learning > AutoMLP > artificial neural network > naïve bayes > naïve
bayes (kernel) > gradient boosted trees > multiway decision tree > linear regression
> random tree > support vector machine > ID3 > CHAID > decision stump > vector
linear regression > linear discriminant analysis > quadratic discriminant analysis.

3. In order of decreasing class precision value for the detection of a lying motion, these
machine learning methods can be arranged as k-NN > artificial neural network >
AutoMLP > gradient boosted trees > multiway decision tree > naïve bayes (kernel)
> decision tree > random forest > deep learning > random tree > linear regression
> naïve bayes > support vector machine > ID3 > CHAID > decision stump > vector
linear regression > linear discriminant analysis > quadratic discriminant analysis.

4. In order of decreasing class precision value for the detection of standing up from a
lying motion, these machine learning methods can be arranged as k-NN > random for-
est > artificial neural network > AutoMLP > gradient boosted trees > ID3 > multiway
decision tree > CHAID > deep learning > decision tree > naïve bayes (kernel) > naïve
bayes > random tree > linear regression > support vector machine > decision stump
> vector linear regression > linear discriminant analysis > quadratic discriminant
analysis.

5. In order of decreasing class precision value for the detection of being on all fours,
these machine learning methods can be arranged as random forest > k-NN > decision
tree > artificial neural network > deep learning > ID3 > CHAID > AutoMLP > gradient
boosted trees > multiway decision tree > naïve bayes (kernel) > naïve bayes > random
tree > linear regression > support vector machine > decision stump > vector linear
regression > linear discriminant analysis > quadratic discriminant analysis.

6. In order of decreasing class precision value for the detection of other activities, these
machine learning methods can be arranged as k-NN > AutoMLP > gradient boosted
trees > artificial neural network > deep learning > multiway decision tree > naïve
bayes (kernel) > decision tree > support vector machine > random forest > linear
regression > random tree > ID3 > CHAID > decision stump > vector linear regression
> linear discriminant analysis > quadratic discriminant analysis > naïve bayes.

From the above, it can be inferred that the k-NN learning approach outperformed
all the other learning approaches in terms of overall accuracy, class precision value for
the detection of falling, class precision value for the detection of lying, class precision
value for the detection of standing up from a lying motion, and for the detection of other
activities. For the detection of being on all fours, the random forest method achieved a
higher performance accuracy. However, upon comparison of the respective accuracies of
these two learning approaches for the detection of being on all fours, as presented in Table 3,
it can be seen that the difference was less than 4%. In addition, for all the other motions and
behavioral patterns, the random forest model’s accuracy was much lower than that of the
k-NN approach. Thus, based on the findings from this dataset [50], it may be concluded
that the k-NN approach is the best machine learning method for the development of fall
detection systems and related applications. To further uphold these findings, we repeated
this study of comparing the performance accuracies of the different learning methods, as
mentioned above [53], using the second dataset [51]. Table 4 summarizes the performance
characteristics (both the overall accuracy and the respective class precision values) of these
different learning methods that we developed to detect falls using the second dataset [51].
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Table 4. Summary of the performance characteristics of the different machine learning methods that
we developed in RapidMiner to detect falls and other activities using the second dataset [51].

Learning Approach Overall Accuracy Precision (Fall) Precision (Not a Fall)

Random forest 71.19% 60.53% 90.48%
Artificial neural network 66.10% 66.67% 64.71%

Decision tree 74.58% 62.50% 100.00%
Multiway decision tree 74.58% 62.50% 100.00%
Support vector machine 66.10% 66.67% 64.71%

k-NN 81.36% 76.92% 84.85%
Gradient boosted trees 74.58% 67.86% 80.65%

ID3 57.63% 0.00% 57.63%
Decision stump 74.58% 62.50% 100.00%

CHAID 57.63% 0.00% 57.63%
AutoMLP 66.10% 64.71% 66.67%

Linear regression 66.10% 64.71% 66.67%
Vector linear regression 57.63% 0.00% 57.63%

Random tree 74.58% 62.50% 100.00%
Naïve Bayes 66.10% 64.71% 66.67%

Naïve Bayes (kernel) 71.19% 66.67% 74.29%
Linear discriminant analysis 66.10% 64.71% 66.67%

Quadratic discriminant
analysis 74.58% 62.50% 100.00%

Deep learning 74.58% 62.50% 100.00%

From Table 4, which shows the comparison of the performance accuracies of all the
machine learning methods that we developed, implemented, and tested on the second
dataset [51] for detecting falls and other activities (labeled as “not a fall”), the following
can be concluded:

1. In order of decreasing overall performance accuracy, these machine learning methods
can be arranged as k-NN > decision tree > multiway decision tree > gradient boosted
trees > decision stump > random tree > quadratic discriminant analysis > deep learn-
ing > random forest > naïve bayes (kernel) > artificial neural network > support vector
machine > AutoMLP > linear regression > naïve bayes > linear discriminant analysis
> ID3 > CHAID > vector linear regression.

2. In order of decreasing class precision value for the detection of falls, these machine
learning methods can be arranged as k-NN > gradient boosted trees > naïve bayes
(kernel) > artificial neural network > support vector machine > AutoMLP > linear
regression > naïve bayes > linear discriminant analysis > decision tree > multiway
decision tree > decision stump > random tree > quadratic discriminant analysis > deep
learning > random forest > ID3 > CHAID > vector linear regression.

3. In order of decreasing class precision value for the detection of other activities (labelled
as “not a fall” in the dataset), these machine learning methods can be arranged as
decision tree = multiway decision tree = decision stump = random tree = quadratic
discriminant analysis = deep learning > random forest > k-NN > gradient boosted
trees > naïve bayes (kernel) > AutoMLP > linear regression > naïve bayes > linear
discriminant analysis > artificial neural network > support vector machine > ID3 >
CHAID > vector linear regression.

From the above, it can be inferred that the k-NN learning approach outperformed
all the other learning approaches in terms of overall accuracy and in terms of the class
precision value for the detection of falls. In terms of the class precision for the detection of
other activities as present in the dataset [51], the k-NN approach ranked third compared to
all the other learning methods, and its performance was not much less compared to the
learning methods with a better class precision value for the detection of other activities.
Thus, it can be concluded that the k-NN approach outperformed all the other learning
approaches for the detection of falls and other activities when the second dataset [51] was
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used. The above discussion of the results from the second dataset, as far as the performance
of the k-NN learning method is concerned, is consistent with our findings from the first
dataset [50]. Thus, based on the consistent findings from two different datasets [50,51] and
the associated discussions, it can be concluded that the k-NN classifier is best suited for the
development of fall detection systems and related applications, and it outperforms all the
other machine learning methods.

5. Improving the Performance Accuracy of the k-NN Approach for Detection of Falls
and Fall-Related Motions

It is essential that fall detection systems have high accuracy so that the underlining
detections are perceived as accurate, and the systems are deemed reliable by the users
of these systems, the caregivers, and the associated medical personnel. For the develop-
ment of any machine learning classifier, it is important to reduce false positives and the
overfitting of data so that the same does not impact the performance accuracy. Previous
research studies [19–24] that focused on addressing false positives and studying behavioral
patterns related to falls did not achieve high levels of performance accuracy. Thus, the
challenge is to address the issue of false positives and overfitting of data while investigating
approaches to improve the underlining system’s performance accuracy. We present a novel
approach for the same in this section, which is a combination of k-folds cross-validation
with the AdaBoost algorithm. Here, the AdaBoost algorithm uses the k-NN learning
approach with certain specifications that we defined in terms of how the classifier should
work. In Section 5.1, we present the associated methodology, and the results from both
datasets [50,51] are presented and discussed in Section 5.2.

5.1. Methodology for Improving the Performance Accuracy of the k-NN Approach for the Detection
of Falls and Fall-Related Motions

This section outlines the methods and associated steps for improving the performance
accuracy of the k-NN-based multilabel classification approach for the detection of falls
and fall-related motions. The k-NN approach was selected for the development of this
methodology because, as in Section 4, where we used two different datasets [50,51] to test
our approach, we found that the k-NN classifier outperformed all other machine learning
approaches to detect falls and fall-related motions as well as other activities. We developed
this approach as a RapidMiner process. It is shown in Figure 2, and the performance
characteristics of the same for the two datasets are shown in Figures 3 and 4, respectively.
This process was developed by building on the system architecture shown in Figure 1.
We improved this system (Figure 2) by introducing and implementing the k-folds cross-
validation [54] approach and the AdaBoost algorithm [55,56] and incorporating certain
specifications in the k-NN classifier in terms of how it should work, which are outlined next.
Adaptive Boosting [55,56], abbreviated as AdaBoost, is a machine learning algorithm that
can be combined with other learning approaches to improve or “boost” the performance of
those respective classification models. The pseudo-code for the AdaBoost algorithm [55,56]
is presented in Algorithm 1. The methodology also helps remove overfitting issues in
machine learning-based classifications. Unlike other machine learning classifiers, the
algorithm uses specific features from the training set that would improve the predictive
performance of the specific classifier being developed. Such an approach also reduces
dimensionality and contributes to improving the execution time, as features of the data
that are not related to the classification problem at hand are not computed anymore. Upon
application of AdaBoost to a machine learning classifier, such as k-NN, the boosted classifier
can be represented as shown in Equations (4) and (5):

BN(x) =
N

∑
n=1

bn(x) (4)

Dt = ∑
m

D(Bn−1(xm) + a(n)h(xm)) (5)



J. Sens. Actuator Netw. 2021, 10, 39 18 of 27

where:

bn(x) = machine learning classifier that uses (x) as input
h(xm) = output hypothesis of the machine learning classifier
n = variable that represents each iteration
Dt = sum of training error of the final t-stage boosted classification model
Bn−1(xm) = the boosted classifier upon application of AdaBoost
D( f ) = error function of “f”
bn(x) = a(n)h(xm) = the machine learning classifier that is being boosted

Algorithm 1 AdaBoost algorithm

Input: examples, set of N labeled examples (x1, y1), . . . ,(xN, yN)
Local Variables: w, a vector of N example weights, initially 1 ⁄ N
h, a vector of K hypotheses
z, a vector of K hypothesis weights
Output: weighted-majority hypothesis
function AdaBoost (examples, L, K) returns a weighted-majority hypothesis
L, a learning algorithm
K, the number of hypotheses in the ensemble
1: for k = 1 to K, do
2: h[k]← L(examples, w)
3: error← 0
4: for j = 1 to N, do
5: if h[k](xj) 6= yj then error← error + w[j]
6: for j = 1 to N, do
7: if h[k](xj) = yj then w[j]← w[j] · error ⁄ (1 − error)
8: w← Normalize(w)
9: Z[k]← log(1 − error) ⁄ error
10: return Weighted-Majority(h, z)

In a k-folds cross-validation approach [54], the dataset is randomly split into “k”
number of subsets. For each iteration, a total of (k-1) number of subsets is taken to train the
machine learning method, and it is tested on the remaining subset. The iteration continues
for “k” number of times, hence the name “k-folds”. The results from all these iterations are
then averaged or combined to obtain the final performance characteristics of the machine
learning method. This procedure is as follows:

i. Shuffle the dataset randomly.
ii. Split the dataset into k groups.
iii. For each unique group:

a. Take the group as a holdout or test data set.
b. Take the remaining groups as a training data set.
c. Fit a model on the training set and evaluate it on the test set.
d. Retain the evaluation score and discard the model.

iv. Summarize the skill of the model using the sample of model evaluation scores.

The primary advantage of this approach is that all data points are considered for both
testing and training the learning method, and each data point is taken up for evaluation of
the model only once. Several works in machine learning, pattern recognition, and their
interrelated disciplines [57–60] have shown that the cross-validation approach helps to
eliminate overfitting and reduces false positives. These works [57–60] justify the rele-
vance of using the k-folds cross-validation approach in our learning method to minimize
overfitting and false positives.

We developed and implemented the k-folds cross-validation and the AdaBoost algo-
rithm in the RapidMiner process shown in Figure 2 as per the following steps. For these
steps, the specific number of iterations for the AdaBoost, the specific number of folds for
the cross-validation operator, and the specifications of the k-NN learning method were
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determined by implementing all the available training and testing methods and exploring
different steps, followed by finalizing the specific steps that yielded the best performance.

1. Disable or delete all the other operators in the process (Figure 2) other than the dataset,
posture recognition, and data preprocess operators.

2. Import the cross-validation operator into the process.
3. Customize the functionality of the cross-validation operator to define the number of

folds and sampling type.
4. Customize the training subprocess of the cross-validation operator.

a. The cross-validation operator has 10 folds.
b. Import the AdaBoost operator into the subprocess with the AdaBoost consisting

of 10 iterations.
c. Customize the AdaBoost operator by defining the number of iterations.
d. Define the AdaBoost operator’s work by developing the process that it must

iterate.
e. The definition in (d) above consists of developing the RapidMiner process shown

in Figure 2, in partial form, using only the dataset, posture recognition, data
preprocess, and k-NN operators.

5. Add specifications to the k-NN learning method.

a. The value of “k” = the number of labels in the attribute being predicted from the
test data.

b. Use the weighted vote approach.
c. The measure type is numerical measures, with the specific numerical measure

being Camberra Distance.

6. Customize the testing subprocess of the cross-validation operator.

a. Import the “apply model” operator to apply the learning method.
b. Include the performance operator and customize the same so that the perfor-

mance is evaluated using a confusion matrix that shows the overall accuracy and
the respective class precision values.

c. Update the functionality of the performance operator to use example weights.

5.2. Results of the Methodology for Improving the Performance Accuracy of the k-NN Approach for
the Detection of Falls and Fall-Related Motions

To implement the above approach, we used 10 folds for the k-folds cross-validation
process (Step 3) and used 10 iterations for the AdaBoost operator (Step 4b). When the first
dataset [50] was used, the weighted k-NN model contained 35,801 examples with seven
dimensions of the classes—falling, lying, standing up from lying, being on all fours, and
other activity. When the second dataset [51] was used, the weighted k-NN model contained
295 examples with three dimensions of the following classes: “fall” and “not a fall”. The
process and its associated subprocesses that we developed in RapidMiner by following the
above steps are shown in Figures 5 and 6.
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The performance characteristics of this approach were studied and analyzed using a
confusion matrix to determine the overall performance accuracy and the subclass precision
values for detection of falls and fall-related motions—falling, lying, being on all fours, and
standing up from lying for the first dataset [50]. The confusion matrix that outlined the
performance accuracy of our approach when tested on the first dataset [50] is presented in
tabular form in Figure 7.
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As shown in Figure 7, the use of the k-folds cross-validation approach with the Ad-
aBoost algorithm boosted the performance accuracy of the k-NN-based learning approach
considerably. The improved overall performance accuracy of this approach was now
99.87%, with the subclass precision values for the activities of falling, lying, standing up
from lying, being on all fours, and other activities being 99.01%, 99.92%, 99.60%, 99.83%,
and 99.92%, respectively. The confusion matrix that outlined the performance accuracy
of our approach when tested on the second dataset [51] is presented in tabular form in
Figure 8. As can be seen from Figure 8, the use of the k-folds cross-validation approach
with the AdaBoost algorithm boosted the performance accuracy of the k-NN based learn-
ing approach considerably yet again. The improved overall performance accuracy of this
approach was now 99.66%, with the subclass precision values for falls and other activities
being 100% and 99.42%, respectively.
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Next, to further discuss the relevance and significance of these results, we compared
these performance accuracies to similar works [17–43] in this field, which we reviewed
in Section 2. The performance characteristics of these works [17–43] are summarized in
Table 5. Table 5 also shows the comparison of the performance accuracies of our learning
approaches, shown in Figures 7 and 8, with the performance accuracies of the existing
approaches [17–43].

Table 5. Summary of recent works in fall detection along with their performance accuracies.

Work(s) Performance Accuracy

Liu et al. [17] 84.44%
Sun et al. [18] 85.40%

Rafferty et al. [19] 68.00%
Castillo et al. [20] 79.57%

Fu et al. [21] 84.00%
Williams et al. [22] 80.00%

Feng et al. [23] 81.70%
Jokanovic et al. [24] 83.00%

Bian et al. [25] 97.60%
Ozcan et al. [26] 89.80%

Lai et al. [27] 92.92%
Hakim et al. [28] 90.00%
Tomii et al. [29] 93.30%

Espinosa et al. [30] 95.64%
Nakamura et al. [31] 90.00%

Balli et al. [32] 98.50%
Dhole et al. [33] 98.00%

Ramirez et al. [34] 98.84%
Ahmad et al. [35] 92.33%
Jácome et al. [36] 98.75%
Dhiraj et al. [37] 90.00%
Ngu et al. [38] 92.33%
Khan et al. [39] 95.00%
Ning et al. [40] 96.00%

Cahoolessur et al. [41] 96.00%
Cai et al. [42] 99.08%
Lee et al. [43] 96.00%

Thakur et al. [this work]—dataset 1 99.87%
Thakur et al. [this work]—dataset 2 99.66%

Upon arranging these performance accuracies in decreasing order, the following can
be observed:

Thakur et al. [this work]—dataset 1 > Thakur et al. [this work]—dataset 2 > Cai et al. [42]
> Ramirez et al. [34] > Jácome et al. [36] > Balli et al. [32] > Dhole et al. [33] > Bian et al. [25]
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> Ning et al. [40] > Cahoolessur et al. [41] > Lee et al. [43] > Espinosa et al. [30] >
Khan et al. [39] > Tomii et al. [29] > Lai et al. [27] > Tahir et al. [35] > Ngu et al. [38] >
Hakim et al. [28] > Nakamura et al. [31] > Dhiraj et al. [37] > Ozcan et al. [26] > Sun et al. [18]
> Liu et al. [17] > Fu et al. [21] > Jokanovic et al. [24] > Feng et al. [23] > Williams et al. [22]
> Castillo et al. [20] > Rafferty et al. [19].

As per the above, it can be concluded that our work outperformed all similar works
in this field [17–43] in terms of the overall performance accuracy. Our work used a method-
ology based on the k-fold cross-validation method and the AdaBoost algorithm applied to
a k-NN-based multilabel classifier that minimizes false positives and reduces overfitting
while detecting falls. The fact that when we tested our approach using two different
datasets, we achieved performance accuracies higher than any of the prior works in this
field upholds the potential, superiority, and relevance of this methodology. In addition to
the above, our approach can also detect fall-related motions and overcomes the limitations
of binary classification that have been previously used in this field. Furthermore, our
methodology can detect the activity of “standing up from lying” with high accuracy. This
serves as a means to infer whether a person who has experienced a fall also experienced a
long lie. This can be done in real-time by tracking whether the “fall” event was followed
by a “standing up from lying” event within a timeframe of one hour.

6. Comparative Discussion

There have been several works [16–43] published over the last few years with the aim
of detecting falls in the elderly to contribute to their assisted living and healthy aging in
the future of technology-based pervasive living spaces, such as smart homes. Researchers
have investigated multiple approaches to address this challenge. Despite several advances
and multiple emerging technologies related to fall detection, these works have several
limitations and drawbacks, as outlined in Section 2. In this section, we further elaborate on
these challenges and the limitations of the existing systems while discussing how our work
addresses the same. This is outlined as follows:

1. There is need for a study that deduces the optimal machine learning approach for fall
detection: A range of machine learning methods such as random forest [32,33], artifi-
cial neural network [30,31,35], decision tree [26,27,42], support vector machine [25,28],
k-NN [17], gradient boosted trees [40,41], naïve bayes [38,39], and deep learning [23,36]
have been used by researchers in the last few years (Table 2). However, no study has
been conducted in this field thus far that compares the performance characteristics
of these machine learning approaches for fall detection to deduce the best learning
approach for the same. Moreover, no prior work in this field (Tables 1 and 2) has
been associated with the development, implementation, and evaluation of such a
wide range of machine learning-based fall detection systems. This paper takes a
comprehensive approach to address this challenge. We conducted a comprehensive
study of 19 machine learning approaches for fall detection, which included random
forest, artificial neural network, decision tree, multiway decision tree, support vector
machine, k-NN, gradient boosted trees, ID3, decision stump, CHAID, AutoMLP, linear
regression, vector linear regression, random tree, naïve bayes, naïve bayes (kernel),
linear discriminant analysis, quadratic discriminant analysis, and deep learning. The
approach was tested on two different datasets [50,51] and the results (Tables 3 and 4)
were consistent from the two datasets. The results show that the k-NN based-machine
learning method outperformed all the other machine learning methods for the detec-
tion of falls and fall-like motions.

2. Most of the recent works in this field, as discussed in Section 2, have been binary
classifiers. Such classifiers tend to classify certain fall-like postures, such as being on all
fours, as a fall. Such false positives can lead to alert fatigue [44] in caregivers or medical
personnel, thereby causing a decline in the quality of care. It is highly necessary that
machine learning-based fall detection systems detect falls and accurately detect fall-
related motions or similar postures to address this limitation. We have addressed
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this challenge in this work by proposing an interdisciplinary framework that can
recognize postures (Figure 1) and interpret multimodal components of posture and
motion-related data (Section 3.1) to train a k-NN-based multilabel machine learning
method that can detect falls as well as fall-like motions (Figure 2) by tracking the
data coming from an accelerometer placed on the user’s chest, which is the optimal
position for an accelerometer to track motions and behavioral data. We tested our
approach on a dataset [50] that consisted of 164,860 rows of data collected from five
individuals performing different activities, including falls. The results (Figure 3) of
this k-NN-based multilabel classifier show that our proposed approach can detect not
only falls but also fall-related motions with a high level of accuracy.

3. To address the challenge that fall detections must achieve much higher accuracies for
increased trust and user acceptance, we have presented a novel approach (Section 5)
to improve the k-NN-based multilabel classifier’s performance for fall detection.
We presented this approach for the k-NN-based classifier because the findings of
Section 4 (Tables 3 and 4) show that out of all the machine learning methods, the
k-NN approach is best suited for the development of fall detection systems and
applications. The methodology for the development of this approach that uses k-
folds cross-validation [54] and the AdaBoost algorithm [55,56] with a k-NN-based
multilabel classifier with certain defined specifications is presented in Section 5.1. We
evaluated this approach on two datasets, and the results presented and discussed in
the form of a comparison study (Table 5) show that irrespective of the dataset, this
approach for fall detection boosts the performance accuracy of the k-NN classifier and
outperforms all prior works [17–43], thereby upholding the potential, relevance, and
importance of this methodology.

4. To address the need for long lie detection after a fall, which can have minor to major
health-related concerns for the elderly, we have proposed a k-NN-based posture
and motion recognition approach that can detect the activity of standing up from
lying. We tested this approach on a dataset [50], and the results (Figure 3) show that
our approach achieves class precision and class recall values of 96.71% and 96.35%,
respectively, for detecting the motion of standing up from lying. In addition to this,
in Section 5, we have presented a novel methodology to improve the performance
accuracy of our learning approach by use of the cross-validation approach [54] and
AdaBoost algorithm [55,56]. The results (Figure 7) of this approach show that the class
precision and class recall values for the motion of standing up from lying increased to
99.60% and 99.75%, respectively. To implement this approach in a real-time scenario,
the temporal information would need to be tracked to detect whether the activity of
standing up from lying took place within one hour of the person experiencing a fall.

Based on the above novel functionalities of our approach, which are supported by the
results from two datasets [50,51], we expect that our approach would be able to detect falls
due to to bodily impairments or limitations environmental factors, and/or other health-
related concerns. One of the limitations of our work is that we used the datasets developed
by Kaluža et al. [50] and Tabbakha et al. [51], on account of not being able to develop our
own dataset due to the work-from-home guidelines in the United States on account of
COVID-19 [49]. Therefore, upon relaxation of these guidelines in the United States [49],
we plan on developing our own dataset by collecting motion-related data, including falls,
from both healthy individuals and elderly people, as per IRB-approved protocols, to test
and validate our approach in real-time.

7. Conclusions and Scope for Future Work

Falls are a critical issue in the constantly increasing aging population of the world.
Falls are associated with multiple behavioral, social, emotional, mental, psychological,
and health-related impacts to the elderly and can even lead to death. In recent times,
the unprecedented increase of falls in the elderly population of the world, especially in
the United States, has caused a huge burden on the world economy. Due to the acute
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shortage of caregivers, it is the need of the hour that technology-based pervasive living
environments, such as smart homes, be equipped with accurate, reliable, trustworthy, and
robust systems and applications that can detect falls to contribute to healthy aging and
improved quality of life of the elderly. In the work presented in this paper, we conducted a
comprehensive review of recent works in the field of fall detection and identified multiple
research challenges that still exist. Thereafter, we explored and integrated recent advances
from the fields of human–computer interaction, artificial intelligence, machine learning,
internet of things, pattern recognition, and pervasive computing to address these challenges.
The work presented in this paper makes four scientific contributions to the field of fall
detection and its interrelated disciplines.

First, to address the need for an optimal machine learning approach for the devel-
opment of fall detection systems and applications, we performed a comprehensive study
where 19 different machine learning-based fall detection systems were developed, imple-
mented, and evaluated on two different datasets. The results of the study compared in
terms of overall accuracy and subclass precision values show that the k-NN approach is
best suited for the development of fall detection systems and related applications. Second,
to address the challenge that most works in this field have been binary classifiers that have
the limitation of classifying fall-related motions as falls, a novel posture recognition-based
multilabel machine learning method was proposed in this paper that can detect falls and
fall-related motions with high accuracy.

Third, we proposed a novel machine learning and pattern recognition-based method-
ology that uses the k-folds cross-validation and AdaBoost approaches applied to the k-NN
learning method to address the need to develop highly accurate fall detection systems while
minimizing false positives and reducing overfitting of data. The results presented and
discussed show that such a methodology increased the k-NN-based multilabel classifier’s
performance to 99.87% for the first dataset and to 99.66% for the second dataset. Such high-
performance accuracies have never been achieved before in any of the prior works in this
field. Finally, our approach also consists of the methodology to accurately detect long lies,
which are common after falls in the elderly and can have several health-related impacts.

As per the authors’ best knowledge, no similar work has been done in this field so
far. With the rapid advancement and urbanization in all parts of the world, more people,
specifically the elderly, will start living in sensor-driven and IoT-based interconnected smart
homes. The work presented in this paper can be of paramount importance in such smart
homes to ensure that the future of intelligent living spaces can track, study, analyze, and
detect multiple healthcare-related needs of the elderly. The results that show the reliability,
high accuracy, trustworthiness, and robustness of our approach uphold the immense
potential and relevance of this work to contribute to assisted living and healthy aging of the
elderly in artificial intelligence-based living environments of the future that would consist
of sensor and actuator networks working in tandem. In the future, we plan on conducting
experiments with human subjects with IRB-approved protocols to evaluate the efficacy of
this approach in real-time IoT-based pervasive living and working environments. As per
the proposed system architecture, we plan on using the MetaMotion C wearable sensors
developed by Mbient Labs [47], that provide triaxial acceleration data as well as other
dynamics of a user’s motion data, which can be suitably and seamlessly interpreted and
integrated into our real-time data collection framework [48] for the real-time development
and deployment of our approach. We will be designing the experiments in such a way
that the safety of the human subjects is considered the top priority, as per the guidelines of
IRB [61]. The robust system architecture of our framework, as presented and discussed in
this paper, is expected to allow for the seamless development and implementation of the
same in a myriad of wearable devices, products, and smart gadgets by both developers
and/or researchers in the near future. However, as IRB guidelines [61] might not be
applicable to some of these applications and scenarios, where our framework could be
used, it is important that these real-world applications of our framework be developed
in a way such that the safety of any possible category of user [62] is highly prioritized.
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The authors recommend that such applications of our framework be developed as per the
guidelines mentioned in ISO 14971:2019 [63] and as per the human-centered risk assessment
(RA) and risk management (RM) methodologies mentioned in [64]. These guidelines [63]
and the RA and RM methodologies [64] should be followed both at the design stage and
during the post-market surveillance in such applications of our framework to minimize
risks and to ensure the safety of the user.
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