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Abstract: The use of heterogeneous networks (HetNets) that combine macrocells and picocells in
the same coverage is effective in increasing system capacity and improving user throughput. The
use of high carrier frequency bands is also expected to help achieving higher data rates because it
promises vast amounts of signal bandwidth. Therefore, multiband HetNets with picocells operating
at high carrier frequency bands have attracted significant attention with the aim of increasing system
capacity and achieving a high user throughput in fifth-generation mobile systems and beyond. In
HetNet deployments, a picocell range expansion (CRE) technique that virtually expands the picocell
coverage is well known to allow more user equipment (UE) to access the picocell providing a fixed
cell selection offset (CSO) for all UE. Thus far, there has not been sufficient research on optimizing
the transmission (Tx) power of pico-evolved node Bs (eNBs) operating at high carrier frequency
bands in multiband HetNets. In addition, the effects of CRE in multiband HetNets have not been
clarified. In this paper, we first investigated the optimal Tx power of pico-eNB in a multiband HetNet
combining macrocells operating at 2 GHz and picocells operating at 4.5 GHz band with a wider signal
bandwidth using system-level computer simulations. Then, from the user throughput perspective,
we investigated the effects of CRE providing a positive CSO for UE using two pico-eNB Tx powers
close to the optimal value. Using these results, we discussed how to choose the pico-eNB Tx power
when CRE was activated and validated the design method for a multiband HetNet.

Keywords: mobile communication; heterogeneous networks; transmission power; cell range expansion;
cell selection offset; user throughput

1. Introduction

Fifth-generation (5G) mobile systems have been launched and are gradually used
worldwide. The primary objectives of 5G are to increase system capacity and improve
data rates, which is referred to as enhanced mobile broadband (eMBB), and to establish
ultra-reliable low latency communication (URLLC) while providing massive machine-type
communication (mMTC) based on the Internet of Things (IoT) [1–7]. Two types of 5G
mobile systems have been approved by the 3rd Generation Partnership Project (3GPP)
standards body. One type of these is called 5G New Radio (NR) with non-standalone
(NSA) operation (5G NR NSA), which enables 5G NR deployments using existing fourth-
generation (4G) mobile systems. The other is called 5G NR with standalone (SA) operation
(5G NR SA), and provides a complete 5G NR with a 5G core network. The initial phase
of 5G NR NSA focuses on eMBB using both 5G NR and 4G. The 5G NR SA focuses on
URLLC and mMTC, although mMTC has already been developed using 3GPP Release
13 low-power wide-area technology.

From a network-density perspective, approaches based on a small-cell strategy and
heterogeneous networks (HetNets) are important for increasing system capacity and/or for
improving data rates. HetNets are a promising technique for increasing system capacity
and are expected to meet the requirements for large amounts of mobile data traffic, in
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which picocells with low-power evolved Node Bs (eNBs) are installed within the same cov-
erage of a macrocell with high-power eNB [8–14]. Resource allocation and user equipment
(UE) association are an essential issue in HetNets. In [15], a resource allocation algorithm
based on automatic differentiation is proposed to solve the problems of frequency reusing,
resource allocation, and user association jointly. In [16], mobility-based proactive resource
scheduling strategy utilizing the predicted information of UE mobility, network resid-
ual frequency bandwidth is investigated while maintaining QoS requirements. Traffic
offloading in HetNets also has important research issues. In [17], a new traffic offload-
ing scheme that combines big data and machine learning is proposed for 5G as well as
device-to-device communications.

From the perspective of coexisting network coverage, 5G NR NSA has the same
configuration as that of HetNets. The use of high carrier frequency bands is expected to
achieve higher data rates because it promises a vast amount of signal bandwidth. Therefore,
multiband HetNets with picocells operating at high carrier frequency bands have attracted
significant attention with the aim of increasing the system capacity and/or achieving higher
data rates in 5G mobile systems and beyond [18–26]. For example, the use of millimeter
wave (mmWave) bands has attracted a lot of attention to increase the system capacity
and/or achieve a higher data rate. Furthermore, massive multiple-input and multiple-
output (MIMO) and mmWave technologies provide vital means to significantly enhance the
spectral efficiency and improve transmission performance for 5G HetNets [21]. In [27], an
MIMO antenna for 5G mmWave applications with wideband and high gain is demonstrated.
In [28], a 5G MIMO antenna covering 28 GHz bands integrated with 4G is investigated
and demonstrated to enhance high gain and isolation. In [29,30], a multiband HetNet
using three-sector picocells with three-dimensional beamforming operating at a 28 GHz
band is proposed, and the average and 5-percentile user throughput were clarified using
system-level computer simulations.

For HetNets, it is important for UE to determine whether communication with macro-
or pico-eNBs provides better access, which is referred to as cell selection. Another important
issue in HetNet deployment is to ensure that the picocells serve enough UE. The UE is
normally connected to a cell with a stronger downlink reference-signal received power
(RSRP) or with a higher signal-to-interference plus noise ratio (SINR). Therefore, the
connection ratio of macro-eNBs is greater than that of pico-eNBs because the transmission
power is larger. One way to increase the connection ratio of pico-eNBs is the cell range
expansion (CRE) technique, which can virtually expand the picocell coverage using a
positive cell selection offset (CSO) for the downlink RSRP from the picocell [31,32]. In
a normal case without CRE, cell selection is carried out for UE based on a comparison
between the downlink RSRPs from the macrocell and picocell. With CRE, a positive CSO
is added to the downlink RSRP from the picocell to expand the coverage served by the
picocell. In this case, the CRE can allow more UE to access the picocell. However, the CRE
technique has one drawback in that the downlink RSRP of the UE, which is forcibly served
by the picocell located in the CRE zone, is lower because the downlink RSRP from the
macrocell is in reality higher than that from the picocell. Consequently, the user throughput
of the UE served by the picocell in the CRE zone may deteriorate.

A higher-order modulation scheme is a promising technique to increase the data
rate within a limited bandwidth. As specified by 3GPP Release 8, 4G mobile systems
first applied quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation
(QAM), and 64-QAM for symbol modulation of orthogonal frequency division multiplexing
(OFDM). Then, 256-QAM was added to the modulation and coding scheme (MCS) of 3GPP
Release 12. In 3GPP Release 15 for 5G, 1024-QAM was added to the MCS. Nevertheless,
the application areas and/or conditions for these post-64-QAM schemes are currently
very limited [33–37]. Furthermore, OFDM-based 4096-QAM has been investigated using
link-level simulations for 5G and beyond [38,39].

In [12], adaptive control CRE technique was proposed in singleband HetNet using
2 GHz band; however, the pico-eNB transmission (Tx) power was fixed. In [26], the through-
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put of singleband HetNet using 4 GHz without CRE technique was investigated on the
condition of a given pico-eNB Tx power. In [29], sectorized picocell architecture for multi-
band HetNet using 2 and 28 GHz bands was proposed; however, the pico-eNB Tx power
was fixed and CRE technique was not considered. In [40], fundamental research on opti-
mizing the pico-eNB Tx power was carried out in multiband HetNet using 2 and 4.5 GHz
bands; however, CRE technique was not considered. Thus, there is no research on evaluat-
ing the performance of multiband HetNet from the viewpoint of both pico-eNB Tx power
optimization and CRE activation. That is, how to optimize the pico-eNB Tx power has not
been investigated when the CRE is activated in multiband HetNet.

On the basis of this background, this paper investigates the relationship between
optimal pico-eNB Tx power and a CSO used in CRE technique from the user throughput
perspective. We first investigate the optimal Tx power of a pico-eNB in a multiband HetNet
combined with macrocells operating at a 2 GHz band and picocells with a wide signal
bandwidth operating at a 4.5 GHz band with a new multipath fading channel model.
Specifically, we clarify the average and 5-percentile user throughput as a function of pico-
eNB Tx power using system-level computer simulations. Then, we investigate the effects of
CRE providing a positive CSO for UE given two pico-eNB Tx powers close to the optimal
Tx power. Here, we show the average and 5-percentile user throughput as a function of
CSO for the two pico-eNB Tx powers. Furthermore, we analyze the use rates of modulation
methods including 256- and 1024-QAM in the MCS as a function of the pico-eNB Tx power.

This paper is organized as follows: In Section 2, we introduce a multiband HetNet
combined with a macrocell operating at 2.0 GHz and picocells with a wide bandwidth
operating at 4.5 GHz. In Section 3, we describe the HetNet model and MCS index including
1024-QAM used in system-level computer simulations. In Section 4, we demonstrate the
average and 5-percentile user throughput as a function of pico-eNB Tx power to determine
the optimal Tx power. In Section 5, we investigate the average and 5-percentile user
throughput as a function of CSO to clarify the effects of CRE. Finally, we conclude our work
in Section 6.

2. System Overview

Figure 1 shows a multiband HetNet combining macrocells operating at a 2.0 GHz
band and picocells covered by a low-power pico-eNB operating at a 4.5 GHz band. In this
paper, we assume that the signal bandwidth of pico-eNBs is 10 times wider than that of
a macro-eNB. We also assume that the macrocells comprise three sectors and a couple of
picocells are distributed in each macro-sector.
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In HetNets, the cell selection procedure which allows the UE to camp onto a cell
is executed by measuring a downlink reference signal from macro- and pico-eNBs. For
example, cell selection can be based on the downlink RSRP, as shown in Figure 2. The
UE first receives reference signals from both macro- and pico-eNBs (i.e., RSRPmacro and
RSRPpico). Then the UE replies with the measurement reports including RSRP macro and
RSRPpico to a macro-eNB. If the RSRPmacro is larger than RSRPpico, the UE is connected
with the macro-eNB and a radio resource control (RRC) connection is established between
the UE and the macro-eNB. In 3GPP, the RSRP is defined as the average power of the
resource blocks that carry the cell-specific reference signals.
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In a typical case, the transmission power of macro-eNBs is larger than that of pico-eNBs.
If the carrier frequency of macro-eNBs is the same as that of pico-eNB (i.e., in the case
of a singleband HetNet), interference between macro- and pico-eNBs, as well as among
pico-eNBs, should be avoided. By contrast, if the carrier frequency of macro-eNBs is dif-
ferent from that of pico-eNB (i.e., in the case of a multiband HetNet), interference among
pico-eNBs should mainly be avoided. Either way, the transmission power of pico-eNBs
can never be larger than that of macro-eNBs. Therefore, the amount of UE connected with
macro-eNBs is greater than what is possible with pico-eNBs as the transmission power
of macro-eNBs is larger than that of pico-eNBs. However, for the UE in HetNets, when
macro-eNBs lack radio resources, some UE can be connected with pico-eNBs, even though
the RSRPmacro is larger than RSRPpico. This traffic offload from macrocells to picocells
will be more significant when the traffic in the macrocell increases drastically.

3. HetNet Model and Simulation Conditions
3.1. Multiband HetNet Model and Simulation Setup

We investigate the average and 5-percentile user throughput of a multiband HetNet
using system-level computer simulations. The system-level simulations are sufficient
for evaluating user throughput for mobile networks, and contribute significantly to the
requirements at early stages of development and hardware implementation.

The parameters of the HetNet model used in the simulations are listed in Table 1. The
carrier frequencies used in the macro- and pico-eNB are 2.0 and 4.5 GHz, respectively. The
signal bandwidth for each macro-sector is 10 MHz, and the bandwidth for each picocell is
100 MHz. The number of picocells distributed in each macro-sector is fixed to 4, and the
number of UE installations in each macro-sector is assumed to be 30, which is usually used
in 3GPP simulation assumptions [41,42].
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Table 1. Multiband HetNet model used in the simulation.

Parameter
Value

Macro-eNB Pico-eNB

Cell layout Hexagonal grid, 19 cell sites
3 sectors per site 4 picos per sector

Carrier frequency 2.0 GHz 4.5 GHz

System bandwidth 10 MHz 100 MHz

Cell radius (ISD) 289 m (500 m) –

Tx antenna height 32 m 10 m

Tx power 46 dBm from 28 to 45 dBm

Tx antenna gain 14 dBi 5 dBi

Tx antenna downtilt 15 deg. 10 deg.

UE distribution 30 UEs per sector, 2/3 clustered distribution

Scheduling algorithm Proportional fairness

Link adaptation QPSK to 1024-QAM (25 MCS indexes)

Traffic model Full buffer

MIMO 2 × 2 SU-MIMO

The UE layout is important for executing system-level computer simulations because
large amounts of UE should be distributed in the HetNet to evaluate the user throughput.
Figure 3 shows the definition of cluster size for the UE layout, which comprises the radius
of a circle centered at each pico-eNB. When the UE layout is based on the form of the cluster
distribution near the pico-eNBs, the ratio of the UE cluster distribution is defined as the
ratio of the number of UE within a circle of a specific radius (cluster size) to the number of
UE outside a circle [41,43].
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Figure 3 shows an example of a two-thirds (2/3) UE cluster distribution. Assuming
that the number of UE in the macro-sector is 30, 20 pieces of UE are distributed within
the circle centered at pico-eNBs; the remaining 10 pieces of UE are distributed outside the
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circle. The Tx power of pico-eNBs varies from 28 to 46 dBm, whereas that of macro-eNBs is
fixed at 46 dBm. The path-loss model and other assumptions are obtained from [44].

3.2. MCS Indexes Incorporating 1024-QAM and Fading Channel Model

MCS is used as the link adaptation to determine the data rate in the downlink which
depends on the channel link quality between pico-eNBs and the UE. The MCS defines the
number of useful data bits that can be transmitted, which depends on the channel link
quality between eNBs and UE. The channel link quality is estimated based on the channel
quality indicator which is reported by the UE using the uplink control channels. In the
simulations, 25 types of MCS indexes incorporating 1024-QAM are defined in the downlink
as listed in Table 2 [30]. Macro-eNBs and pico-eNBs can choose the best MCS index based
on the channel link quality. The lowest and highest modulation schemes are QPSK and
1024-QAM, respectively. The MCS index incorporating a high QAM is assigned to the UE
with better channel link quality, whereas QPSK is always assigned to the UE with worse
channel link quality. Multipath fading channels are formed by a tapped delay line (TDL)
with a specific delay and gain. Table 3 shows the TDL model used in the simulation, which
provides Rayleigh fading with a delay spread of 30 ns [45]. The TDL model is used in both
the macrocells and picocells.

Table 2. 25 MCS indexes incorporating 1024-QAM.

MCS Index Modulation Coding Rate Efficiency (bps/Hz)

1

QPSK

1/13 0.152
2 1/9 0.234
3 1/5 0.377
4 1/3 0.667
5 2/5 0.800
6 1/2 1.000
7 3/5 1.200
8 2/3 1.333
9 3/4 1.500

10

16-QAM

1/2 2.000
11 3/5 2.400
12 2/3 2.667
13 3/4 3.000

14

64-QAM

9/16 3.375
15 2/3 4.000
16 3/4 4.500
17 5/6 5.000
18 11/12 5.500

19

256-QAM

7/10 5.600
20 3/4 6.000
21 5/6 6.667
22 11/12 7.333

23
1024-QAM

3/4 7.500
24 5/6 8.333
25 11/12 9.167
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Table 3. TDL model used in macrocells and picocells.

Gain (dB) Delay (ns)

−15.5 0
0.0 10
−5.1 15
−5.1 20
−9.6 25
−8.2 50
−13.1 65
−11.5 75
−11.0 105
−16.2 135
−16.6 150

4. Optimization of Pico-eNB Tx Power
4.1. User Throughput Versus Pico-eNB Tx Power

In this section, we investigate the user throughput as a function of pico-eNB Tx power
to determine the optimal pico-eNB Tx power using system-level computer simulations on
the parameters provided in Table 1.

Figure 4 shows the simulation outputs of macro- and pico-eNBs as well as the UE distri-
bution in 19 macrocells at a given instant for a cluster size of 40 m, where the blue diamonds,
green triangles, and red squares show the macro-eNBs, pico-eNBs, and UE, respectively.
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Figure 5 shows the average and 5-percentile user throughput as a function of pico-eNB
Tx power, where the blue bars and orange bars show the average user throughput and
the 5-percentile user throughput, respectively. The average user throughput increases
as the Tx power increases up to approximately 37 dBm. However, Tx powers greater
than 37 dBm slightly degrades the average user throughput. A wider signal bandwidth
(i.e., large number of resource blocks for pico-eNBs) could be effectively used up to a Tx
power of 37 dBm. However, efficiency is reduced for Tx powers greater than 37 dBm
because the interference among pico-eNBs increases. For example, a Tx power of 37 dBm
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was able to improve the average user throughput by approximately 12% compared with
that for a Tx power of 31 dBm. The 5-percentile user throughput increases as the Tx power
increases. Here, the 5-percentile user throughput is defined as the 5th percentile point of
the cumulative distribution function (CDF) of the user throughput. On the basis of these
results, it was shown that a pico-eNB Tx power of 37 dBm was able to provide the best
performance if the average user throughput was given priority.
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Figure 6 shows the CDF of the downlink effective SINR for all UE as a function of the
three pico-eNB Tx powers, i.e., 28 (blue line), 37 (gray line), and 46 (red line) dBm. This
is used to verify the results obtained in Figure 5. The SINR for the pico-eNB Tx power of
37 dBm provides the best performance among the three.
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Figure 7 shows the connection ratio of UE as a function of the pico-eNB Tx power,
where the blue and the yellow bars show the ratios of the UE connected with pico-eNBs
and macro-eNBs, respectively. Essentially, the ratio of the UE connected with pico-eNBs
increases as the pico-eNB Tx power increases. When the pico-eNB Tx power is 37 dBm,
the ratio of the UE connected with a pico-eNB reaches 43%. This means that 735 pieces of
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UE are connected with pico-eNBs in the 19 macrocells and the rest (975 pieces of UE) are
connected with macro-eNBs.
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Figures 8 and 9 analyze the average user throughput of all UE obtained in Figure 5.
Figure 8 shows the average user throughput of a specific UE connected with pico-eNBs as
a function of the pico-eNB Tx power. The average user throughput decreases as the pico-
eNB Tx power increases because the number of UE connected with pico-eNBs increases.
When the Tx power of pico-eNBs is 37 dBm, the average user throughput is approximately
120 Mbps. The throughput is so high because of the wide signal bandwidth. At the same
time, the average user throughput of a specific UE connected with macro-eNBs is less than
that of the specific UE connected with pico-NBs, as shown in Figure 9. For example, when
the pico-eNB Tx power is 37 dBm, the average user throughput is approximately 2.2 Mbps.
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4.2. Analysis of Use Rate of Modulation Methods

Figure 10 shows an analysis of the use rate of each modulation method used in the
downlink MCS as a function of the pico-eNB Tx power. No significant changes occur for
the pico-eNB Tx power. However, the use rate of QPSK reaches minimum for a pico-eNB
Tx power of 37 dBm. This result can be obviously explained based on the results shown
in Figure 6. When the pico-eNB Tx power is 37 dBm, the use rates of both the 256- and
1024-QAM are 21%, although the use rate of QPSK is almost 36%. When the pico-eNB Tx
power is 28 dBm, the use rates of both the 256- and 1024-QAM are 18%, and the use rate of
QPSK is almost 40%. Accordingly, a pico-eNB Tx power of 37 dBm was able to improve the
use rates of higher modulation methods compared with those at powers of 28 and 46 dBm.
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5. Effects of CRE
5.1. CRE in HetNet

In this section, we investigate the effect of CRE technique using a positive CSO under
conditions including pico-eNB Tx powers close to the optimal value. Figure 11 shows the
CRE using a positive CSO in a HetNet.
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In a normal case without CRE, UE1 outside the picocell is connected with a macrocell,
as shown in Figure 11a. With CRE, UE1 with a positive CSO is connected from the macrocell
to the extended picocell, as shown in Figure 11b. In this case, the original picocell range
appears to be wider, representing an “extended picocell”, for the UE with a positive CSO in
the CRE zone. Consequently, the connection point of the UE in the CRE zone should be
changed from macro- to pico-eNBs when CRE is activated.

Figure 12 shows the cell selection procedure when CRE is activated in the HetNet.
The RRC connection is assumed to be first established between the UE and macro-eNB.
Then, according to CRE, the UE creates a positive CSO to the RSRPpico obtained from
the RSRP of the picocell. If the combination of the RSRPpico plus the CSO is larger than
the RSRPmacro, the connection of the UE is changed to the pico-eNB through a handover
procedure and an RRC connection is established between the UE and pico-eNB. In this way,
the CRE increases the probability of the UE connecting with pico-eNBs. If CRE does not
work, i.e., CSO = 0 dB, the picocell range remains unchanged.

5.2. User Throughput versus CSO

Here, we investigate the effects of CRE under the condition of a pico-eNB Tx power
close to the optimal value, according to the results obtained in Figure 5. The parame-
ters used for system-level computer simulations are the same as those listed in Table 1.
Figures 13 and 14 show the average and 5-percentile user throughput as a function of CSO
for two types of pico-eNB Tx power.
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Figure 13 shows the average and 5-percentile user throughput as a function of CSO
when the pico-eNB Tx power is 37 dBm. The average user throughput gradually decreases
as the CSO increases, whereas the 5-percentile user throughput increases up to a CSO of
approximately 30 dB. The reason for the decrease in average user throughput is that the
increased UE connected with pico-eNBs by the CRE share the radio resources of pico-eNBs.
At the same time, the reason for the increase in 5-percentile user throughput is that the
5-percentile UE is changed from the UE connected with macro-eNBs to the UE connected
with pico-eNBs.

Figure 14 shows the average and 5-percentile user throughput as a function of CSO
when the pico-eNB Tx power is 31 dBm. The average user throughput here increases as the
CSO increases up to 6 dB, and then decreases as the CSO passes 9 dB. The average user
throughput for a pico-eNB Tx power of 31 dBm and CSO of 6 dB is almost the same as
that obtained with a pico-eNB Tx power of 37 dBm and a CSO of 0 dB. The performance
behavior of 5-percentile user throughput is similar to the result obtained in Figure 13. From
an average user throughput perspective, the CSO of 6 dB can provide the best performance
when the pico-eNB Tx power is 31 dBm. On the basis of these results, it was determined
that CRE did not work when the pico-eNB Tx power was 37 dBm, and a CSO of 6 dB in
the CRE could improve the average user throughput when the pico-eNB Tx power was
31 dBm. Therefore, for the operational procedure of HetNet, the pico-eNB Tx power, which
is typically fixed to 37 dBm, should be reduced to 31 dBm for CRE activation. This will lead
to savings in power consumption while maintaining the average user throughput.

6. Conclusions

In this paper, we first investigated the optimal Tx power for pico-eNBs in a multiband
HetNet combining macrocells operating at a 2 GHz band and picocells with a 10 times
wider signal bandwidth operating at a 4.5 GHz band. Specifically, we presented the average
and 5-percentile user throughput as a function of the pico-eNB Tx power using system-level
computer simulations. It was observed that the average user throughput increased as the
Tx power increased up to approximately 37 dBm. However, Tx powers greater than 37 dBm
slightly degraded the average user throughput. Consequently, it was concluded that a pico-
eNB Tx power of 37 dBm was able to provide the best performance from the average user
throughput perspective, under the HetNet model as shown in Table 1. Furthermore, we
analyzed the use rate of each modulation method used in the downlink MCS incorporating
1024-QAM as a function of pico-eNB Tx power. The use rates of both 256- and 1024-QAM
were at a maximum when the pico-eNB Tx power was 37 dBm, although the use rate
difference for the pico-eNB Tx power was very small. Then, we described the effects
of picocell range expansion (CRE) technique using a positive CSO for two pico-eNB Tx
powers close to the optimal value. We demonstrated the average and 5-percentile user
throughput as a function of CSO for two pico-eNB Tx powers close to the optimal Tx power
(i.e., 31 and 37 dBm). When the CRE was activated, it was shown that a CSO of 6 dB was
able to provide the best performance when the pico-eNB Tx power was 31 dBm. When
the pico-eNB Tx power was 37 dBm, the CRE did not work and that it had no effect on
improving the average user throughput. In other words, the average user throughput for
a pico-eNB Tx power of 31 dBm and CSO of 6 dB was almost the same as that obtained
with a pico-eNB Tx power of 37 dBm and a CSO of 0 dB. Consequently, it was clarified
that the CRE technique could reduce the pico-eNB Tx power in multiband HetNet. This
will lead to saving the power consumption of pico-eNBs while maintaining the average
user throughput.
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