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Abstract: A novel quadruple-notch UWB (ultrawideband) antenna for wireless applications is pre-
sented. The antenna consists of a decagonal-shaped radiating part with Sierpinski square fractal slots
up to iteration 3. The ground part is truncated and loaded with stubs and slots. Each individual stub
at the ground plane creates/controls a particular notch band. Initially, a UWB antenna is designed
with the help of truncation at the ground plane. Miniaturization in this design is achieved with the
help of Sierpinski square fractal slots. Additionally, these slots help improve the UWB impedance
bandwidth. This design is then extended to achieve a quadruple notch by loading the ground with
various rectangular-shaped stubs. The final antenna shows the UWB range from 4.21 to 13.92 GHz
and notch frequencies at 5.02 GHz (C-band), 7.8 GHz (satellite band), 9.03, and 10.86 GHz (X-band).
The simulated and measured results are nearly identical, which shows the efficacy of the proposed
design.
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1. Introduction

Ultrawideband (UWB) technology has received significant attention in recent years
due to its ability to provide high data rates over a large bandwidth [1–3]. Because of
these unique advantages, UWB technology finds its applications in short-range high-
speed communication [4], ranging and monitoring applications [5], the public surveillance
domain, and medical imaging [6]. In this context, fractal UWB notch antennas have been
extensively researched as compact, low-profile, and high-performance solutions for various
wireless communication applications.

Fractals are used in antenna design to create compact antennas with wide bandwidth
and the ability to reject specific frequency bands, known as notching. Designing a fractal
UWB notch antenna typically involves creating a fractal geometry with the desired electrical
characteristics, such as resonant frequency, bandwidth, and return loss [7].

Research has shown that fractal UWB notch antennas can outperform traditional
antenna designs in terms of size reduction, bandwidth, return loss, and efficiency. Fur-
thermore, the use of fractal geometry provides a degree of design flexibility, allowing the
antenna to be tailored to specific requirements, such as frequency band, polarization, and
radiation pattern [7].

Several geometry shapes can be used to design a fractal UWB notch antenna, including
a Sierpinski gasket, Koch snowflake, Cantor set, Dragon curve, and Levy C curve [7].

In the literature, many UWB notch antennas have been reported. A hexagonal fractal
antenna with improved UWB characteristics was studied in [8]. It uses hexagonal slots and
fractal edges, and a U-slot filter was added to reject WLAN-HIPERLAN/2 interference.
Another UWB antenna with a dual notch feature was designed in [9] using a combination
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of an S-shaped slot in the feed line and an L-shaped parasitic structure. In the article [10], a
notch antenna was proposed by incorporating a circular slot in the patch to achieve UWB
characteristics and create a WLAN band notch. The radiating patch is derived from the
circular split ring with two iterations of fractal geometry added.

Another fractal UWB antenna with a dual notch feature was proposed in [11]. The tree
fractal structure obtains multi-frequency resonance and UWB operation through increasing
iterations and using a defected ground structure, and U-type slots achieve the dual notch
band on the tree fractal path. A new compact antenna designed for wireless applications
has been introduced in [12]. It features ultrawideband technology, multiple input and
output capabilities, and a band-notch feature achieved through additional rectangular
stubs. The antenna has two unique monopole elements with a modified T-shaped stub to
improve isolation between the radiating elements.

Authors in [13] have proposed a triple-notch UWB antenna using a meander line slot
on the radiating patch. In the article [14], using slots, a dual-notch band UWB antenna is
proposed. It uses a CPW (coplanar waveguide), defective ground plane, and rectangular
radiator to achieve the UWB feature. Authors in [15] have proposed a triple-notch UWB
antenna using slots. With modifications to the radiator and a defective ground structure,
ultrawideband characteristics are achieved.

A UWB antenna in [16] is designed to achieve a dual-notch using a split ring slot.
Modification in rectangular patches helps to achieve wide bandwidth in the UWB range. In
the article [17], the authors use an elliptical radiator with a CPW feed along with a slot to
achieve UWB characteristics. A circular split-ring resonator and defective ground structure
are utilized to achieve triple-notch characteristics. A UWB antenna with quadruple band
notch characteristics is designed in [18] using a U-shaped slot and split ring resonator.
UWB characteristics are achieved using a combination of half-elliptical patches, triangle
patches, and rectangular patches.

Authors in [19] have proposed a fractal UWB antenna with single-band notch char-
acteristics. A hexagonal-shaped patch in the 4th iteration helps get wide bandwidth. A
complementary split-ring resonator on the ground plane gives notch characteristics. A
UWB fractal antenna is presented in [20–22] for rejecting WLAN. It uses CPW feed on a
sectorial circular radiator to achieve UWB characteristics. The concept of a programmable
metasurface is proposed in [21–23] for various wireless applications.

In this article, a fractal Sierpinski square slot with a stub in the ground plane is used to
create a quadruple-notch antenna. The fractal structure offers unique advantages such as
small size, multiband resonance frequencies, and wider bandwidth. On HFSS, the antenna
is developed and simulated. The antenna that was fabricated approved the simulation
results. The antenna proposed in this work is based on decagonal Sierpinski UWB fractal
antenna presented in [23]. The antenna design approach, parametric analysis, time-domain
analysis, and radiation pattern are all covered in the coming section.

2. UWB Antenna Design Approach

An antenna with a decagonal shape, made up of a radiating patch with Sierpinski
square slots and a partial ground plane of 17 × 20 mm2 dimension, has been designed.
The addition of Sierpinski square slots affects the antenna’s surface current distribution
and changes the input impedance. As shown in Figure 1, this proposed antenna shows
excellent UWB characteristics with a reflection coefficient (S11) of less than −10 dB and
has a good bandwidth range from 4.64 to 14.14 GHz, as demonstrated in Figure 2. The
truncation of the ground plane plays a role in achieving these good UWB properties.
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Figure 2. S11 features of the designed UWB antenna.

Figure 3 displays the specifications of the proposed antenna, which features Sierpinski
square slots on the radiating patch and a truncated ground plane for optimal compactness
as a UWB antenna. The impedance match of the microstrip feedline is 50 ohms, and the
optimal size is listed in Table 1.
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Table 1. Dimensions of the proposed UWB antenna.

Parameter Dimension (mm) Parameter Dimension (mm)

W 17 S1 10

L 20 S2 3.5

F 6 S3 1

F1 3 T 2.5

F2 1.5 T1 3.1

LF 3.82 A 15.2

WF 2 B 8.48

S 1

The resonance frequency is calculated using Equations (1)–(3) given below:

fL =
c

4× (A− B)×
√
Ee f f

(1)

fL =
3× 1011

4× (15.21− 8.48)×
√
Ee f f

(2)

and, Ee f f =
εr + 1

2
+

εr − 1
2

√(
1 +

12h
W

)
= 3.83 (3)

By substituting the result of Equation (3) into Equation (2), we obtain

fL =
3× 1011

4× 6.73×
√

3.83
= 5.86 GHz

where c stands for the speed of light, which is 3 × 1011 mm/s. A is the width of the patch, B
is the diagonal length of the major square at the center, εeff is the effective dielectric constant,
h represents the thickness of the substrate, and W represents the substrate’s width.

2.1. Progression of UWB Antenna

This section shows the progression of the UWB antenna with respect to fractal change
in Figure 4, along with the S11 characteristics in Figure 5.
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In iteration 1, a decagonal-shaped radiating patch with a square slot at the center
along with a truncated ground plane is designed. However, the S11 value is significantly
greater than −10 dB at 10 GHz, and impedance matching is poor. Hence, in iteration 2, the
radiating patch was further modified with the introduction of the Sierpinski square slots
fractal. As a result, the S11 value is greater than−10 dB at 9.5 GHz, with little improvement
in impedance matching. To enhance the result, the Sierpinski square slots fractal was
further increased in number on a decagonal-shaped radiating patch in iteration 3. It gives
an impedance bandwidth of 4.64–14.14 GHz, covering the UWB range.

2.2. Ground Plane Truncation Effect

The modification process of the ground plane during its development stage is depicted
in Figure 6, where the S11 characteristics were graphed for each step. It was observed
that iteration C of the proposed antenna had better S11 bandwidth below −10 dB and
impedance matching compared to iterations A and B. The results of the S11 analysis are
displayed in Figure 7.
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2.3. Parametric Analysis

The performance of the antenna design is evaluated through a parametric analysis that
looks into the effects of the patch element, the etched slots on the patch, and the ground
plane. The factors that influence the design’s outcome are the dimensions T and T1, the
width of the feed, and the structure of the ground plane.

2.3.1. Effect of Truncation Length T

The optimal results were achieved when the truncation length T was set to 2.5 mm.
The truncation length T was evaluated for different values ranging from 1 mm to 3 mm in
increments of 0.5 mm. The results of these simulations were plotted, and it was determined
that the best S11 characteristics were obtained at T = 2.5 mm, as depicted in Figure 8.
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2.3.2. Effect of Length T1

When the length T1 was set to 3.1 mm, the best results were obtained. The length
T1 was tested for several values ranging from 2.8 mm to 3.2 mm in 1.0 mm increments.
The results of these simulations were graphed, and the best S11 features were found at
T1 = 3.1 mm, as shown in Figure 9.
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2.3.3. Effect of Feed Width Wf

The width Wf was tested for several values ranging from 0.5 mm to 2.5 mm in 0.5 mm
increments. The results of these simulations were graphed, and the best S11 features were
found at Wf = 2.0 mm, as shown in Figure 10.
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2.4. Current Distribution

Figure 11 simulates and analyzes the current distribution to operate the proposed
UWB antenna. The resonance properties of 5.8, 8.7, 10.9, and 13.2 GHz are investigated.
Figure 11 depicts antenna sections with different resonance routes for different operation
modes.
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3. UWB Notch Antenna Design

Figure 12 shows the design of the decagonal Sierpinski UWB notch antenna. It can be
seen that the radiating part of the conventional UWB antenna is the same. Four stubs—Stub
A, Stub B, Stub C, and Stub D—are introduced in the ground part to achieve the notch
frequency. Stub A helps in obtaining the notch at 9.1 GHz, while Stubs B, C, and D help in
achieving the notch frequency at 4.85, 11.10, and 7.65 GHz, respectively. The corresponding
S11 characteristics are plotted and shown in Figure 13.
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Figure 14 shows the detailed dimensions of the proposed UWB notch antenna. The
optimum design dimensions of the proposed notch antenna are given in Table 2.
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Table 2. The designed antenna’s dimensions.

Parameter Dimension (mm) Parameter Dimension (mm)

W 17 N7 1

L 20 N8 4.1

F 6 N9 3.8

F1 3 N10 7

F2 1.5 N11 8

N1 1.75 N12 1

N2 0.25 N13 3

N3 0.5 N14 1.5

N4 5.5 N15 6.9

N5 2.1 N16 1

N6 5.5 N17 2

Wf 2 Lf 3.82
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3.1. Calculation of the Length of the Individual Stubs and Corresponding Notch Frequency

Calculating the length of the notched band stubs in the ground plane for the UWB
notch is as follows:

Length of the stub A
LStub A = N6 + N16 + N17

= 6 + 1 + 2 = 9 mm
(4)

Length of the stub B
LStub B = 2N10 + 2N12

= 16 mm
(5)

Length of the stub C

LStub C = 2N8 + N3− (N4− N8)
= 7.3 mm

(6)

Length of the stub D
LStub D = 2N4 + 2N2

= 10.32 mm
(7)

Thus, based on the above calculation, the notch frequency is set. The first notch
frequency, fnotch1 = 4.85 GHz, is calculated using Equation (8).

LStub B = λ0
2√εre f f

= c
2 f notch1 √εre f f

= 3×1011

2×4.85×109
√

3.83
= 16.27 mm

(8)

The second notch frequency, fnotch2 = 7.65 GHz, is calculated using Equation (9).

LStub D = c
2 fnotch2

√
εre f f

= 3×1011

2×7.65×109
√

3.83
= 11.5 mm

(9)

The third notch frequency, fnotch3 = 9.1 GHz, is calculated using Equation (10).

LStub A = c
2 fnotch3

√
εre f f

= 3×1011

2×9.1×109
√

3.83
= 8.7 mm

(10)

The fourth notch frequency, fnotch4 = 11.1 GHz, is calculated using Equation (11).

LStub C = c
2 fnotch4

√
εre f f

= 3×1011

2×11.1×109
√

3.83
= 7.1 mm

(11)

3.2. The Development of the UWB Notch Antenna

The evolution stages of the UWB notch antenna are outlined in this section, showcasing
the step-by-step process to arrive at the final structure. Figure 15 offers a visual depiction
of the iterative journey.

The proposed notch antenna consists of a decagonal Sierpinski square fractal slot, the
same as the conventional UWB antenna discussed in Section 2. The ground plane of the
conventional UWB antenna is loaded with rectangular stubs to achieve a particular notch
frequency. Figure 16 shows a plot of all of the S11 characteristics of the UWB notch antenna
at each stage.

In design A, Stub A is added to the ground plane, which gives a notch at 9.1 GHz. In
design B, Stub B is added to the ground plane, which gives a notch at 4.85 GHz. After this,
in design C, Stub C is added to the ground plane, giving a notch at 11.1 GHz. Finally, in
design D, Stub D is added to the ground plane, which gives a notch at 7.65 GHz.
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Thus, the combination of four stubs makes the proposed design a decagonal Sier-
pinski UWB notch antenna. These graphs in Figure 16 show that the notch antenna has
S11 < −10 dB for the entire UWB range and has four notches at 4.85, 7.65, 9.1, and 11.1 GHz
due to the four stubs.

3.3. Parametric Analysis

Using a parameter-based analysis, the effect of stub dimensions on the performance
of a notch antenna is assessed. The dimensions N2, N3, N8, N10, N13, and N15 have a
substantial impact on the design’s effectiveness.

3.3.1. Effect of Stub D Width N2

An analysis was conducted to assess the impact of “N2” width on the S11 features.
The simulation was performed while varying the width “N2”, and the results are shown
in Figure 17. It can be seen that when the width is 0.20 mm, the notch is not adequate.
However, when the width is 0.3 mm, the notch S11 curve is near the −10 dB line, leading
to poor impedance matching. The best result was obtained with a width of 0.25 mm.
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3.3.2. Effect of Stub C Width N3

An analysis was performed to evaluate the impact of width “N3” on the S11 features.
The simulation was carried out while changing the width “N3”, and the results are shown
in Figure 18. It can be seen that when the width is between 0.45 mm and 0.55 mm, the
notch is inadequate. The optimal result was achieved with a width of 0.50 mm.
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3.3.3. Effect of Stub C Length N8

The length of the stub C “N8” was simulated and analyzed at N8 = 4.07 mm, N8 = 4.12 mm,
and N8 = 4.20 mm. Better results were obtained for a length of 4.12. Hence, for optimal
results, 4.12 mm is selected. The result can be observed in Figure 19.
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3.3.4. Effect of Stub B Length N10

The length of the stub B “N10” was simulated and analyzed at N10 = 6.4 mm,
N10 = 6.9 mm, and N10 = 7.4 mm. Better results were obtained with a length of 6.9.
The result can be observed in Figure 20.
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3.3.5. Effect of Stub A Length N13

The length “N13” of stub A was simulated and analyzed at N13 = 2.5 mm, N13 = 3 mm,
and N13 = 3.5 mm. Better results were obtained with a length of 3 mm. The result can be
observed in Figure 21.
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3.3.6. Effect of Stub A Length N15

The length “N15” of stub A was simulated and analyzed at N15 = 6.4 mm, N15 = 6.9 mm,
and N15 = 7.4 mm. Better results were obtained with a length of 6.9 mm. The result can be
observed in Figure 22.
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3.4. Current Distribution at the Operating Frequency of UWB Notch Antenna

A simulation of the current distribution of the proposed UWB notch antenna was
conducted to analyze its performance in Figure 23. The resonance of the antenna was
determined at frequencies of 4.35, 5.9, 8.7, and 9.7 GHz. At 4.35 GHz, the highest current
was found in the lower left section of the patch and ground plane. At 5.9 GHz, the highest
current was located in the lower-right section of the patch and ground plane. The maximum
current of 8.7 GHz was observed in the lower middle section of the patch and feed line. At
9.7 GHz, the highest current was seen in the lower half of the patch, feed line, and stubs
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in the ground plane. The antenna operates using a portion of the C-band at 4.35 GHz,
Wi-Fi/WLAN at 5.9 GHz, a portion of the X-band at 8.7 GHz, and a portion of the X-band
at 9.7 GHz.
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3.5. Current Distribution at Notch Frequency of UWB Notch Antenna

The current distribution is simulated and analyzed, as shown in Figure 24, to realize
the operation of the proposed UWB notch antenna at notch frequencies of 4.85, 7.65, 9.1,
and 11.1 GHz. The antenna must not radiate at a notch frequency, i.e., the current in
the radiating patch should be at a minimum. In Figure 24a–d, it is observed that there
is a minimum current around the radiating patch at 4.85, 7.65, 9.1, and 11.1 GHz notch
frequencies. The stubs have a more active current due to the notch that is created. It justifies
the fact that the antenna is not radiating at these notch frequencies. A portion of the C-band
at 4.85 GHz, the satellite band at 7.65 GHz, a portion of the X-band at 9.1 GHz, and a
portion of the X-band at 11.1 GHz are rejected by notch antennas.
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4. Analysis and Interpretation of Results

The critical steps for the measurement environment of the antenna are simulation,
antenna printing, antenna patch curing, measured conductivity, and antenna parameter
measurement. Antenna simulation involves using software tools to simulate the behavior
of an antenna before it is physically constructed. Antenna printing uses specialized printers
to fabricate antennas using conductive ink. Antenna patch curing involves heating the
antenna patch to ensure the ink properly adheres to the substrate. Measured conductivity
refers to the actual conductivity of the antenna material, which is a critical parameter for
determining antenna performance. Antenna parameter measurement involves the process
of testing and measuring various antenna parameters such as impedance, radiation pattern,
and gain to ensure optimal antenna performance.

4.1. UWB Antenna Results

The suggested antenna was designed and manufactured using the FEM approach on
an HFSS simulator. The suggested UWB antenna is shown in Figure 25.

4.1.1. Measured and Simulated S11

Figure 26 contrasts the simulated and measured reflection coefficients. The S11 is
measured using a PXI Vector Network Analyzer (300 kHz–14 GHz) from Keysight. The
simulated impedance bandwidth is 4.64–14.1 GHz, and the measured impedance band-
width is 4.75–14.25 GHz. S11 simulations and measurements are nearly identical, with a
minor difference. It could be due to the soldering effect, the failure to simulate the SMA
connector, errors in the substrate’s dielectric constant, or fabrication tolerances.
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4.1.2. Radiation Pattern

The radiation pattern for the simulated antenna is illustrated in Figure 27 for different
frequencies. From Figure 27, the radiation pattern is observed as omnidirectional in the
E-plane and bidirectional in the H-plane.
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4.1.3. Time-Domain Analysis

The time-domain analysis, which includes the phase response, the isolation, and
the group delay, has already been performed. For the performance study, two identical
antennas are placed with a 100-mm spacing in the HFSS software, as illustrated in Figure 28.
The time-domain analysis is performed by considering the frontal and lateral conditions.

The group delay, as depicted in Figure 29, is almost linear for both the frontal and
lateral conditions of the proposed antenna design.

The isolation characteristics (S21) of the designed UWB antenna are depicted in
Figure 30. It is evident that the S21 < −37 dB for the antenna is low in both frontal and
lateral conditions.
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The phase response as depicted in Figure 31 is almost linear for the antenna in both
frontal and lateral conditions.
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Figure 31. Phase response S21. Figure 31. Phase response S21.

4.1.4. The UWB Antenna’s Gain

The gain and radiation efficiency of the ultrawideband antenna simulation are shown
in Figures 32 and 33. 5.2 dB has been observed as the maximum gain, and the maximum
radiation efficiency is 98%.
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4.2. UWB Notch Antenna Results
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an HFSS simulator. The suggested UWB notch antenna is shown in Figure 34.
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4.2.1. Measured and Simulated S11

Figure 35 contrasts the simulated and measured reflection coefficients. In the UWB
band, both values are nearly identical. The simulated reflection coefficient plot shows that
a sharp notch occurs for a portion of the C-band at 4.85 GHz, the satellite band at 7.65 GHz,
a portion of the X-band at 9.1 GHz, and a portion of the X-band at 11.1 GHz. The measured
reflection coefficient plot shows that a sharp notch occurs for a portion of the C-band at
5.02 GHz, the satellite band at 7.8 GHz, a portion of the X-band at 9.03GHz, and a portion
of the X-band at 10.86 GHz. The simulated impedance bandwidth is 4.64–14.1 GHz, and
the measured impedance bandwidth is 4.21–13.92 GHz. The green color represents the
measured notch, and the yellow color represents the simulated notch of the UWB notch
antenna. S11 simulations and measurements are nearly identical, with a minor difference.
It could be due to the soldering effect, the failure to simulate the SMA connector, errors in
the substrate’s dielectric constant, or fabrication tolerances.
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4.2.2. The Radiation Pattern of Notch Antenna at Operating Band

Figure 36 displays the simulation results of the antenna radiation pattern for various
frequencies within the operating range. The radiation pattern is omnidirectional in both
the E-plane and the H-plane.
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4.2.3. Time-Domain Analysis

Phase response and group delay are performed by keeping a 100-mm gap between
two antennas, as shown in Figure 37.

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 25 of 30 
 

 

 

(d) 

Figure 36. Radiation Pattern at (a) 4.35 GHz, (b) 5.9 GHz, (c) 8.7 GHz, (d) 9.7 GHz. 

4.2.3. Time-Domain Analysis 

Phase response and group delay are performed by keeping a 100-mm gap between 

two antennas, as shown in Figure 37. 

 
(a) 

 
(b) 

Figure 37. Analysis in time-domain with (a) frontal and (b) lateral orientations. 

Figure 38 shows that the group delay is almost linear for both frontal and lateral ori-

entations, except in the notch bands. 

Figure 37. Analysis in time-domain with (a) frontal and (b) lateral orientations.

Figure 38 shows that the group delay is almost linear for both frontal and lateral
orientations, except in the notch bands.
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Figure 39 shows that the designed notch antenna has frontal and lateral isolation
characteristics that are considered to be acceptable.
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The phase response is almost linear for both frontal and lateral orientations except for
the notch bands, as shown in Figure 40.
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4.2.4. Comparison Table

Table 3 tabulates a comparison of our proposed design with the existing literature. Our
design surpasses the current literature based on size, operation, and design complexity.
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Table 3. Comparison of proposed UWB notch Antenna Performance with Other Antennas.

Ref. No. Size
(mm2) Notch Technique Range

(GHz)
No. of Notch
Frequencies

Notch
Frequency

(GHz)

Phase
Response

Group
Delay

Transfer
Function

Radiation
Pattern Design

Complexity
E-Plane H-Plane

[24] 32 × 30 CSRR and circular
stubs 2.76–11 2 4.1/6 linear linear <−25 dB Bidirectional Omnidirectional No

[25] 34 × 34 ∩− slot in the feed
line 3.1–10.6 1 5.5 linear linear NA Omnidirectional Omnidirectional Yes

[26] 18.5 × 39 Quadratic fractal slot 3.2–12 1 5.5 linear linear NA Bidirectional Omnidirectional Yes

[27] 50 × 50 Slot at the fractal
structure 2.1–11 2 2.5/5.5 NA NA NA Bidirectional Bidirectional Yes

[28] 42 × 32 SRR slot 2.7–14.9 2 4.9/8.2 NA NA NA Bidirectional Omnidirectional No

[29] 30 × 40 Shorted stubs in
parallel 2–10.6 2 3.5/5.2 NA NA NA Bidirectional Omnidirectional Yes

[30] 30 × 30
Combination of

stubs and steeped
slots

2.39–11.4 2 5.3/5.8 linear linear <−20 dB Bidirectional Omnidirectional Yes

[31] 30 × 40 Rectangular split
ring resonator 2.4–13.8 1 5.4 linear linear NA Bidirectional Omnidirectional Yes

[32] 50 × 50 Fractal Kotch and
T-shape slot 1.7–11 3 2/3.5/5.8 NA NA NA Omnidirectional Bidirectional No

[33] 24.6 × 38.1 T-shape slot and
Rectangular CSRR 3–11 2 3.5/5.5 linear linear NA Bidirectional Omnidirectional No

[34] 30 × 36 Circular SRR 2.9–12 1 3.5 NA NA NA Omnidirectional Omnidirectional No

Proposed
work 20 × 17 Sierpinski square

fractal slots 4.21–13.9 4 5.05/7.8/9.03/10.86 linear linear <−37 dB Omnidirectional Omnidirectional No
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5. Conclusions

In conclusion, this study presents a novel quadruple-notch UWB antenna design that
is suitable for wireless applications. The decagonal-shaped radiating part with Sierpinski
square fractal slots, along with the truncated ground part loaded with stubs and slots,
makes the antenna compact with improved UWB impedance bandwidth. The final design
demonstrates a UWB range from 4.21 to 13.92 GHz with notch frequencies at 5.02 GHz
(C-band), 7.8 GHz (satellite band), 9.03 GHz, and 10.86 GHz (X-band). The results from
simulation and measurement are in close agreement, demonstrating the effectiveness of the
proposed design.
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