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Abstract: The evolution of communication systems always follows data traffic evolution and further
influences innovations that are unlocking new markets and services. While 5G deployment is still
ongoing in various countries, data-driven considerations (extracted from forecasts at the macroscopic
level, detailed analysis of live network traffic patterns, and specific measures from terminals) can
conveniently feed insights suitable for many purposes (B2B e.g., operator planning and network
management; plus also B2C e.g., smarter applications and AI-aided services) in the view of future
6G systems. Moreover, technology trends from standards and research projects (such as Hexa-X) are
moving with industry efforts on this evolution. This paper shows the importance of data-driven
insights, by first exploring network evolution across the years from a data point of view, and then
by using global traffic forecasts complemented by data traffic extractions from a live 5G operator
network (statistical network counters and measures from terminals) to draw some considerations on
the possible evolution toward 6G. It finally presents a concrete case study showing how data collected
from the live network can be exploited to help the design of AI operations and feed QoS predictions.

Keywords: 5G; 6G; data traffic; multi-RAT; data analytics; AI

1. Introduction

Continuously growing traffic demand [1] confirms that society is moving towards a
data-driven world, and it is also a natural driver for communication network evolution.
This market demand translates into many technical requirements to be addressed by
communication networks, a situation which obliges the entire ecosystem—e.g., operators,
technology, and service providers—to continuously introduce elements of innovation in
network infrastructure and terminals. At the same time, it is worth noticing that the usage
of new networks will be mainly influenced by the market introduction of new terminals.
This phenomenon is true since the era of the first smartphones, when the actual usage
of more performing devices acted as a catalyser for the creation of new services, thus
acting as a further enabler for data consumption (which is again driving a further cycle of
network evolution).

In summary, as we have seen in past generations, when it comes to the evolution
beyond 5G systems we may rely again on the typical innovation cycle (Figure 1), where
the evolution of both networks and terminals is driven by traffic demand but also acts as
a driver in turn for the same market evolution for increased data consumption. Quoting
Brian Krzanich (former CEO of Intel), “Data is the new oil” [2]. With this scenario in mind,
and according to the innovation cycle, the creation of new market opportunities (given by
new services) will start from the creation of new network technologies and terminals.

Even if, at the time of writing this paper, still nobody can claim what 6G will be exactly,
based on the transitions from previous generations some evolutionary considerations can
be drawn on the current data traffic demand and on data forecasts present in the literature,
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complemented by data traffic extractions from a live 5G operator network. This paper will
thus explore network evolution across the years from a data demand point of view and
will draw some considerations to discuss the possible evolution toward 6G by using data
sources at various levels from global traffic forecasts to data traffic extractions from a live
5G operator network, not only to design strategies to improve current operations but also
to derive insights into network evolution. The rest of this paper is outlined as follows:
Section 2 discusses the data traffic demand and forecasts across the years, including data-
driven insights from global forecasts, as well as considerations from mobile data usage
and from live networks. Section 3 presents a few selected technology trends and standards
supporting network evolution toward 6G. Section 4 shows how data collected from a live
network can be exploited to help the design of AI operations, taking a Hexa-X activity as a
case study. Finally, Section 5 concludes this paper.
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Figure 1. The typical innovation cycle in ICT [3].

2. Data Traffic and Impact on Networks

Since the advent of smartphones, we have witnessed progressive and exponential
growth in global data traffic demand [1]. Across the years, these forecasts were often
adjusted excessively, since the reality most of the time surpassed reasonable or conservative
predictions. Additionally, for current networks it is worth having a deep look at global
forecasts, as they can also give an idea of market maturity and help in deriving useful
insights toward 6G systems.

2.1. Data-Driven Insights from Global Forecasts

According to [2], during the next two years, most of the global mobile traffic (see
Figure 2, showing the forecasts in millions of smartphones) will still be supported by the
current 4G networks, but from the next year 5G networks will start to take over and in
2024–2025 the number of 4G and 5G subscriptions will be comparable, leading to a situation
in 2027 where 5G will serve the majority of mobile subscriptions. Similar trends can also
be seen when looking at traffic volumes. Moreover, the phase out of older networks (e.g.,
2G, 3G) will progressively lead to a move to newer radio access technologies (especially in
growing markets), with consequent enablement of an enhanced consumption of data traffic
(indeed, because the portfolio of terminals is also renewed with smartphones having better
capabilities). However, the global market is not homogeneous, and we can appreciate
different levels of maturity in the various regions: in this perspective, we can notice that
the Asian market will continue playing a key role in the global landscape; for example,
the number of smartphones in 2027 for North-East Asia (mainly China) is expected to be
comparable with the sum of Europe and the Americas. Moreover, the switching point
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between 4G and 5G smartphone subscriptions will occur earlier than in Europe and the
Americas, as shown in Figure 2. This difference could give an idea of the maturity of
5G deployment in North-East Asia with respect to other macro-regions and should be
taken into account for data-driven considerations (while the reader should not neglect the
growing importance of the Indian market which for both 4G and 5G networks is expected
to reach considerable volumes, if compared to Europe or the USA). In this regard, some
data-driven considerations can be made. In fact, when it comes to future 6G systems, the
role of Asian markets as “early adopters” of new technology can be exploited to anticipate
some predictions in other regions (e.g., introduction of new devices, impact of new radio
features on coverage, QoS, etc.).
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Figure 2. Forecast Mobile Subscriptions [mln] (elaboration from [2]).

Finally, the traffic consumed globally is not expected to be served only by cellular
networks and the evolution of 5G. Especially for indoor environments, Wi-Fi connections
are continuously improving their reliability and performance, whereas also the majority
of network user traffic consumption is still related to indoor use cases and scenarios with
limited mobility (e.g., home, office, shopping mall, etc.). Moreover, in mixed scenarios,
where both Cellular and Wi-Fi networks are available, a 5G/Wi-Fi convergence is an
important aspect to be considered since 5G networks are not expected to cover alone all
users’ needs, especially in indoor spaces where good cellular coverage is typically more
difficult to achieve [4]. To cope with this need, standards are already supporting 5G/Wi-Fi
convergence at various levels, even if the actual maturity of technical solutions and related
terminal support are not yet at a level of massive adoption. Similarly, there is a growing
interest from industry (e.g., automotive use cases [5]) to consider also complementary
coverage from satellite links in order to achieve seamless service continuity. In summary,
the expectation here is that network evolution (see Section 3) will likely move toward multi-
access convergence, as a natural consequence of the continuous growth of traffic demand.

2.2. Considerations from Mobile Data Usage

From a data consumption point of view, the average monthly usage per smartphone
globally is expected to surpass 15 GB in 2022 [2], with the forecast to reach 40 GB per
mobile per month by the end of 2027. According to [6], mobile data will more than triple
in most regions over the next six years, driven by increasing smartphone adoption and
video usage (in particular, their forecast on the data traffic per smartphone is to move from
11.4 GB/month in 2021 to 41.0 GB/month expected in 2027). This should not surprise the
reader, as in past years video traffic has driven the global traffic increase, and also today
a big percentage of data volume consumption (69% globally) is given by video traffic (a
share that is forecast to increase to 79% in 2027). Additional services are likely to appear in
future systems, and this trend is confirmed by a clear shift in the inclinations of consumers
who with the advent of 5G are increasingly interested in adding non-connectivity offerings
to their mobile subscriptions [6] In particular, users’ interest in mobile gaming is increasing
from 23% to 36%, while interest or usage of cloud services in 5G is reaching 55%, and there is
increasing enthusiasm for wearable devices. According to Ericsson, service providers expect
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additional traffic growth with the advent of new video services, such as high-definition
video and XR services. In this perspective, new services will be also likely coupled with a
progressive introduction of new devices (e.g., AR/VR glasses, gloves, displays) for gaming,
entertainment, remote collaboration, healthcare, etc. New terminals enabling use cases
related to the metaverse are also likely to be expected, creating an unfolding (r)evolution of
the internet experience (see also Section 3). Another important aspect to further elaborate
these forecasts is the speed of introduction of 5G terminals (period 2018–2027), compared to
what happened with the introduction of 4G (2009–2018). According to [2], 5G subscription
uptake is faster than 4G, and the expectation is for it to reach one billion 5G subscriptions
after 4 years from the first deployment (instead of the 6 years needed in the past for 4G).
Analysis on measurements from OpenSignal [7,8] reveal that across all smartphone makers,
users with 5G models enjoy faster overall download speeds, typically seeing speeds 1.5–3
times faster than owners of 4G smartphone models from the same smartphone brand. In all
six markets, all smartphone brands saw a significant jump in the overall download speeds
experienced by users with 5G models, compared to owners of 4G models. Current 5G
networks mostly use 3GPP Rel.15, but there are new standards coming onto the scene. More
wireless spectrums will arrive which should boost speeds considerably, even in markets
that already offer 5G. Responsiveness will improve with updated 5G technology, e.g., Rel.17.
Moreover, future networks are expected to support more devices simultaneously [9].

2.3. Data Analysis from Operator Networks

If on the one hand global forecasts can provide macroscopic insights for network
evolution, on the other hand diving into network counters and measures from terminals
could offer precious insights on the specific behaviours of the RAN (Radio Access Net-
work), plus more insights in general for planning and network management purposes. In
particular, statistical network counters from base stations (BS) can offer a view on how
the traffic demand is matching with offered network capacity, and all the performance
information that is essential for network planning purposes. The gathered data is averaged
within the cell, for which counters are not offering georeferenced inputs per UE (User
Equipment). However, time series can show the daily evolution of many kinds of KPIs,
e.g., average cell load (DL/UL), number of users, average user throughput, traffic volume,
radio resource usage, etc.

As an example of network counters gathered from a live TIM network, Figure 3 shows
the daily profile (averaged across multiple cells in a cluster related to the city of Parma)
of the throughput served for active users. The DL and UL curves show that in current
networks the DL/UL ratio is around 1.5, and a monitoring over time (even years) can give
a sense of the evolution of traffic demand in this perspective. As a sidenote, the reader
can notice that measures here are offered from the morning (8:00 a.m.), where indeed the
counters extraction was planned. Of course, the entire day could be captured, but here
the intention was to show that dataset completeness is subjected to many factors. In some
other cases, it may happen instead that a reset of BSs (or any temporary electricity outage)
can cause partial loss of data, with the consequent need for any post-processing to take into
account of this phenomenon when analysing the data. This is indeed the typical difference
between theory and practical cases, where databases need to be carefully managed to avoid
biased/inaccurate results.

Another example of elaboration from network counters is provided by Figure 4,
showing the radio frame usage, and in particular the statistical distribution functions of
used PRBs (Physical Resource Blocks) in the cell (again, by considering the average for a
cluster of cells). Here, the level of saturation can be monitored by separating DL and UL,
and by identifying some target cells (e.g., in highly demanding areas, or in certain periods
of the year, e.g., during concerts or crowded events).
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Figure 4. CDF and PDF of radio resource usage (elaboration from live network data).

A further element that can be captured (by properly filtering network counters, based
on the percentage of urbanized environment) is the difference between urban and suburban
areas. Taking proper actions based on this information is also critical for the optimization
of a seamless user experience. Finally, a differentiation among the various days of the
monitored period (e.g., working week versus weekend) can offer more insights related
to average customer habits (always by preserving user privacy, as indeed data here is
averaged on the whole cell). Figure 5 shows in fact how the daily profile of the cell DL
traffic volume can be significantly different on Saturday (with respect to Thursday and
Friday of the same week). This example also shows that data processing is a complex
task because, depending on the desired outputs, an averaging of bigger time periods
(e.g., weeks or months) should also consider the differences among various time series.

In addition to statistical network counters gathered at the BS level, it is worth men-
tioning in this context also the opportunity to collect even more refined data, at the UE
level, thanks to MDT (Minimization of Drive Tests), a feature introduced in Rel.10 to allow
the collection and reporting of georeferenced measures from UEs. There are two MDT
collecting methods: Immediate MDT and Logged MDT. The first refers to the measures per-
formed by the UE in connected mode, while the latter occurs in idle mode. The Immediate
MDT provides both state and reporting of the measures at the time of reporting, while in
the Logged MDT the measures are reported at a later point in time, typically at the first UE
connection to the network [9]. MDT is developed over three main features: (1) periodic
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reporting of GPS location of the UE, if the GPS receiver is enabled and the UE supports GPS
reporting over L3 (RRC Measurement Report); (2) periodic reporting of legacy/ordinary L3
and L2 measurements at UE and eNB, already used for signalling and radio resource man-
agement; (3) MDT Data collector and Big Data platform for processing and analysis [10].
In the context of the present paper, we analysed MDT samples from the live TIM network,
and we observed that currently about 10% to 20% of UEs in the network report MDT radio
measures with GPS position coordinates. This is because some UE are in indoor condition
and so are not always visible to the GPS satellites. In other cases, it may happen also that
some UE brands report radio measures without the associated GPS position. The reader can
notice how these aspects clearly identify the difference between theory (where datasets are
full of samples, without any holes) and real-life cases (where indeed datasets can miss some
parts, or even contain corrupted or not comparable samples). These cases often require
performing post-processing of MDT samples, to manage a sufficient number of samples
that may lead to reliable statistics and related data-driven considerations. More details
on MDT technology and standards can be found in [11]. However, in the context of this
paper we simply show some exemplary extractions of MDT data related from the TIM
networks of two medium-sized Italian cities: Parma and Piacenza (the data retrieved from
the TIM network is related to 20 September 2022). In Figure 6, the MDT sample densities are
shown for Parma for both 4G and 5G traffic (where the legend shows different colours for
various levels of traffic densities). The figure shows how these MDT samples (taken with
a resolution of a square meter) are distributed in the territory over a certain observation
period. This distribution of the MDT sample densities thus gives an immediate perception
of the 5G market penetration and related terminal density, compared to 4G traffic density
(note that both figures for 4G and 5G use the same scale of percentage values in the legend,
in terms of the various samples per square meter and related colours).
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Figure 5. Daily traffic profile of cell DL traffic volume (elab. from live network data) (Turin, Italy).

Similar charts can be drawn, e.g., showing the levels of RSRP (Reference Signals
Received Power) of a critical cellular area quality of Parma, or the UL SINR (Signal to
Interference plus Noise Ratio) of the same area, or again the best serving cell in the various
pixels of the considered area. MDT is often use in radio planning and radio network
optimization. In fact, as clearly displayed in charts (c) and (d) of Figure 6, there is a net
correlation between a low radio coverage level of a specific area of the city and the Uplink
SINR of the same area. This shows how MDT can be used in automatic tools to analyse
critical areas of coverage and/or quality of service. Figure 6 is only a simple example
of analysis but more and more can be achieved by taking into account other available
MDT reports.

Here, it is worth noting that MDT measures coming from terminals can be used for
many purposes. First of all, they are quite important for operators, e.g., in most RAN
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optimization scenarios and generally in planning operations. In fact, theoretical radio
coverage prediction and numerical simulations can be compared and validated with MDT
measures, in order to tune electromagnetic propagation theoretical models. Recent research
reports the use of MDT in the analysis of interference scenarios [9], plus in the influence
of humidity and maritime propagation on signal and network coverage [10,11]. Other
uses of MDT reports also include analysis of solar radiations and their impact on RAN
interference [12], hotspot detection and network capacity upgrades identification [13]. This
can be obtained via the detection of local peaks in traffic (density of MDT reports) in
space and time over a given search area, or differentiation of traffic type (indoor, outdoor,
mobility), or again through the analysis of network performance during peak hours (serving
cells, KPIs within the hotspot). This analysis can target possible actions for the MNO
(Mobile Network Operators), e.g., accurate small cells deployment plans (best candidates’
list to ensure high ROI), or identification of high traffic areas requiring capacity upgrades.
Moreover, MDT reports can be used for other purposes, not necessarily related to network
planning, e.g., to infer customer behaviour from measures, e.g., users’ feelings during
concerts [14]. MDT are also applied on the analysis of road and pedestrian mobility (these
studies are related to smart city and road/vehicle traffic modelling [15]).
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In summary, measures from MDT-capable devices (jointly with global/country-level
traffic trends and network counters) could offer opportunities for data-driven optimizations
and network traffic insights. However, even if in most of the cases MDT accuracy is
satisfactory for the use cases described above, it is important to notice that the variability of
RSRP measures leads sometimes to difficulty in building accurate models able to predict
future signal values [16]. In such big-data contests, we expect MDT performance advances
in the future, where AI is expected to play a role in extracting insights from measures to
learn and make QoS predictions [17,18]. The use of MDT data is now improving several
radio interference analyses that are even coming from outer space. For example, a recent
paper reports how MDT data allows a direct evaluation of radio interference phenomena
on cellular phone networks caused by solar flares [19].

Moving forward toward 6G systems, we may expect to see the highest of those MDT-
enabled Data Analytics in the domain of SON (Self Organizing Networks). In future
systems, georeferenced data from terminals will permit us to better follow the various
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traffic sources over time, and this will permit us to design more advanced network opti-
mizations and also better network planning, i.e., not only based on the service type, but
also taking into account the usage of terminals and the specific position of the users. In
summary, we envision the evolution toward systems leveraging more advanced datasets
(e.g., georeferenced and including mobility patterns) that will permit us to recognize spe-
cific events (e.g., mobility patterns) and adapt network performances accordingly (e.g., in a
geo-localized way).

3. Status and Technology Evolution of Mobile Communication Systems

As already said, network evolution is naturally driven by traffic demand. Yet the
opposite is also true, since according to the typical innovation cycle, new network technolo-
gies are also enabling the usage of new terminals and devices, which are introducing new
services and so on, to complete the cycle. So, at the end, to obtain useful insights from data
analysis (as per Section 2), we need also to have a look at the current status of standards,
as this will give us a sense of the maturity of the various technologies that are or will be
introduced in the market.

3.1. Standardization Trends toward 6G: Devices Evolution

Standardization efforts related to mobile networks include many 3GPP groups; more-
over, also ETSI groups are working on some network-related aspects (e.g., NFV, MEC, ZSM).
So, it is not practical to mention all standards potentially impacting on 6G. Nonetheless,
the aim of this paper is to analyse how the introduction of new terminals can unlock new
services and thus stimulate the evolution of traffic demand (as per the typical innovation
cycle shown in Section 1). In this context, it is thus worth mentioning here a few technology
components as meaningful examples of features (although not exhaustive) that are likely
to have an impact on new devices (and thus on data usage/patterns). Some examples:

• Low-end devices: in 2024, the first reduced capability (RedCap) devices should be
available, introducing relaxed requirements on the receiver in the device, allowing
lower costs compared to standard NR. RedCap devices can facilitate the expansion of
the NR device ecosystem to cater to the use cases that are not currently best served
by NR specifications. This includes wearables, industrial wireless sensors, and video
surveillance. The introduction of RedCap devices can further stimulate the market in
all sectors of Internet-of-Things, influencing data usage/patterns.

• Multi-access integration: it is evident that 5G access networks cannot cope alone with
global traffic demand growth in some indoor (with better Wi-Fi coverage) or outdoor
scenarios (where satellites can complement mobile networks). It is then expected to see
a convergence among different accesses (supported by traffic combination at higher
levels e.g., via MTS APIs [20]), where multi-access devices will experience better and
ubiquitous performance. This usage of multiple accesses can be also beneficial at the
network level in terms of energy efficiency.

• Location and positioning technologies: many advanced use cases (e.g., from 5GAA [21],
on coordinated manoeuvres for connected and automated vehicles) will require more
stringent precision in order to provide location-based services. Furthermore, the
evolution of MDT-enabled devices is moving is this direction, where an improved
set of measures from UEs (by keeping user privacy) can offer more opportunities to
improve perceived the user experience.

• High-end devices (e.g., for AR/VR, multiverse): 3GPP [22] is working on 5G-Adv
standard for metaverse applications by selecting UCs and capabilities based on the
specification for “Tactile and Multi-modality Services” (see also the LF Edge Akraino
Technical Summit Fall 2022). Examples of these UCs: (1) Localized Mobile Meta-
verse Service UCs, (2) Mobile Metaverse for 5G-enabled Traffic Flow Simulation and
Situational Awareness, (3) Collaborative and Concurrent Engineering in Product De-
sign using Metaverse Services. Now, while it is still not clear what the metaverse
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will be, it is however expected that high-end devices will critically push even higher
requirements in future systems.

• Edge computing: thanks to better latency for the proximity to the end user, edge
computing is commonly considered as a key technology for the evolution of commu-
nication systems. Gartner predicts that by 2025, three-quarters of enterprise-generated
data will be created and processed at the edge, outside centralized datacentres or
clouds. New services at the edge will also provide new revenue opportunities for op-
erators and service providers. This paradigm shift will change radically the way data
is processed and consumed, with increased presence of applications at the edge; this
process will further transform data traffic patterns, by influencing in turn the evolution
of networks and devices. In particular, from a device perspective, the availability of
edge servers will create huge opportunities to design edge native applications which
can better exploit network capabilities in a low-latency environment, thus enabling
new and innovative services at the terminal side. It is also worth noting that one key
use case in ETSI MEC [23] is also about application computation offloading, where
the MEC host executes compute-intensive functionalities with high performance in-
stead of mobile devices. This use case can help especially for computation-hungry
applications such as graphical rendering (high-speed browser, AR/VR, 3D games,
etc.), intermediate data-processing (sensor data cleansing, video analysing, etc.), and
value-added services (translation, log analytics, etc.).

• In-RAN computing: it is expected that 6G will be the first generation to shift from a
communication-centric to a communication computing-data centric system [24], with
tight coupling between communication and computing. According to estimations, the
growth of data would far outpace the growth of network capacity. Current systems
would not be able to transport all the data to datacentres for processing: in fact, even
if there is sufficient communication capacity, the cost of transporting data is high.
For example, according to [24], with an estimated 10 nJ/bit energy consumption for
transporting data over 500 km, 22 trillion kWh of energy will be needed to transport
1 mln zettabytes of data. So, computing close to data sources is a way to cater to the
exponential growth of data and reduce the energy costs of its transport.

3.2. Standardization Trends toward 6G: Network Infrastructure Evolution

Referring again to Figure 1 (showing the typical innovation cycle and the key driving
role of data), we remember that the improvement of network infrastructure and related
operations can be properly influenced by data. In particular, AI/ML algorithms (properly
fed by data and measurements) can suitably enable RAN intelligence, i.e., a set of RAN
features that can help with optimizing how the RAN operates, to maximize certain KPIs
and performance parameters. From a standardization point of view, we may emphasize
the presence of the following activities in 3GPP, related to network infrastructure evolution,
which are clearly driven and influenced by the presence of data:

• RAN intelligence: 3GPP is studying in TR 37.817 how these RAN intelligence features
in Release 17 can be enabled by AI/ML, including a functional framework (where the
model of the training function may reside in OAM or RAN nodes, and the model for
the inference functions resides in RAN nodes) and a set of input/output parameters
for AI/ML-enabled RAN optimization functions (Network Energy Saving, Load
Balancing, Mobility Optimization).

• O-RAN: in the context of Radio Access Network, it is worth mentioning also the
relevant work performed by O-RAN Alliance in proposing a new architecture called
Open-RAN (O-RAN) that consists in splitting the RAN into various parts based on
functionality. This functional split of the RAN not only permits us to have cost efficient
and more flexible networks, but also creates a chance for the small vendors and
operators to start their own services and to increase their market revenue, compared
to the current situation, where RAN vendors are typically offering a complete (and
often still monolithic) solution to mobile operators. In the O-RAN architecture [25],
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the various RAN components are disaggregated, where Distributed Unit (DU) and
multi-RAT Control Unit (CU) are separated and running on a NFVI platform. This
distribution of RAN functionalities (that in the traditional RAN architecture were
aggregated into a single node) will increase the network reliability by avoiding any
single point of failure. Finally, the O-RAN architecture defined by O-RAN Alliance
permits us to enhance the traditional RAN functions with AI via the introduction
of the RAN Intelligent Controller (RIC) platform, implementing RAN monitoring
and control techniques in the form of rApps and xApps, respectively for “Non-RT
(Real-Time) RIC” and “Near-RT RIC”. Suitable uses for the RIC are mainly focused on
AI-enabled RAN optimization, but can also include advanced functionalities, such as
the integration of RIC with MEC enabling cross-layer application design (e.g., network
and QoS aware adaptive MEC applications), or again xApps for Flexible ML-based
Spectrum Sensing, e.g., to enable cognitive radio concepts [26].

• Distributed/Federated Learning over 5G System (5GS): while Rel-17 5GS plans to
support AI/ML training and inference within the 5GC via NWDAF for network au-
tomation purposes, for their Release 18 it is notable how 3GPP is also working to
provide intelligent transmission support for application AI/ML-based services, e.g.,
AI/ML model distribution, transfer, training for various applications, video/speech
recognition, robot control, automotive, etc. A relevant example of AI/ML operations
is the Distributed/Federated Learning over 5G system (see also 3GPP TR 22.874).
Federated Learning (FL) is an increasingly widely used approach for training com-
puter vision and image recognition models. In Federated Learning mode, the cloud
server (called also an “aggregator”) trains a global model by aggregating local models
partially trained by each of the end devices (“collaborators”) based on an iterative
model averaging method.

In summary, as we have seen, when it comes to the evolution beyond 5G systems
we may rely on the typical innovation cycle, where the evolution of both networks and
terminals is driven by traffic demand but also acts as a driver in turn for the same market
evolution for increased data consumption. This is true not only in the domain of standard-
ization, but also from the point of view of research communities, for which data-driven
innovations are described in the following section.

3.3. Research Trends: Data-Driven Innovations

Collecting data from operational mobile networks has been employed by several
works in the literature towards the design of more effective and more efficient mobile
networks.

Data-driven approaches have been recognized as an effective way to improve network
performance as shown in [27], which presents a comprehensive survey of research papers
that use Machine Learning techniques to optimize 5G networks. The paper highlights
multiple use cases where the collection of data produced by both the users of the network
and the network itself may be used to feed proactive optimization techniques within certain
contexts, e.g., traffic prediction, load balancing, interference coordination, and edge caching.
In [28], the authors identified the needs of real-world data traces for enabling better capacity
planning, and presented a large-scale dataset composed of data from users’ traffic demand,
infrastructure deployment, and population. In [29], hourly traffic data collected by a large
number of base stations in different areas of Milan (Italy) have been used to design energy-
saving techniques based on sleep modes. Likewise, [30] uses data traffic demands obtained
from probes in the mobile network infrastructure serving a large urban area to predict the
capacity of network slices using a deep neural network. MDT data have been proposed
in [31] in order to train a neural network aimed at enabling the automatic detection of issues
in radio interface quality, in the context of self-healing functionalities of a mobile network.

Moreover, there exist national and international projects worldwide whose aim is to
design the future generation of mobile networks following a data-driven approach. For
example, the EU-funded DAWN4IoE project [32] aimed at exploiting new big data analytics
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techniques to optimize mobile network planning and functions, such as heterogeneous
cell planning, radio resources management, and data caching. The CANCAN project [33]
funded by the French government follows a data-driven methodology to design orchestra-
tion policies within the mobile networks. The project lays its basis on data collection from
an operational French network, in order to tailor existing analytics to the specific needs of
network resource management.

3.4. The Power of Data: Overview of Key Enablers for Data-Driven Insights

As we have seen, a number of key enablers can be conveniently exploited by leveraging
data extractions from various sources and combined in different ways to derive AI-powered
or human-derived data-driven insights. Table 1 below summarizes the main enablers
available in current standards, as they can be also leveraged in future systems, where
certainly data analytics will continue to play a key role. The table is thus showing what
data can be collected from terminals and mobile networks, how they can be used to improve
performances, and evidence of such improvement in existing works.

Table 1. Overview of data that can be collected from terminals and networks.

Type of Data Possible Usages
(and Relevant Work)

References
(Standards) Comments

MDT samples

RAN optimization
(ref. [12]);

Analysis of solar
radiations and their

impact on RAN
interference (ref. [19]);

Inferences of pedestrian
mobility flows (ref. [9]);

3GPP TS 37.320
“Radio measurement

collection for
Minimization of Drive
Tests (MDT); Overall

description”

Details of data samples available:
• Longitude ddd.dddddd [deg]; Altitude [m]
• Major/Minor semiaxis of uncertainty

ellipse/ellipsoid [m]
• Orientation of major semiaxis from

geographical North [deg]
• Timestamp (date + time) of stored

measurements
• User’s MCC-MNC; TA distance [m]
• eutraCelid of serving cell/of neighbor cells
• RSRP of serving cell; RSRQ of serving cell
• RSRP of neighbor cells; RSRQ of neighbor cells
• Estimated UE speed [Km/h]
• UL SINR [dB]
• Average wideband CQI

Radio Access
Network counters

Network dimensioning
and planning (ref. [18])

Adaptive SON
management
(ref. [34,35])

Technology specific

Examples of metrics:
• User and Cell Data and Voice Traffic 4G,
• Data Traffic 5G,
• Radio Link Quality, Radio Link Level,
• Performances (throughput, volume),
• Antenna beam and MIMO usage

Country-level/
region-level

data statistics

Network dimensioning
and planning

GSMA Intelligence
(ref. [6])

Open Signal (ref. [7,8]);

Examples of metrics:
• Subscribers (Market/country level, Mobile

internet subscribers)
• Market penetration; Network coverage (3G, 4G,

and 5G)
• Base stations
• Data traffic
• Cellular IoT connections

4. Exploiting Data toward 6G: The Fed-XAI Case Study

Apart from the standardization efforts discussed in Section 3, many communities (e.g.,
6G projects) are influencing the innovation cycle with their findings. When it comes to
6G, there are many active discussions and technology development efforts around the
globe, such as ITU-R WP5D 2030 future technology trends and vision, North American
initiated Next G Alliance (NGA), European Union funded 6G Flagship project Hexa-X [36],
and China initiated IMT-2030 PG, to name a few. In particular, among the many areas
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investigated by the Hexa-X project for future 6G systems, it is worth mentioning in the
context of this paper the activity called Fed-XAI, coming from the collaboration between
University of Pisa, Intel, and TIM, and proposing the integration of Federated Learning (FL)
with eXplainable Artificial Intelligence (AI) models (XAI), with the objective to improve
the user experience by helping end-users trust the decisions performed by in-network AI.
In the following, we refer to the integration of these two approaches as Fed-XAI.

In this section, we first introduce the concepts of FL and XAI separately, then we dis-
cuss how their integration has been envisioned in the Hexa-X project, strongly supported
by data collected from TIM’s mobile network. Finally, we present in detail a practical im-
plementation of the Fed-XAI innovation exploiting a real-time, emulated network testbed,
in which the availability of live-RAN data has been key to the development and testing of
Fed-XAI in a realistic application scenario. This provides tangible proof of how data drives
innovation toward 6G network development.

4.1. Federated Learning of eXplainable Artificial Intelligence Models: The Hexa-X Experience

Fed-XAI blends FL and XAI together by allowing the collaborative learning of trans-
parent models, making it a promising approach to build a data privacy-preserving and trusted
AI ecosystem, towards the tight integration between the digital and the human worlds.

On one hand, FL consists in a learning paradigm that allows multiple parties (i.e.,
data owners) to collaboratively learn an AI model without any disclosure of private raw data.
This is accomplished by training AI models locally using the private data of the user and
sharing the obtained (local) models—rather than users’ data—with a central entity. The
latter aggregates the received local AI models in order to produce a global one. In this
way, the privacy of the users’ data is preserved, while the accuracy of the global AI model
can still take advantage of multiple experiences. XAI focuses on producing AI models
that have the capabilities to provide useful and easy-to-understand details about their
functioning, as opposed to the so-called opaque AI models. Explainability can be obtained
either through inherently transparent models, such as rule-based systems or decision trees,
or by applying post-hoc explainability techniques to “black-box” models, such as deep
neural networks. The scope of XAI is to improve the trust in the results produced by AI
techniques. Integrating FL and XAI, i.e., enabling the construction of inherently explainable
AI models learnt in a federated fashion, makes it possible to leverage the benefits of the
two approaches simultaneously, such as privacy and trustworthiness.

The Fed-XAI innovation proposed in the Hexa-X project has been clearly driven by
data. In fact, the proposed Fed-XAI approach has been demonstrated by implementing a
prototype [17] composed of real devices/applications and a mobile network emulated with
the Simu5G simulator [37]. One of the cornerstones of the above prototype is the use of
realistic sources of live data from an MNO network. In particular, the network scenario
implemented within Simu5G is designed considering data taken from TIM’s live network
as input, such as base station position and user data volume, extrapolated to produce
predictions using AI-based algorithms. The usage of real data and live measurements from
the MNO network is critical for the reliability of the produced output. In that perspective,
the MDT functionality is also applied on TIM’s RAN to acquire geolocated data from
live RAN. The advantage of this data-driven approach proposed by Fed-XAI is twofold:
first, privacy preservation by leveraging FL for during collaborative training of AI models,
especially suitable in heterogeneous B5G/6G scenarios; second, to ensure an adequate
degree of explainability of the models themselves (including the obtained aggregated
model as a result of FL), with better benefits for industrial customers in terms of high
dependability, and for end-users in terms of trustworthiness.

4.2. Combining Live Network Data with Network Simulations to Support Fed-XAI Operations

In this section, we show how data collected from a live network has been key to the
realization of the Fed-XAI prototype. In the latter, tele-operated driving (ToD) is considered
as a use case: a vehicle streams a real-time video to a remote host, which in turn plays the
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video and allows a (human or machine) operator to drive the vehicle remotely. Clearly, this
is only possible if the quality of the video stream is good enough to allow a smooth driving
experience. Thus, AI models can be used to predict the future quality of the video-stream,
based on a few QoS metrics detected during the streaming of the video itself. The Fed-XAI
prototype is composed of two main phases: an offline training phase, the aim of which is to
produce an XAI model using FL; and an online inference phase, the aim of which is to exploit
the above model to make real-time predictions of the video quality.

In the offline training phase, a dataset including QoS metrics obtained from a mobile
network is required. Thus, we exploited the Simu5G system-level simulator [37] to produce
a meaningful dataset that includes a large set of QoS data produced by several video-
streaming sessions. We relied on Simu5G because it allows us to generate a wide range of
statistics from large-scale, custom network scenarios, and to obtain the required amount of
data by running large simulation campaigns that explore all the possible radio conditions.
This makes the dataset meaningful to be used as a basis for learning AI models. However,
such a dataset could represent a real network scenario only if the network simulated
within Simu5G is configured according to a real network configuration, i.e., a real network
topology and traffic conditions. Data extracted from the TIM’s live network is exploited
to make the scenario more realistic and then to produce more meaningful datasets. In
particular, the position of BSs in the simulation are set according to their actual positions
in the city of Turin. Moreover, the actual data volume handled by those BSs was used to
configure the background traffic in the simulation, i.e., to produce realistic cell workloads.
In more detail, we used data-volume values provided by cell-wise network counters from
the TIM’s network, which provide averaged metrics over a time span of 15 min. Three
days of such values were extracted, resulting in 288 values for each BS. This guided
the configuration of our simulation campaign to generate the dataset: we configured
288 instances, each 15-min long, during which the data volume served by the BSs (i.e., its
workload) corresponds to that provided by network counters.

The simulated network topology is configured as shown in Figure 7, where UEs (i.e.,
connected cars) move along one main road and three intersecting roads. Intersections are
regulated by traffic lights. Such a portion of the urban scenario is served by multiple BSs
that provide 5G connectivity to the UEs. The latter locally run the sender side of the video-
streaming application, which streams the video to a remote-driving application hosted
on a MEC host. To do so, we needed to implement a realistic model of a video streaming
application within Simu5G, where UEs send streams to a remote host following a trace-
based approach, i.e., rate and size of UL video frames are read from a log file generated
from dash-cam videos. This is useful to model video traffic from real-life ToD scenarios.
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Since an AI model is more effective when it is trained with a large amount of data,
each 15-min simulation instance was repeated five times with different seeds of the pseudo-
random number generators. This also has the effect of simulating multiple UEs’ mo-
bility patterns, and, in turn, it increases the variability of the scenarios learned by the
training algorithms.

Figure 8 shows an example of a QoS metric that we extracted from the above simulation
campaign, i.e., the evolution over time of the end-to-end delay of video segments, where
we observe that the metric changes over time due to UE mobility and variable interference
produced by the background traffic. In [17], an example of how a dataset including
QoS metrics such as the one in Figure 8 can be used to predict the future quality of the
video streaming is described in detail. Note that the above approach can be enhanced
by considering improved network capacity and increased volume of background traffic
following the foreseen evolution toward 6G networks, allowing the design of AI algorithms
and models based on datasets representing future network scenarios.
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Once the dataset had been generated as described above, we trained an XAI model
according to the Takagi–Sugeno-Kang Fuzzy Rule-Based (TSK-FRB) system in an FL set-
ting [38]. The Fed-XAI application that performs the training has been designed and
implemented following a fully virtualized architecture by deploying each module inside a
Docker container, so as to enable portability regardless of the underlying hardware and
software infrastructure, and for easier migration in real-world, edge computing-based envi-
ronments. The Fed-XAI application exploits the Intel OpenFL library, purposely extended
to support FL of inherently interpretable models, such as TSK-FRB.

For the online inference phase, we implemented the real-time testbed shown in Figure 9.
It includes a general-purpose PC running Simu5G, exploiting its network emulation capabilities to
emulate the mobile network in real time [39]. This means that we make the mobile network
within Simu5G evolve in real time (i.e., synchronized with the wall-clock time), while it
processes real video frames generated by external, real applications. The video source and
the video player are realized using the VLC software and are hosted respectively on a laptop
and a tablet. Both are connected via Ethernet interfaces to the PC running Simu5G, so
that packets generated by the video source traverse the emulated network before reaching
the video player. In this setting, the quality of the video at the receiver depends on the
network conditions. In particular, the emulated network had been configured using the
same scenario and parametrization described above, hence using TIM’s live network data
as input in order to make the emulation as realistic as possible.
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Figure 9. High-level representation of the Fed-XAI real-time testbed.

The streamed video shows a scene shot using a dash-cam on a highway. During the
execution of the testbed, probes within Simu5G allow us to generate the metrics that are sent
in real time to the inference module of the Fed-XAI application, as shown in Figure 9. The
inference module uses such data and the pre-trained model to make the quality predictions,
which are shown in real time on a dashboard.

The testbed implementation is shown in Figure 10. It is composed of a laptop acting as
the video server and a tablet acting as the video receiver, which plays the received video in
real-time. The video frames traverse a miniPC equipped with the Simu5G simulator, which
affects the latency of such video frames. This makes the quality of the video played out
at the receiver depend on the status of the user in the emulated network. While the video
flows across the network, Simu5G extracts real-time statistics and sends them to the Fed-
XAI app implemented on a fourth PC. The quality forecast is shown at both the receiving
tablet and the screen of the PC hosting the Fed-XAI app (in the top-right corner of Figure 10).
The dashboard is also shown in Figure 11. It shows two “semaphores”: the leftmost one
shows the expected (predicted) quality in the next three seconds, whereas the rightmost
one shows the prediction made three seconds before and is used for verification purposes.
In this example, the Fed-XAI application had predicted poor video quality (red light). In
fact, in Figure 10 we observe that the video at the receiving side presents some impairments.
The dashboard also shows the explanations for the prediction of poor video quality in the
charts at the bottom-left corner of Figure 11. In this case, the prediction is due to high cell
load utilization and low signal-to-interference-plus-noise ratio experienced by the car. This
is reasonable as we observe in the top left screen in Figure 10 that the considered car (the
blue dot) is located at the border between two base stations (the red triangles).
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5. Conclusions

This paper showed the power and importance of data-driven elaborations, where
macroscopic forecasts, network counters, and MDT measures can feed suitable insights
for discussing the possible evolution toward 6G systems, and the related challenges and
opportunities for operators and service providers, both in terms of technical and economic
aspects. It also presented many examples of the usage of network counters and MDT
data, including a practical case study showing how data collected from live network can
be exploited to help the design of AI operation (as part of the Fed-XAI activity in the
Hexa-X project). Future work includes the showcasing of a Fed-XAI prototype and its
related results.
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