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Abstract: To enhance the level of autonomy in driving, it is crucial to ensure optimal execution of
critical maneuvers in all situations. However, numerous accidents involving autonomous vehicles
(AVs) developed by major automobile manufacturers in recent years have been attributed to poor
decision making caused by insufficient perception of environmental information. AVs employ diverse
sensors in today’s technology-driven settings to gather this information. However, due to technical
and natural factors, the data collected by these sensors may be incomplete or ambiguous, leading to
misinterpretation by AVs and resulting in fatal accidents. Furthermore, environmental information
obtained from multiple sources in the vehicular environment often exhibits multimodal characteristics.
To address this limitation, effective preprocessing of raw sensory data becomes essential, involving
two crucial tasks: data cleaning and data fusion. In this context, we propose a comprehensive
data fusion engine that categorizes various sensory data formats and appropriately merges them
to enhance accuracy. Specifically, we suggest a general framework to combine audio, visual, and
textual data, building upon our previous research on an innovative hybrid image fusion model
that fused multispectral image data. However, this previous model faced challenges when fusing
3D point cloud data and handling large volumes of sensory data. To overcome these challenges,
our study introduces a novel image fusion model called Image Fusion Generative Adversarial
Network (IFGAN), which incorporates a multi-scale attention mechanism into both the generator and
discriminator of a Generative Adversarial Network (GAN). The primary objective of image fusion
is to merge complementary data from various perspectives of the same scene to enhance the clarity
and detail of the final image. The multi-scale attention mechanism serves two purposes: the first,
capturing comprehensive spatial information to enable the generator to focus on foreground and
background target information in the sensory data, and the second, constraining the discriminator
to concentrate on attention regions rather than the entire input image. Furthermore, the proposed
model integrates the color information retention concept from the previously proposed image fusion
model. Furthermore, we propose simple and efficient models for extracting salient image features.
We evaluate the proposed models using various standard metrics and compare them with existing
popular models. The results demonstrate that our proposed image fusion model outperforms the
other models in terms of performance.

Keywords: autonomous vehicles (AVs); data fusion; situation awareness; data-preprocessing;
machine learning (ML)

1. Introduction

It is proposed that autonomous vehicles (AVs) can significantly reduce the number
of traffic accidents by minimizing the impact of human factors on collision probabilities.
Real-time experiments related to AVs are conducted worldwide, and a recent survey
performed by [1] predicts that by 2025, the US market will achieve a target of around
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8 million customers who will be using AVs for their day-to-day activities. The use of AVs
has many potential advantages like minimizing the number of road accidents; avoiding
long waiting traffic jams caused by congestion of vehicles, thus saving energy to a great
extent; reducing parking problems; and helping customers, who do not know how to drive
a manual vehicle, to easily access the AV [2]. The same study also predicts that by the end of
2040, around 33 million people will be accustomed to using AVs, indicating the importance
of AVs. Though the statistics provide the importance and need for AVs in the future, more
analysis is required to ensure against safety hazards to the customers using AV.

To prevent accidents caused by AVs, these vehicles must make instant and accurate
decisions when encountering roadside events. Contextual information that AVs see has to
be unambiguous and precise to ensure accurate decision making. The systems that perceive
their environment information need to be highly accurate, providing a comprehensive
understanding of the surroundings and functioning effectively even in adverse conditions,
in particular when specific sensors malfunction or break. The collection of environmental-
and vehicle-related data relies on fully operational sensor systems. However, the data
collected from various devices, including sensors, thermal cameras, and radars, exhibit
heterogeneous multimodal features, posing challenges to achieving accurate perception.
More consideration should be given to data preparation tasks like data cleansing and
multimodal fusion to improve the contextual awareness of self-driving vehicles.

For environmental data collection and situational awareness [3], AVs depend on inside
as well as outdoor sensors, including LiDAR, radar, ultrasonic, stereo, and thermal cameras
to create the perceived perception of the AV. The gathered vehicle data, however, may be
in various formats, including text, image, video, and audio, and may include errors like
insignificant information, inaccurate information, anomalies, and repetitions. Images and
audio data, for instance, may both contain fuzzily-defined information. Pre-processing the
sensory input is essential as a result of increasing its accuracy. Although data cleaning has
received a lot of attention, this proposal focuses on data fusion, the second step in the data
pre-treatment process. A powerful architecture to integrate data must be designed and
developed to combine disparate data into a solitary structure and improve its precision
for additional analysis since sensory information can display multi-functional properties.
This study primarily focuses on the information gathered from state-of-the-art sensors
like RADAR, Velodyne, and LiDAR, with a specific emphasis on image fusion due to the
predominance of visual data from these sensors. However, the upcoming research will
solely concentrate on the proposed models for fusing text, audio, and video data.

Image fusion is a technique that creates a single image with more information than
any of the individual images by combining data from various images of the same scene.
Though extensive research and contributions are still in progress in this domain, indeed,
there are a few challenges and drawbacks associated with the existing solutions. The
datasets, evaluation metrics, and fusion methods utilized in image fusion research are
not standardized. This makes evaluating the effectiveness of various fusion methods
challenging. Numerous image fusion techniques in use today were developed for particular
uses like remote sensing or medical imaging. Other applications, such as autonomous
vehicles which need real-time processing and robustness to noise and other environmental
conditions, might not be compatible with these techniques. A lot of image fusion methods
concentrate on combining information from different sensors that belong to the same
modality, such as different cameras or different heat sensors. However, the data from
numerous sensors, including LiDAR, radar, and cameras, as well as sensors from other
modalities, is often used by autonomous cars. It is necessary to use fusion approaches
that can handle multimodal data. Many currently used image fusion algorithms may not
be appropriate for real-time processing since they need a lot of computation [4]. This is a
big barrier for autonomous vehicles since they need to evaluate sensor data quickly and
effectively to make judgments in real time. Several fusion methods are not resistant to
noisy or imperfect data. When it comes to autonomous vehicles, elements like weather or
sensor failures may have an impact on the sensor data, resulting in noisy or missing data.



J. Sens. Actuator Netw. 2024, 13, 15 3 of 27

We need fusion methods that can withstand such influences. Moreover, there has been
minimal effort to integrate the multispectral environmental data collected from advanced
sensing devices [5]. Adaptable architectures integrated with revolutionary algorithms and
predictive modeling techniques are required to fuse multidimensional image data.

Given the disadvantages listed above, this study suggests a hybrid fusion paradigm,
which combines an advanced deep residual network (ResNet) model that focuses on
feature extraction and low-vision image restoration tasks, with the proposed advanced
GAN model, collectively called Image Fusion GAN (IFGAN). In addition to capturing
detailed spatial information to assist the generator in focusing on the foreground and
background information of the images, the multiscale attention mechanism also seeks to
limit the discriminators’ focus to the focused areas rather than the complete input picture.
The IFGAN model is an advanced CNN model that consists of two important functional
layers: one for obtaining the attention map of the images generated from the ResNet, and
the other to fuse the collected images to obtain the actual information.

Additionally, this research has introduced adaptable kernel functions designed for all
machine learning models utilized across various tasks. The GAN model has undergone
customization of its layers, with Layer-1 dedicated to feature extraction, Layer-2 responsible
for the initial fusion of 2D/3D images using the previously suggested Hybrid Image Fusion
model [6], Layer-3 focused on transforming the fused 2D/3D data into a 3D point cloud data
format, Layer-4 designed for executing discriminator tasks, and Layer-5 designated for the
final stage of image fusion. Moreover, a novel loss function has been introduced to assess the
accuracy of image fusion. Within the GAN model, two discriminators have been integrated
to capture spatial and spectral information. The proposed IFGAN model employs a dual-
fold fusion approach, combining the inherent features of the earlier proposed Hybrid Image
Fusion model [6] with the novel IFGAN model, thereby aiming to enhance the precision of
image fusion.

The rest of this paper is organized in the following manner: Section 2 provides an
introduction to sensor technology, outlines the significance of data fusion in enhancing
data accuracy, and presents an overview of the topic. Section 3 explores the existing
literature in this field, highlighting its limitations that inspired our research proposal.
Section 4 constitutes the central component of the paper, where detailed explanations are
provided regarding the design, development, and implementation of the proposed models.
The evaluation of these models and the resulting outcomes are discussed in Section 5.
Finally, Section 6 concludes the paper by summarizing the overall findings, discussing their
implications, and suggesting avenues for future research.

2. Background and Motivation—GAN and ResNet Models: State of the Art

The suggested research presents an effective GAN model designed to merge various
image data formats, specifically focusing on 3D point cloud image sensor data. Due to
the model’s reliance on extensive mathematical computations and sophisticated matrix
and vector transformations, an in-depth understanding of GAN models is crucial. This
paragraph emphasizes key aspects of essential features in advanced machine learning-
driven image fusion models, notably GAN and ResNet. Hybrid transform-based image
fusion algorithms, which combine both the spatial domain and transform domain, are
becoming more and more prominent in the field of image fusion since picture distortion
and insufficient spatial continuity are common problems with transform domain-based
image fusion methods. As mentioned above, the proposed approach integrates two efficient
models to fuse image data: one is ResNet to extract the image feature, and the other is
an advanced GAN model to fuse the extracted feature. The upcoming paragraphs briefly
describe the salient features of ResNet and GAN models. Researchers at Microsoft Research
developed ResNet (Residual Network), a deep learning model, in 2015. It is designed to
address the problem of vanishing gradients, which occurs when training very deep neural
networks, by introducing a “shortcut” or “skip connection” that allows the gradient to flow
directly through the network.
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The ResNet architecture consists of a series of residual blocks, each containing one or
more convolutional layers followed by shortcut connections that bypass the convolutional
layers. These shortcut connections allow information to flow more easily through the net-
work and enable the network to learn deeper and more complex features. On a variety of
computer vision tasks, such as picture categorization, detecting objects, and segmentation
using semantics, ResNet has demonstrated cutting-edge performance. The architecture has
been extended and adapted in many ways, such as the introduction of “bottleneck” layers
to make the model’s complex computations less difficult, and ResNeXt, which improves
performance by introducing a new type of connectivity between residual blocks. Overall,
ResNet models prove to be a robust resource in the realm of computer vision tasks, thanks
to their adaptability and ability to scale, rendering them well suited for a broad range of
intricate applications [7]. Convolutional neural networks (CNNs) have gained significant
prominence in the field of image processing due to their adeptness at efficiently extracting
crucial visual information [8]. While shallow networks can only learn basic local features,
increasing the number of network layers enables the creation of detailed characteristics, like
intricate surfaces, which has to be explored further. However, as the assortment of layers
rises, deeper networks may become challenging to train, resulting in the issue of disappear-
ing gradients and declining training performance. To address these issues, the profound
remnant architect was proposed in the literature, which consists of residual blocks. This
approach enables the learning of deep features while mitigating the issues related to dis-
appearing slopes, further improving the model’s training performance. The layout of the
remaining component is shown in Figure 1. Assuming that the underlying mapping that a
CNN is expected to learn is denoted as H(x), yet another assignment F(x) = H(x)− x is
fitted using stacked nonlinear layers. This changes the format of the connection to F(x) + x.
The addition of this residue component to the system allows for improved visualization
of networks while extending the network’s depth to achieve improved training outcomes.
As a result, a residue component is integrated into the system to matriculate asymmetric
pattern translation. The residue components’ structure is demonstrated in Figure 2. Many
edge-maintaining filters, such as bilateral filters and guided filtering, have been proposed
by many researchers. However, these filters frequently overlook the precise impact of scale
illusion on the retention of picture edges. To tackle this challenge, Zhang and colleagues [9]
introduced the concept of a rolling guidance filter. This innovative approach incorporates a
multi-scale edge-preserving filter to safeguard the edges of an image, achieved by applying
edge-preserving filters at various scales. Additionally, each iteration of the filter uses the
image resulting from the previous filtering step as the guiding image. Owing to its im-
pressive ability to preserve image edges, the rolling guidance filter has gained widespread
adoption in the field of image fusion.

ResNet Models

 

Figure 1. ResNet Architecture.
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Figure 2. Residual Structure of ResNet Architecture.

Generative Adversarial Networks, often termed as GAN, is another extension of the
neural networks (NN) model. GAN has two parts, namely (i) Generator and (ii) Discrimi-
nator. The generator gains the ability to generate credible data, which the discriminator
uses as negative training examples. The discriminator gains the skill to differentiate fabri-
cated data from authentic data generated by the generator. It penalizes the generator for
creating unrealistic outcomes. At the start of the training, the generator generates notice-
ably artificial data, prompting the discriminator to rapidly discern its falseness. As the
training advances, the generator moves towards generating output that can deceive the
discriminator. Ultimately, with successful generator training, the discriminator’s ability
to differentiate between genuine and fake diminishes. It begins to classify fake data as
real, leading to a decline in its accuracy. The generator and discriminator function as NN.
The generator’s output directly links to the discriminator’s input. Utilizing backpropaga-
tion, the discriminator’s classification offers a signal used by the generator to adjust its
weights [10,11].

Compared to fusing other data types, image fusion and audio fusion pose greater
complexity. Image data fusion generally involves three levels: (i) pixel-level fusion, which
provides detailed image data that cannot be obtained at any other level; (ii) feature-level
fusion, serving as an intermediary for data caching and compression; and (iii) decision-
level fusion, the most advanced and intricate level, relying less on the image registration
process. A variety of techniques are commonly employed for image data fusion, including
recurrent strategies, Multiplicative Algorithms, PCA, High Postfilter, the Brovey transform
image fusion technique, the Color rotated technique, and the Discrete Wavelet Transfor-
mation. These techniques consider key image features such as color, corners, SIFT, SURF,
blobs, and edges. Table 1 delineates the operational principles of prominent image fu-
sion models based on machine learning, along with their advantages and disadvantages.
The subsequent section delves deeper into the existing literature on this topic.

Table 1. Overall Analysis of Machine Learning-based Image Fusion Models.

Method Advantages Disadvantages

Curvelet Transform (CVT) Multiscale and Multidirectional
representation Computational Complexity

Sparse representation Steel Learning curve
Sensitive to Noise

Dual-Tree Complex Wavelet Transform
(DTCWT) Improved Directional Selectivity Increased Computational Complexity

Reduces Boundary Effects Increased Memory Requirements
Complex-Valued Representation Limited Availability
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Table 1. Cont.

Method Advantages Disadvantages

The Laplacian Pyramid Transform (LP) Multiresolution Representation Aliasing
Energy Compaction Discrete Nature

Efficient Reconstruction Sensitivity to Image Content
Edge Preservation Parameter Selection

Low Pass Pyramid (RP) Multiresolution Representation Loss of High-Frequency Details
Efficient Compression Limited Directional Sensitivity

Progressive Reconstruction Sensitivity to Noise
Reduced Computational Complexity Fixed Decomposition Levels

Multi-Resolution Singular Value
Decomposition (MSVD) Multiresolution Representation Loss of Fine Details

Energy Concentration Computational Complexity
Compression Efficiency Block Artifacts

Transcoding Parameter Selection
FusionGAN Image Fusion Quality Training Data Requirements

Information Integration Computational Complexity
End-to-End Learning Mode Collapse and Quality Variability
Data Augmentation Interpretability and Control

3. Related Work

A thorough investigation of the various picture, video, and audio data fusion strategies
put forth by distinguished academics is provided to pinpoint their key contributions and
any current shortcomings. The information acquired will serve as a springboard for
developing this research further to close any gaps that may still exist.

3.1. Hybrid Image Fusion Models

B. Shahian Jahromi et al. [12] designed and developed an adaptable composite multi-
sensor fusion pipeline framework, especially for self-driving cars. Road segmentation,
obstacle recognition, and surveillance are just a few of the environment perception tasks that
this architecture accomplishes. The fusion framework incorporates an encoder–decoder-
based Fully Convolutional Neural Network (FCNx) and a standard Extended Kalman Filter
(EKF) nonlinear state estimator approach. Additionally, the fusion system optimizes the
camera, LiDAR, and radar sensors configured for each specific fusion strategy. The pri-
mary goal of this hybrid architecture is to create a cost effective, lightweight, adaptable,
and resilient fusion system that can withstand sensor failures. While preserving real-time
effectiveness on embedded processors for self-driving cars, the FCNx methodology used
in this framework improves road recognition accuracy beyond the benchmark models. D.
Jia et al. [13] introduced a hybrid Spatiotemporal Fusion (STF) method centered around a
deep learning model called Hybrid Deep Learning-based Spatiotemporal Fusion Model
(HDLSFM). This method aims to reliably fuse morphological and physiological data to
better understand the physical properties of the Earth’s surface. The proposed technique
combines regressive deep learning-based related radiometric normalization, deep learning-
based super resolution, and linear-based fusion to handle radiation discrepancies among
different satellite images. The HDLSFM framework demonstrates its ability to predict phe-
nological and land-cover changes compared to the benchmark Fit-FC method. Moreover,
HDLSFM stays resistant to emission differences between various images acquired from
various satellite data and periods between prediction and baseline dates, guaranteeing its
efficacy in merging data obtained from time series events.

Y. Wang et al. [14] have put forward an integrated fusion method that considers the
geographical and temporal attributes of sensory data related to roadside events. They
achieved this by employing Cmage, a notation based on images that encapsulate both
physical and social data from sensors, specifying the state of specific visual concepts
(e.g., “crowdedness”, “inhabitants parading”). The authors introduced a fusion model
that integrates spatial relationships among sensor data and community information, event
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signals from multiple modalities, Bayesian methods, and incomplete sensor data using a
Gaussian process based on the acquired Cmage representation. A. V. Malawade et al. [15]
have developed an architecture for targeted sensor fusion called HydraFusion that learns
to understand the driving context in use before combining the right combination of sensing
devices to increase resilience without reducing economy. To change both how and when
fusion is used, HydraFusion is the initial way to propose continuous switching within
an early fusion, late fusion, and variants in between. The authors demonstrate that Hy-
draFusion outperforms both initial and final fusion approaches by 13.66% and 14.54%,
respectively, using the industry-standard Nvidia Drive PX2 AV hardware platform without
raising computational complexity or energy usage. The authors suggest and assess both
fixed and deep-learning-based context detection techniques.

The advancement of these techniques signifies a transition from supervised to un-
supervised approaches, with a continued emphasis on generating precise logical maps.
Liu et al. [16] made use of a CNN model to distinguish between zones with and without
focus, creating an integrative judgment map to fuse the data. They used a personally
generated judgment map as reference data for supervised training, which is important to
note, aiming to improve classification accuracy. Du et al. [17] introduced an innovative
strategy for multi-focus image fusion using image segmentation, where decision map de-
tection involves segmenting the source images into focused and defocused regions. While
this fragmenting approach enhances the efficiency of the decision map’s boundary lines,
to some extent it might cause impairment in specifics. Guo et al. [18] suggested the use
of conditional GAN for multi-focus image fusion, but this method still requires labeled
images for supervised training of the network. Ma et al. [19] introduced an unsupervised
network that creates the fusion judgment map to overcome the above-mentioned challenge.
However, even with ground truth available for reference, these approaches may not pro-
duce an optimal decision map solely relying on the ANN’s capacity to acquire knowledge.
Therefore, they often require post-processing techniques like consistency verification or
guided filtering, which do not fully exploit the potential of NNs. Contrarily, our suggested
IFGAN is an unsupervised approach that eliminates the need for post-processing.

Multi-focus blending of image techniques now in use have advanced significantly;
however, additional progress is needed to improve their performance. Firstly, current
approaches often rely on manually created guidelines for fusion and intensity measuring,
which reduces their efficiency as it is challenging to account for all pertinent elements
in a single manual approach. Secondly, many methods treat multi-focus image fusion
as a classification problem focused on sharpness detection and decision map generation.
However, accurately classifying regions of focus and defocus that are close to the boundaries
remains a challenge for these methods. Thirdly, while creating decision maps, the majority
of deep learning-based techniques demand additional processing activities like coherence
tests, which adds complexity to the methods. Additionally, these methods often use
human decision map generation as the basis for network training, which further limits
their application.

3.2. Feature Extraction Models (Image Data)

P. Tiede et al. [20] have introduced an innovative method called Variational Image
Domain Analysis (VIDA) for universal image feature extraction in a broad spectrum of
VLBI image reconstructions. VIDA can be used for any picture reconstruction, regardless
of the order, in contrast to earlier methods. This strategy provides valuable insights into
effectively extracting essential picture attributes such as color and edges. The utilization of
CNN as a feature extraction tool for images is preferred since it is difficult to successfully
combine classifiers and imagery. The primary advantage of CNNs as feature extractors
lies in their ability to acquire a greater number of distinctive attributes in comparison
to alternative approaches. In their study, Govindaswamy et al. [21] investigated the use
of a CNN for predicting physician gaze. The authors specifically focused on comparing
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hand-crafted features with features extracted by a CNN, and they also examined the impact
of completely connected layers over the feature selection strategy of the model.

Similarly, Wang et al. [22] put forth a proposal to integrate the CNN and the ex-
treme learning machine (ELM) algorithm for the recognition of synthetic aperture radar
(SAR) images. The CNN model was employed as the feature extractor, leveraging its
remarkable ability to extract intricate features from images while maintaining invariance to
various forms of image deformation. On the other hand, the ELM served as the recognizer.
The experimental findings illustrated that this model efficiently alleviated the problem of
overfitting, thus accelerating the convergence of the network, leading to a reduction in the
total experimentation time. Liu et al. [23] utilized a dataset consisting of 61 COVID-19 and
27 general pneumonia CT images. A total of 34 quantitative textural traits were retrieved
and compared to the performance of the Ensemble-based bagged trees classification model
with four eminent classifiers: Linear Regression, Support Vector Machine, Decision Tree,
and k-Nearest Neighbors (KNN). The classification accuracy reached its peak at 94.16%
with the ensemble of bagged tree classifiers. Ozkaya et al. [24] employed the same dataset
as the previous study [6] and divided it into two subsets: Subset-1 (16 × 16) and Subset-2
(32 × 32). They utilized a convolutional neural network architecture to extract features
from the images and classified them using SVM. Subset-2 yielded an accuracy of 98.27%.
In the research conducted by Kassani et al. [25], a method was proposed for feature extrac-
tion using various pre-trained deep learning networks. For classification, they employed
Random Forest, XGBoost, Decision Tree, AdaBoost, LightGBM, and Bagging Classifiers.
Employing features collected with DenseNet121 and categorized with the Bagging tree
classifier, the best accuracy of 99% was attained.

While CNN-based edge detection models have shown significant advancements in
computer vision tasks, they are not without their drawbacks. Some of the limitations of
CNN-based edge detection models are described in the following paragraph. CNN models
heavily rely on large and diverse datasets for training. Without a sufficiently diverse
and representative dataset, the model may struggle to generalize well to different edge
detection scenarios. CNN models can be sensitive to noise, variations in lighting conditions,
and other distortions in the input image. These factors can lead to false positives or missed
edges, reducing the overall robustness of the model. CNNs typically operate on fixed-
size image patches or windows, which makes it challenging to handle scale variations in
edge detection. Detecting edges at different scales requires additional processing steps or
modifications to the network architecture. CNN models for edge detection often involve
deep architectures with numerous layers. This complexity can make training and inference
computationally expensive, requiring significant computational resources. CNNs focus
on local image patches and lack extensive contextual understanding. As a result, they
may struggle to accurately detect edges in complex scenes with occlusions or overlapping
objects. CNN-based edge detection models may be biased towards detecting specific types
of edges that are prevalent in the training dataset. Consequently, they may not perform
well in detecting unseen or rare edge types. CNN models are often considered black-box
models due to their complex architecture and large number of parameters. Interpreting
and explaining the decision-making process of CNN-based edge detection models can
be challenging. It is important to consider these drawbacks and potential limitations
when applying CNN-based edge detection models in practical applications. This research
suggests a general data fusion engine to combine various data formats as well as cutting-
edge techniques for gathering the key elements of audio and visual data. The work is
motivated by the holes that have been discovered.

4. Proposed Study
4.1. Proposed Framework

This segment provides a detailed explanation of the design and execution aspects of
the suggested models. In Section 4.2, the focus is on implementing the edge and color
detection models, while Section 4.3 expands on the comprehensive design and execution of
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the proposed IFGAN model. The proposed framework’s overall functionality is depicted in
Figure 3. At the outset, a variety of sensors gather raw sensory data, which is subsequently
subjected to preprocessing to rectify issues like extraneous data, data gaps, duplications,
anomalies, and interference. The information is then categorized based on the file’s type
as well as the information type. The designed attribute extraction approach is then used
to gather the necessary characteristics. This study has organized the fusion strategies
into two distinct stages. In the initial stage, following the extraction of features from
various individual data formats, the individual data sources are initially combined to
enhance their accuracy. Subsequently, in the second phase, a decision-level fusion process
is executed. Before initiating the decision-level fusion, the modalities originating from
different data formats are sequentially ordered, with each modality required to meet the
proposed hypothesis before being integrated. Furthermore, a precise context is constructed
using the fused data, from which immediate decision rules are derived for autonomous
vehicles to make suitable decisions [26]. As discussed earlier, the major emphasis of this
study is focusing on enhancing the previously proposed feature extraction and hybrid
image fusion model [6]. Further modifications of the specified models help to handle all
formats of image data, specifically 3D point cloud data, efficiently for advanced processing.
Since most of the sensory data collected from advanced sensors are in the 3D point cloud
data format, contributions achieved in this work play a vital role in optimizing the enhanced
feature extraction models, along with the image fusion model, to efficiently fuse 3D point
cloud data.

 

Figure 3. Proposed Framework.

4.2. Proposed Feature Extraction Models

To enable efficient fusion, the study intends to extract four crucial aspects from the
image data: color, edge, height, and width. For this purpose, two different models—one for
recognizing edges and the other for identifying the color of the objects—have been devised.
These models offer creative methods for precisely and successfully extracting the relevant
image information.

4.2.1. Proposed Edge Detection Method

The research introduces a novel, tailored edge detection model based on the VGG-16
CNN. Along with the model, the research has proposed kernel functions for activating
the model for detecting an edge in an image. The proposed VGG-16 model has five
layers, of which one is the convolutional block, which contains four layers to perform
various activities related to edge detection. The different colors in the arrow represent
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different activities assigned to the layers of the edge detection model. The initial red arrow
signifies the inaugural layer responsible for translating image details into their respective
grey-level representations. Subsequently, the green arrow, denoted by its green color,
embodies the second layer, overseeing the filtering process. Moving forward, the blue
and yellow arrows symbolize the third and fourth layers, dedicated to executing the edge
detection task through the prescribed kernel function. Finally, the concluding brown-
colored layer consolidates the outcomes, encapsulating the detected edge information
gleaned from the input images. The initial step involves providing the 3D image as input
to the model. Within the first layer, a Kalman Filter is utilized to normalize the image data.
The normalized data is then passed on to the next subsequent layer, which incorporates
the proposed kernel function to generate the edge response maps. The generated maps are
up-sampled to the original image structure using bi-linear interpolation methods in the
third layer. Contextual vertices are derived by performing a K-channel 1 × 1 convolution on
the fourth layer, with each channel representing a binary edge map for a specific category.
Figure 4 illustrates the mechanism behind the suggested edge identification architect.
The mechanism behind the edge detection and the identification of semantic edges are
explained in the paragraph below.

 

Figure 4. Proposed Edge Detection Model.

Our novel network adeptly integrates fine details from the lower layers with semantic
information from the upper layers. The experimental results substantiate our approach’s
ability to address conflicts stemming from various deep supervision methods. Unlike
CASENet, our semantic classification at Layer-4 can be optimized without encountering any
divergence issues. The binary edges generated by the lower layers aid Layer-3 in capturing
fine details, ultimately enhancing the localization quality of the fused semantic edges.
We use single-pixel wide logical borders to regulate Layers 1 through 4 and substantial
conceptual limits to oversee Layer-4 and the final fused edges. If a pixel fits inside the
conceptual parameters of any class, it is considered an edge. By calculating the variance
amongst an image pixel and its surrounding pixels in the ground-truth semantic division,
thick semantic borders are generated, following a similar approach to CASENet [27].
A tagged pixel, namely (k), is clarified as the class limit (k) if a minimum of one neighbor is
present with a label k

′
(where k

′ ̸= k).
In our proposed approach, all the layer’s attributes are denoted as Z. Consider an input

image that features a representation of a binary edge map, say X = {xi : i = 1, 2, . . . |I|}.
The image segmentation is performed using the following Equation (1).
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Lm
segment(Qmax) = −∑

iϵI
[γ.(1 − yi).log10(1 − D(B(n)

i .Q)) + (1 − γ).yi.log10(1 − D(B(n)
i ; Q)))],

(n = 1, . . . 4)
(1)

where we have γ = |Y+|/|Y| and 1 − γ = |Y−|/|Y|.Y+ and Y− represent edge and non-
edge ground-truth label sets. Let E(m) represent the expected activation value at pixel (i)
for the mth side. The activation value produced by the model at pixel (i) is denoted as D(.),
where D(.) corresponds to the standard sigmoid function.

In the next operation from the segmented images, the edges of the images and their
corresponding maps are identified and generated using Equation (2)

Lm
edge(Qmax) = −∑

k
∑
iϵI
[γ.(1 − yk

i ).log10(1 − D(A f
k,i; Q)) + (1 − γ).yk

i .log10(1 − D(A( f )
k,i ; Q)))],

(k = 1, . . . 4)
(2)

where Ak,i is the activation value of the kth category of pixel (i). If the output of this
function is equal to or greater than one, the corresponding pixel signifies an edge within a
segmented image. Now, the map that represents the skeleton of edges associated with an
image is generated using Equation (3). This is obtained by fusing Equations (1) and (2).
The map is resized to match the dimensions of the original image via the use of the bilateral
interpolation method. In a later stage, the resized map is compared with the original
image to cross check whether the edges determined coincide with the original image.
The difference indicates the accuracy of the edge detected.

Lmap(Qmax) = Lsegment(Q) + Ledge(Q) (3)

In the next stage of the study, the semantic information of the edges has to be deter-
mined. This is performed using the following proposed mathematical functions. Each
attribute of an edge is assigned a class label of the image, say Yi = ∑k

i y1, y2 . . . yk. The de-
tected edge is compared with the identified edge classes and, accordingly, the semantic
information of the edge is determined. Apart from identifying the edge of an image, this
strategy estimates the importance and meaning of the identified edge. The following
Equations help to achieve this task. In the first task, the class label of the edge is iden-
tified using Equation (4). Figure 5 depicts the flow of the proposed edge detection and
validation model.

L
′
class

m
(Qmax) = −∑

k
∑
iϵI
[(1 − yk

i ).log10(1 − D(Ak,i; Q)) + xk
i .log10(1 − D(Ak,i; Q)))], (4)

In the next task, the actual meaning of the identified class label is estimated using
Equation (5)

L
′
position

m
(Qmax) = −∑

k
∑
iϵI
[γ.(1 − yk

i ).log(1 − D(A f
k,i

f
; Q)) + (1 − γ).xk

i .log10(1 − D(A( f )
k,i ; Q)))], (5)

The actual semantic information is obtained by merging the identified class infor-
mation related to the label with its position in the image. Equation (6) illustrates the
above-mentioned operation

L
′
(Qmax) = − ∑

m=1..4
L
′(m)
class(Q) + L

′
pos(Q) (6)
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4.2.2. Proposed Color Detection Model

Figure 6 exemplifies how the suggested color-detecting approach works in practice.
The focus is on a pivot pixel and the values of nearby pixels are contrasted to the gradient
value, which is calculated using Equation (7). If the neighboring pixel value of the pivot
element is equal to or greater than the gradient, the source value of the pixel is changed to
one. Otherwise, if it is less than the gradient, the initial pixel info is changed to a value of 0.
The pivot pixel’s true color value is provided by the ensuing digital bit sequences acquired
from the submatrix. It is worth noting that the majority of RGB color values fall within the
numeric range of 0–255.

T = (K(m, n + 1) + K(m + 1, n) + K(m, n − 1) + K(m − 1, n) + K(m + 1, n + 1)+

K(m + 1, n − 1) + K(m − 1, n + 1) + K(m − 1, n − 1)− 8 ∗ K(m, n))/9
(7)

 

Figure 5. Flow of proposed Edge Detection and Evaluation Model.
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Figure 6. Proposed Color Estimation Technique.

The proposed edge detection approach is employed to determine the dimensions of
the source image. The height of the picture can be determined by observing the starting
and ending vertices which intersect at the image matrix column. The width of the picture
can be estimated from the start and end vertex information, representing image matrices’
row information.

4.3. Proposed IFGAN Image Fusion Model

This section provides a summary of the initial efforts undertaken in our prior research,
which served as the inspiration and driving force behind the advancement of the proposed



J. Sens. Actuator Netw. 2024, 13, 15 13 of 27

IFGAN model’s development. The IFGAN model introduced in this paper integrates
feature extraction and image fusion elements from previous studies [6]. In the forthcoming
sections, we will underscore the significant concepts employed in this study to enhance the
overall effectiveness of the IFGAN model. Figure 7 illustrates the image fusion model’s
process employed in our previous research [6]. The first step involves normalizing the
acquired 2D sentinel model using the weight mean filter method, which transforms two-
dimensional pixel information into a three-dimensional representation. The 2D image is
then further transformed into a 3D representation using sophisticated vector translations
and matrix transforms. This study utilizes the QR() breakdown strategy to obtain the
inverted matrix value of the multidimensional image data representing the actual source
3D image. The spectral strength of each wavelength is eliminated from the 2D sentinel
and 3D pictures before starting the fusing process. The weighted mean filter method
is used to find the average wavelength of intensity for both pictures, which serves as a
global optimization operator to filter images while minimizing the edge blur. This operator
swaps out the present pixel in the current frame with the weighted median of nearby
pixels. As discussed above, key matrix and vector computations including projection,
transformation, and transposition are used in the proposed hybrid fusion paradigm.

F̂ = Rnew =
R

R + G + B
× PAN(1)× PBk (E)

Gnew =
G

R + G + B
× PAN(2)× PBk (E)

Bnew =
B

R + G + B
× PAN(3)× PBk (E)

(8)

 

Figure 7. Proposed Hybrid Fusion Framework [6].

Figure 8 demonstrates the suggested enhanced image fusion model’s overall archi-
tecture. The previously suggested hybrid image fusion model [6] must be coupled with
(ML) models to handle huge quantities of data collected from different sensors to make
insightful conclusions. To achieve this objective, this extended work proposes a versatile
GAN model, namely Image Fusion GAN (IFGAN). The model employs Equation (8) in
conjunction with extended calculations as a kernel function to fuse the input image frames,
trains the model using the fused results, and subsequently tests it to improve the precision
of the acquired data. Ref. [6] discusses the detailed derivation of Equation (8). The IFGAN
model is structured with five distinct layers. The initial layer is dedicated solely to the
extraction of features. Subsequently, the second layer is geared towards the integration
of standard 2D or 3D images using the previously proposed Hybrid Image Fusion model.
Moving on, the third layer serves a dual purpose, either converting the fused 2D or 3D
images into 3D point cloud data or concentrating on the fusion of 3D point cloud sensory
data. Following this, the fourth layer focuses on discriminator tasks, while the fifth layer
is responsible for executing the ultimate fusion tasks. The subsequent section elaborates
on the specific final fusion activities carried out within Layer 5 of the IFGAN model. The
primary objective of the extended approach is to enhance fusion accuracy to the point
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where there is a negligible distinction between the fused and source images. The proposed
IFGAN model has two discriminators and one generator block. In the generator block, we
design two multiscale attention blocks: one for the first image frame, and the other for the
next successive image frame. The procedure repeats until we encounter an end-of-frame
status. The multiscale attention blocks create image maps using the extracted image fea-
tures. Further, they also help to obtain the foreground and background information of the
collected image frames. Information collected from the multiscale attention blocks is fused
in the Fusion Network block using the proposed kernel functions. The study includes
two discriminators, discriminator_mage_frame_1 and discriminator_mage_frame_n, to cal-
culate the image difference between the source image frames and the fused image frames.
The difference measures the accuracy of the fused images.

 

Figure 8. Proposed IFGAN Image Fusion Model.

4.3.1. Architect of the Proposed Multi-Scale Attention Network and the Role of the New
Innovative Loss Function

The objective of the Multi-scale attention network is to calculate an attention map
that aids the generator and discriminators in emphasizing discriminative regions. Figure 9
illustrates the architecture of the multi-scale attention network. This network is integrated
with the CNN model to extract features from the input images, with the last two activa-
tion maps selected as the deep features. Furthermore, as the source image often contains
deformations of large objects, relying on a single-scale feature is insufficient for capturing
all necessary spatial information. To address this, we introduce a multi-scale mechanism
that captures features at various scales by using different kernel sizes and performing a
generic average blending of features acquired at different stages. Additionally, this study
does not solely emphasize the fusion of image data but also places significant emphasis
on the fusion of alphanumeric, audio, and video data, individually. As a result, there is a
need for a versatile model capable of accommodating and scaling all the diverse features
extracted from various sources within autonomous vehicles. However, this causes a lot
of distinct characteristics to appear after each grouping procedure, requiring a method to
carefully emphasize significant traits while ignoring insignificant characteristics. Therefore,
we encourage the network to discern how to adjust the weight of each feature representing
different data modalities according to its extensive knowledge. The global information is
obtained via a global receptive field after the global average pooling operation. The multi-
scale attention network is trained using Equation (9), where LWk

s is the weight for the kth

feature of f k
s of the sth pooling scale.

LWk
s = α(

N
xk

∗ wi ∗ ∑
i,j

f k
s (i, j)) (9)



J. Sens. Actuator Netw. 2024, 13, 15 15 of 27

Let ∑i,j f k
s (i, j) represent the results of the operation to pool worldwide averages on

feature map f k
s . Subsequently, the weight is computed using the sigmoid function (α) and a

layer that is fully connected LWk
s . The dimensions of w1 are 1 ∗ 1 ∗ k, ( N

xk
) which indicates

the mean value calculated across various modalities based on the feature that represents
each distinct modality. By capturing the weight LWk

s , we initially use an amplification
operation Hg(up) on the multi-scale features to ensure their size matches that of the input.
Following this, a channel-wise amplification is performed among LWk

s and the features
from an increased sample size, emphasizing highly prioritized attributes while disregarding
the least prioritized. In light of this, we determine the value of the reweighted feature in
each spatial location within a layer, considering the channel dimension, using Equation (10)

Lsum =
N
xk

∗
k

∑
1

Wk
s ∗ Hg(up)( f k

s ) (10)

 

Figure 9. Mechanism behind proposed Muti-Scale Attention Network.

Through this process, the attention maps Fs for each scale feature are computed using
a normalization operation. To capture comprehensive spatial attention, the attention maps
from different scales are concatenated along the channel dimension. Subsequently, we
apply the max selection strategy to prioritize discriminative spatial locations during the
attention mapping operation, resulting in the calculation of the final attention map.

L f unc =
γ

hw

N

∑
i=1

N

∑
j=1

(I f(i,j) − Is(i,j))−
N

∑
i=1

N

∑
j=1

(D f(i,j) − Ds(i,j)) (11)

Furthermore, in this study, a novel hybrid loss function is introduced to assess the
information gain achieved by the IFGAN fusion method represented in Equation (11).
Here, N denotes the total pixel count, I f(i,j) represents the specific pixel value of the fused
image, and Is(i,j) denotes the individual pixel value of the source image in the first part
of the equation. In the second part, D f(i,j) represents the distance metric for the pixel
value in the fused image, while Ds(i,j) signifies the distance metric for the pixel value in
the source image. Further, (γ) represents an adjustment parameter; through many trials,
the adjustment parameter is assigned a value of 0.65, and (h), and (w) denote the height
and width of the image, respectively. This unique loss function combines elements from
both FusionGAN and WGAN fusion models. FusionGAN employs the Jensen–Shannon
convergence method, while WGAN utilizes the Wasserstein distance method to estimate the
loss in fusion quality. The comprehensive hybrid loss function, as presented in Equation (11),
comprises two distinct components. The initial segment of the equation pertains to the
novel FusionGAN loss function, which measures the difference between the fused image’s
pixel values and those of the source images. On the other hand, the second component
introduces a fresh approach, the newly proposed Jensen–Shannon convergence method,
which gauges the divergence between the pixels of the fused image and those of the source
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images. In the ideal scenario, where image fusion is executed successfully, both components
should yield a difference of zero. Consequently, under these conditions, a difference of zero
signifies that the source images have been effectively and accurately fused.

4.3.2. Architecture of the Discriminators

The proposed architecture of the Discriminators is illustrated in Figure 8. The primary
discriminator seeks to identify the merged outcome from the initial picture frame, whereas
the other discriminator aims to separate the combined outcomes obtained from its subse-
quent image frame. Although both discriminators possess the same network architecture,
they have separate parameters. The discriminators should pay closer attention to the data
contained in their attention zones during training. This is accomplished by introducing
a multi-scale attention mechanism that directs the discriminators to concentrate on spe-
cific regions under evaluation as opposed to the entire picture fed as input. To create an
attention map, the source image is specifically sent via the multi-scale attention network.
This attention map is then concatenated with the input image along the channel dimension,
aiding the discriminator in focusing on the most discriminative contents.

To improve the efficacy of the approach, the Wasserstein Generative Adversarial
Network (WGAN) is employed to compute the Wasserstein difference between the original
photos and the combined image. Unlike traditional GANs used for binary classification,
WGAN treats the difference calculation as a regression problem and removes the logarithm
function and the last sigmoid layer in the discriminator. The discriminator structure is
presented in Table 2.

Table 2. Discriminator Network Architect, I—Input, O—Output, KS—Kernel Size, SS—Stride Size,
PS—Padding Size.

Layer Discriminator Network
I O KS SS PS

L1 Conv 1 64 4 1 0 LeakyReLU
L2 Conv 64 64 4 2 0 LeakyReLU
L3 Conv 64 128 4 1 0 LeakyReLU
L4 Conv 128 128 4 2 0 LeakyReLU
L5 Conv 128 256 4 1 0 LeakyReLU
L6 Conv 256 256 4 2 0 LeakyReLU

5. Experimental Analysis
5.1. Brief Overview about the Datasets

The study uses five major datasets, namely NuScenes, KITTI, TNO, the Bristol Eden
Project Multi-Sensor Dataset (BEPM dataset), and the OSU Color Thermal dataset, to eval-
uate the proposed models. The NuScenes dataset [28] is a large-scale dataset specifically
designed for autonomous driving research. It provides a comprehensive collection of sensor
data, including LiDAR and camera images, along with accurate annotations for a wide
range of driving scenarios. The dataset includes information gathered from several sites,
taking into account various climatic conditions and different hours of the day. The KITTI
dataset [29] is a popular benchmark dataset for computer vision and autonomous driving
research. It stands for “Karlsruhe Institute of Technology and Toyota Technological Insti-
tute,” the institutions responsible for collecting and curating the dataset. The KITTI dataset
focuses on various aspects of autonomous driving, including object detection, tracking, 3D
scene understanding, and visual odometry. The dataset contains a diverse set of sensor
data captured from a moving vehicle, including grayscale and color camera images, LiDAR
point clouds, and GPS/IMU measurements. It covers different driving scenarios, such as
urban environments, highways, and rural areas, and includes challenging conditions like
occlusions, varying lighting conditions, and weather effects. Researchers and developers
commonly use the KITTI dataset to train and evaluate algorithms for tasks like object detec-
tion, tracking, and 3D reconstruction in the context of autonomous driving. Its availability
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and established benchmark status make it a valuable resource for advancing computer
vision and autonomous driving research. The TNO Image Fusion Dataset [30] comprises
nighttime imagery captured in multispectral form, focusing on various military scenarios.
These images are recorded using different multiband camera systems and are carefully
aligned. The BEPM dataset [31] consists of two videos that feature a person dressed in
camouflage walking through dense foliage. These videos include both infrared and visible
footage and were generously supplied by the Rochester Institute of Technology (RIT) in the
United States. On the other hand, the OSU dataset [32] contains a sequence of grayscale
infrared images alongside corresponding colorful visible images.

5.2. Overall Analysis

Table 3 provides an overview of the software and tools utilized for the implementation
and evaluation of the proposed models. The evaluation of the proposed models involved
various categories of comparisons and Table 4 provides the primary criteria used to evaluate
the effectiveness of the suggested image fusion models as well as other popular models.
For training the proposed IFGAN model, 32 images from the KITTI dataset were initially
selected. This dataset on its own lacked the necessary volume to effectively train a resilient
model. To overcome this limitation related to dataset size, we augmented the dataset by
applying a cropping operation to each image with a stride of 15, resulting in sub-images
of size 240 × 240. This approach yielded a total of 25,200 images for training. During the
training process of IFGAN, the discriminator was trained until optimality. A well-trained
discriminator contributes to higher-quality gradients that are utilized to train the generator,
ultimately enhancing the overall performance of the model.

Table 3. Various tools used for evaluation.

S.No Tools Version Description

1 Python 3.10.4 Development of the models
2 MATLAB R2021a Developing applications
3 Mogo DB 5.0 Database
4 Linux 5.4. 0 –26 Operating System
5 Weka 3.0 (GPLv3) Preprocessing

6 Dataset nuScenes, KITTI,
TNO, OSU, BEPM To evaluate the proposed image fusion models.

To ensure a comprehensive evaluation of the fused results, a combination of qualitative
and quantitative methods was employed. The qualitative evaluation methods rely on
human visual perception to evaluate the blended image’s sharpness, focusing on factors
such as goal comprehensiveness, average variance, and specific statistics. Conversely,
the quantitative assessment procedures provide an objective assessment of image quality.
To comprehensively assess the effectiveness of our approach, multiple metrics were assessed
for all the fusion methods. Four representative metrics, namely mutual information (MI),
entropy (EN), standard deviation (SD), and peak signal-to-noise ratio (PSNR), were selected.
These metrics collectively provide a comprehensive assessment of the performance of
our method.
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Table 4. Key metrics used in the research to evaluate image fusion models.

Metric Name Purpose

Accuracy (Acc) To estimate accuracy of proposed models
Efficiency (Eff) To assess the models’ effectiveness

Standard Deviation (SD) To calculate the difference
Average Gradient (AG) To convey minute details, variation in contrast and texture, and clarity of image
Spatial Frequency (SF) To gauge the image’s overall degree of activity

Peak Signal-to-Noise Ratio (PSNR) To calculate the perceived difference between the starting picture and the fused image
Correlation Coefficient (CC) To determine whether the original and the combined image are similar

Mutual Information (MI) To measure the dependence between two random variables. It quantifies the amount of
information that one random variable contains about another random variable

ENtropy (EN) To measure uncertainty
F-measure To estimate the accuracy of the detected object

5.2.1. Qualitative Analysis

The proposed IFGAN image fusion model performance was evaluated under four
categories, namely (i) without_attn_loss, (ii) Without_attn, (iii) Without_multiscale, and
(iv) our full-fledged model, which includes all the categories. According to the results,
our suggested method retains additional data from the source photos than the combined
images. Moreover, the proposed approach preserves both foreground and background
image information. Specifically, the results obtained using the Without_mutiscale option
to fuse the images produce blurred the fused images, highlighting the importance of
the proposed multi-scale mechanism of the IFGAN model. Nevertheless, there is an
existing drawback in the method where attention regions are not adequately considered.
For instance, the image contrast in the compared results is lower compared to our fused
results. Contrarily, our approach maintains the general coherence of the objects while
simultaneously enhancing the image’s dazzling areas. This observation demonstrates the
performance of the multi-scale attention mechanism present in our discriminators. Figure 10
depicts the outcome of the merged images produced by integrating the proposed Multi-
Scale Attention concepts. Sample images were taken from the OSU dataset to evaluate
the same.

 

Figure 10. Qualitative performance of proposed Muti-Scale Attention Network.

5.2.2. Quantitative Analysis

We have also conducted a quantitative comparison between our method and four
ablation experiments. The results of this analysis can be seen in Figure 11. In terms of eval-
uation metrics, our method consistently outperforms the fusion models Without_att_loss,
Without_att, and Without_multiscale, as indicated by the higher average values. This
illustrates that our approach not only performs admirably in qualitative analysis but also
produces superior outcomes in quantitative analysis. Hence, the qualitative and quanti-
tative analyses of the ablation experiments confirm the importance of each component in
our method, including the attention loss function, multi-scale operation, and multi-scale
attention mechanism.
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Figure 11. Quantitative performance of IFGAN Fusion model.

Qualitative Analysis with BEPM and KITTI Datasets

Our study further compared the performance of various image fusion models based on
the four main metrics, namely (i) MI, (ii) EN, (iii) SDV, and (iv) PSNR, using sample images
obtained from the BEPM and KITT datasets. Figure 12 depicts the superior performance
of our method in terms of EN and SD, with only a slight deviation from the MSVD
method in terms of MI. The quantitative analysis displayed in Figure 12 showcases our
method’s enhanced visual effects, primarily attributed to its highest SD value. Moreover,
the results exhibited in Figure 12 demonstrate our method’s capability to preserve a greater
amount of information from the selected images. Additionally, Figure 13 illustrates our
method’s improved performance in MI, EN, SD, and PSNR. Based on the observations,
the proposed IFGAN model outperforms the other studies in terms of producing more
accurate fused images.

( 
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(c)  Standard Deviation 
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Figure 12. Performance of the proposed IFGAN Image Fusion Model with BEPM dataset.
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Figure 13. Performance of the proposed IFGAN Image Fusion Model with KITTI dataset.

5.2.3. Performance of IFGAN Model with Other Related Studies

Furthermore, we conducted a comparative analysis between the proposed IFGAN
model and the previously introduced Hybrid image fusion model [6], analyzing their
findings in conjunction with those of other pertinent investigations such as Barrero et al. [33]
and Talal et al. [34], which have employed hybrid methods to combine image data. Accuracy
and efficiency metrics were used to evaluate the performance of the models. The accuracy
metric is estimated with the help of Equation (12). Similarly, we evaluated the effectiveness
of the fusion models by quantifying the CPU time necessary for image fusion. This
assessment was performed for the IFGAN model, the initially proposed hybrid image fusion
model [6], as well as for numerous other popular image fusion models. The outcomes,
depicted in Figures 14 and 15, clearly demonstrate that the proposed IFGAN model
achieves higher accuracy and efficiency compared to the previously proposed hybrid
image fusion model [6] and other popular fusion models. The proposed IFGAN model
achieves accuracy levels exceeding 98% when fusing images with low resolution and clarity.
Moreover, the IFGAN model exhibits faster execution times on the CPU for image fusion
compared to the other referenced fusion models.
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Figure 14. Accuracy comparison with other models [33,34].



J. Sens. Actuator Netw. 2024, 13, 15 21 of 27

 

 

  

0 0.5 1 1.5 2 2.5 3 3.5 4

HIS

Multiplicative

Subtractive

Wavelength

Brovey

Proposed Hybrid Image Fusion Model

IFGAN

Time taken for fusion (sec)

F
u

si
o

n
 M

o
d

e
ls

Effciency of different fusion models

Figure 15. Efficiency Comparison.

5.2.4. Performance Comparison of IFGAN with Other Image Fusion Models

In the subsequent evaluation, we assessed the efficacy of several image fusion mod-
els in comparison to the IFGAN fusion model we put forth. Images were obtained
from two popular datasets, namely the BEPM and OSU datasets. The fused results were ob-
tained using CVT [35], DTCWT [36], LP [37], RP [38], MSVD [39], FusionGAN [40], and our
proposed IFGAN. Based on the observations made in Figure 16, it becomes evident that our
approach excels at preserving comprehensive details and distinctive characteristics derived
from the viewable picture. Consequently, our analysis exhibits an unobscured backdrop
enriched with textural details, as exemplified by the foliage details in the initial pair of
two fused results and the facts about the campus’s terrain in the final two fused outcomes.
Furthermore, our approach effectively retains the thermal radiation while enhancing the
visibility of targets present in the sample images, as illustrated by the improved depiction
of the individual in the images. These findings serve as evidence of the advantages offered
by our IFGAN, as it succeeds in retaining a greater amount of destination details and
capturing the common backdrop information and attributes originating from the original
pictures. From Figure 16, it is evident that the proposed IFGAN model has outperformed
the performance of other referred models in terms of both accuracy and efficiency.

         

         

         

         
 

BEPM 

Dataset 

KITTI 

Dataset 

MSVD RP LP DTCV CVT IFGAN Fusion 

GAN 

Figure 16. Performance of the proposed IFGAN Image Fusion Model.

Using well-known measures like AG, SF, and CC (refer Table 4), the results of the sug-
gested and referenced picture fusion methods were assessed. For evaluation, three samples
of combined images obtained from various image fusion models were chosen. Metrics
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that were not used in the initial evaluation were employed to assess the performance of
various image fusion models. The IFGAN model showcased superior performance when
compared to other widely-used fusion models, as well as the hybrid image fusion model
introduced in our previous research, as shown in Table 5. The visual manifestation of
these parameters is observed in Figure 17. The time taken by each method was calculated
to assess the computational challenge of the strategy. Table 6 presents the average time
consumption across five datasets. Our method and FusionGAN were executed on a GPU,
while the other comparative methods were executed on a CPU. From the results portrayed
in Table 6, it is abundantly obvious that, in terms of time efficiency, the suggested IFGAN
model performs better than any other image fusion model.

Accuracy =
Pixelintensity(Original)

Pixelintensity(Fused)
(12)

Original Images
Proposed Fusion 

Model
PCA WMFGS GSGS

Classification accuracy of different models

Figure 17. Classification accuracy of different models.

Table 5. Overall performance of proposed IFGAN image fusion model with other popular image
fusion models.

Images Model AG SF CC

1

GS 10.4444 72.0375 0.7908
HIS 10.5403 147.8691 0.8078

Subtractive 10.4150 143.5344 0.8107
Proposed Hybrid Image Fusion (version 1.0) [6] 10.2148 135.6382 0.9472

Proposed IFGAN (version 2.0) 11.2148 155.6382 0.9872

2

GS 10.6105 79.5329 0.7040
HIS 10.7290 187.7829 0.7077

Subtractive 11.4368 188.6462 0.7360
Proposed Hybrid Image Fusion (version 1.0) [6] 11.4976 180.5643 0.8235

Proposed IFGAN (version 2.0) 12.4976 190.5643 0.9235

3

GS 11.5363 141.9687 0.8434
HIS 11.8526 142.6416 0.8313

Subtractive 10.9434 130.6161 0.8344
Proposed Hybrid Image Fusion (version 1.0) [6] 11.2145 123.6213 0.6543

Proposed IFGAN (version 2.0) 12.3145 143.6213 0.9543
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Table 6. Runtime Comparison of IFGAN with other Fusion Models.

Fusion Model nuScenes KITTI BEPM TNO OSU

CVT 0.7862 0.6742 0.6814 0.7267 0.8567
DTCWT 0.1465 0.0954 0.0925 0.1497 0.1695

LP 0.1336 0.1528 0.1624 0.1425 0.1523
RP 0.1566 0.1738 0.1956 0.1865 0.1975

MSVD 0.1102 0.1321 0.0968 0.1745 0.1945
FusionGAN 0.2378 0.3216 0.2487 0.3654 0.3854

IFGAN 0.0057 0.0072 0.0087 0.0064 0.0092

Similarly, we conducted a quantitative performance analysis, comparing our IFGAN
model to the AttentionGAN model introduced by [41], using a subset of 20 images collected
from the OSU dataset. We assessed their performance based on four metrics: Mutual
Information (MI), Entropy (EN), Standard Deviation (SD), and Peak signal-to-noise ratio
(PSNR). The results of our investigation indicate that the IFGAN model outperforms the
AttentionGAN model in terms of image fusion quality. The graphical representation of
these results can be seen in Figure 18.

a) Mutual Information b) Entropy

c) Standard Deviation d) Peak-Signal-To-Noise-Ratio

Figure 18. Performance of the proposed IFGAN with AttentionGAN [41].

5.2.5. Performance of Proposed Edge Detection Model

To assess the effectiveness of the novel edge detection methodology that has been
proposed, a comprehensive set of experiments was conducted. Initially, four sample images
were selected from the nuScenes dataset and various widely used edge detection models
were applied to detect the edges of specific objects, such as cars, people, and trees. The accu-
racy and efficiency of the edge detection models were evaluated using the F-measure score,
which quantifies the precision of edge estimation. The FScore values for the selected images
obtained from different edge detection models are presented in Table 7. The suggested
edge identification approach was also contrasted with other widely employed models
that integrate important characteristics of KFA (Kalman Filtering) and Sobel and Prewitt.
To assess accuracy, the root mean square error (RMSE) information of the pictures generated
after edge identification was estimated. Higher picture restoration efficiency is demon-
strated by reduced RMSE scores. The proposed edge detection model exhibited superior
accuracy when compared to the previously suggested edge detection model [6] and various
well-known edge detection models. The RMSE values, computed using Equation (13), are
provided in Table 8 for various images. The results substantiate the claimed edge detection



J. Sens. Actuator Netw. 2024, 13, 15 24 of 27

model achieved lower RMSE values, indicating enhanced precision in image reconstruc-
tion compared to other prevalent edge identification techniques. Overall, these findings
highlight the superior performance of the proposed approach in generating high-quality
images compared to the previously proposed edge detection model [6] and other prevalent
edge identification techniques.

RMSE =

√√√√ 1
MN

N−1

∑
r=0

[E(r, c)− o(r, c)]2 (13)

To assess the classification accuracy of fused images generated by different fusion
models (PCA, WMFGS, GS, and the proposed approach), advanced machine learning mod-
els were employed. Figure 17 provides a visual representation of the distinct classifications
obtained. To identify the combined pictures acquired by executing the four fusion models,
an advanced CNN model utilizing the Random Forest (RF) classification technique was
used. The CNN model has three unique layers to perform three vital tasks, namely data
pre-processing, image fusion, and categorization. The suggested edge detection approach
and hybrid image fusion architect are transformed into appropriate kernel functions, which
are subsequently executed within the first two levels of the CNN model. The Random
Forest classification model, known for its effectiveness in handling alphanumeric data,
was chosen for evaluation purposes. A sample dataset of one thousand fused images
was used, considering seven hundred samples for training and three hundred samples
reserved for testing the RF model. The following procedures were taken to construct the
CNN model’s infrastructure: gathering information, and then preliminary processing of
data. Subsequently, the RF classification model was implemented using Python packages
(sklearn and NumPy) for modeling and evaluating the fused results obtained from the
above-specified image fusion models.

Table 7. F scores of various Edge Detecting Models.

Method Img_1 Img_2 Img_3 Img_4 Img_5

Car Person Tree Car Person Tree Car Person Tree Car Person Tree Car Person Tree

CASENet 74.5 59.7 73 67 78 67 76 69 82 56 72 80 65 81 59
SEAL 79 65.8 76 68.5 78.6 66.2 75 68 79 58.5 73.5 79 64 79 58

STEAL 78.2 66 74.2 69 77 67.8 72.3 67.4 78.2 57.4 74 78.5 63.2 78 61
Gated-SCNN 79 65.4 73 65 75.2 68 74 65 77 59 72.5 77 65 76 62

DDS-R 79.4 70.2 68.4 64.7 76 68.5 78 64.3 76.2 58.5 75 79.5 67 77 63.4
DFF 79.8 75.3 72 68 8.5 69 78 66.5 75 52.3 74 81 65 78.5 64

Proposed 82 80 78.3 73 83 74 82 72 84 62 77 84 69 84 70

Table 8. RMSE scores of different edge detection models.

Model Name Image Info RMSE Value

Proposed IFGAN Model Image 1 0.0934
Proposed IFGAN Model Image 2 0.0828

Proposed Hybrid Image Fusion Model [6] Image 1 0.1330
Proposed Hybrid Image Fusion Model [6] Image 2 0.1295

KFA Image 1 0.3895
KFA Image 2 0.2522

Sobel–Prewitt Image 1 0.4831
Sobel–Prewitt Image 2 0.3187

The correctness of categorization is evaluated using a confusion matrix. Various
trained fusion models were employed to test the correctness of the combined images,
and the results showed that the suggested IFGAN model performed more accurately than
other fusion approaches. Table 9 shows the outcomes that were achieved.
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Table 9. Accuracy of different image fusion models.

Models Proposed IFGAN PCA WMFGS GS

True positives (TP) 15 130 140 120
True negatives (TN) 130 120 120 110
False positives (FP) 12 28 25 40
False negatives (FN) 8 22 15 30

Accuracy (%) 93 83 86 77

6. Conclusions

Researchers focusing on innovative AV solutions prioritize user safety and security.
This proposal presented a comprehensive analysis of the reasons behind the failures of cur-
rently available fully autonomous vehicles, despite extensive trials and research. The study
identified inaccurate and inappropriate decision-making policies as a significant factor con-
tributing to these failures, resulting from the vehicles’ limited perception of environmental
information. Therefore, much emphasis was placed on data preprocessing, specifically data
cleaning and fusion of the sensory data collected by AVs. To address this issue, a generic
data fusion engine was proposed, capable of merging various data formats such as text,
image, video, and audio, which exhibit multimodal characteristics. The initial stage of the
research focused on image fusion, as modern sensors like LiDAR and Velodyne generate
data in the form of point cloud-based image frames. Previous research [6] proposed a
hybrid image fusion model for multispectral data, which required enhancement and in-
tegration with machine learning models to accurately and efficiently fuse large volumes
of sensory data. To accomplish this, an innovative image fusion model named IFGAN
was introduced in this study. IFGAN employed a sophisticated Multi-Scale Attention
mechanism to enhance the precision and efficiency of the fusion process. Incorporating
the newly proposed kernel functions for the IFGAN model alongside the kernel functions
utilized in the Hybrid Image Fusion model [6] led to an improvement in the accuracy of
the fusion outcomes. The feature extraction model employed in IFGAN is trained using a
CNN model and integrated with the proposed Multi-Scale mechanism, thereby improving
feature extraction and reducing the burden on the IFGAN model. The IFGAN model
presented in this study can manage extensive amounts of sensory data, maintain RGB color
intensity in merged images, and effectively carry out image modifications. The efficacy of
the hybrid image data fusion model introduced in this study was assessed using datasets
including nuScenes, KITTI, BEPM TNU, and OSU. Standard image metrics were utilized
for benchmarking its performance against established data fusion models. The proposed
image fusion model outperformed other models in terms of both accuracy and efficiency.
Future work involves fine-tuning and evaluating the proposed fusion model using different
datasets which could look into enhancing its performance. Additionally, ongoing work
could incorporate video and audio fusion models into the proposed framework.
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