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Abstract: We analyse the output stream from a packet buffer governed by the policy that incoming
packets are dropped with a probability related to the buffer occupancy. The results include formulas
for the number of packets departing the buffer in a specific time, for the time-dependent output
rate and for the steady-state output rate. The latter is the key performance measure of the buffering
mechanism, as it reflects its ability to process a specific number of packets in a time unit. To ensure
broad applicability of the results in various networks and traffic types, a powerful and versatile
model of the input stream is used, i.e., a BMAP. Numeric examples are provided, with several
parameterisations of the BMAP, dropping probabilities and loads of the system.
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1. Introduction

In the vast majority of packet networks, there are buffers for packets employed at
network nodes. It is optimal when the occupancy of these buffers is low most of the time,
but non-zero. If there are no packets in the buffer to transmit, then the link between the
nodes is underutilised. Conversely, when the buffer occupancy is high, the packet sojourn
time in the buffer is long, adding unnecessary delay to the whole packet delivery time.

In the literature, short queues, essential to sustain high utilisation of links, are called
“good queues”, whereas the long unnecessary ones are called “bad queues” [1]. Unfortu-
nately, bad queues appear quite often in all forms of packet networking, including wired,
wireless and sensor networks. Specifically, bad queues occur when the following three
factors are combined together: tail-drop buffers, the TCP protocol and oversized buffer-
ing space. All of them are pretty common. Namely, oversized buffers are common due
to Moore’s Law and inexpensive memory chips. Tail-drop buffer organisation, i.e., the
policy that a packet is deleted if and only if the buffer is full, is the simplest and the most
popular one. Lastly, the TCP protocol is the one of the most useful and exploited protocols
in networking.

It is generally understood that active queue management (AQM), implemented in
packet buffers, may reduce or eliminate bad queues [2,3]. In AQM, a packet may be dropped
while the buffer occupancy is far from maximum. Some advanced AQM mechanisms use
many system states and complicated policies to decide whether a packet ought to be
dropped or not [1,4–10].

A different approach to AQM is that a packet is dropped on arrival with probability
d(k), which is directly related the buffer occupancy on this packet arrival, k. In this case,
only one variable (the buffer occupancy) and a simple decision policy is used. In different
studies, different functions d(k) have been suggested: linear [11], negative exponential [12],
polynomial [13,14], beta [15] and other functions [16,17].

The simplicity of the policy based on the buffer occupancy, its ease of implementation
and its low computational complexity (i.e., low energy requirement) are especially attractive
in wireless sensor networking (WSN). Therefore, several authors advocate using it in WSN,
e.g., [18–21].
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In this paper, we want to analyse the output stream from a buffer governed by this
policy. A typical scenario is depicted in Figure 1. Specifically, we have a wireless sensor
network of some topology and a sink node that collects data packets from sensor nodes. It
transmits them further to a user through the internet (or to a local server first, but this is
irrelevant here). Most importantly, the sink node has implemented an AQM mechanism at
the buffer of its output interface (the blue part in Figure 1). Our interest lies in the statistical
properties of the output stream from this buffer.

Figure 1. An output stream from a wireless sensor network through a buffer with AQM.

The buffer with AQM under study, in blue in Figure 1, is enlarged further in Figure 2.
Namely, on the left-hand side of Figure 2, the traffic from the wireless sensor network,
aggregated inside the sink node, is depicted. The packets from this traffic are subject
to the AQM mechanism based on function d(k). Specifically, every packet on arrival is
subject to a random decision; it is dropped with probability d(k), or it is deposited in the
buffer of size N with probability 1− d(k). Argument k of function d(k) denotes the buffer
occupancy at the time of each decision. The buffer in Figure 2 is meanwhile being drained
by transmissions throughout the output link. Each packet transmission time is random
and has an arbitrary distribution function F(t). This distribution may account for variable
packet sizes or a variable bitrate of the output link, or both. Lastly, the aggregated traffic,
on the left-hand side of Figure 2, is modelled here by the BMAP process, whose powerful
capabilities enable modelling of traffic of arbitrary type and complexity (this subject will be
broadened later).

Figure 2. Buffer with AQM from Figure 1 in detail.

Note that the output stream on the right-hand side of Figure 2 must be essentially
unlike the aggregated traffic on the left-hand side. First, this is because the AQM mecha-
nism occasionally drops packets, which is its main goal for the reasons explained before.
Therefore, even the output rate from the sink node is not equal to its input rate. Second,
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the transmission through the output link further changes the statistical properties of the
output stream.

The purpose of this paper is to find the characteristics of the output stream in Figure 2
using instruments of queuing theory, and to study in numeric examples how the properties
of the output stream vary with the properties of the model.

The paper proceeds with the following arrangements. In Section 2, the contribution
of the paper is detailed. In Section 3, previous investigations in related fields are recalled.
The model of the input stream, the packet buffer and its policy based on function d(k) are
presented in Section 4. Then, in Section 5, a mathematical analysis of the output stream
is conducted. In Section 6, numeric examples are shown and commented, with diverse
parameterisations of the input stream, mechanism loads and functions d(k). Lastly, the
insights of this research work are summarised in Section 7. In the same section, suggestions
for future work are provided.

2. Contribution

The primary contribution of this paper includes three new formulas: one for the
average number of packets over time t in the output stream, one for the momentary packet
output rate at time t and one for the steady-state output rate.

The secondary contribution of the paper is a set of numeric examples, exposing
dependencies of the output stream characteristics on the model parameters. Specifically,
five parameterisations of a BMAP are used in these examples, with different features
of the input stream, and combined with different system loads and different forms of
function d(k) to observe the impact of each on the output stream in both steady-state and
time-dependent cases.

Why do the characteristics of the output stream matter?
From a networking standpoint, they matter because the considered output stream

constitutes an input stream to another device. Specifically, the output stream in Figure 1
can be an input stream to a router, local or distant processing server, local or distant user,
etc. Whatever the next device is, the performance of the whole system depends on the
characteristics of the considered stream.

From a theoretical angle, the rate of the output stream is the key characteristic of the
buffering mechanism, because it represents the overall performance of this mechanism, i.e.,
its ability to process a specific number of packets in a time unit.

Now, it is worth stressing that the results obtained here are broadly applicable in net-
works with completely different statistical properties of traffic and exploiting different func-
tions d(k). Such universality is a consequence of three assumptions on the analysed model.

Firstly, the batch Markovian arrival process (BMAP) is used to model the packet
interarrival times in the aggregated traffic (see Figure 2). The BMAP has very powerful
modelling capabilities—perhaps most powerful among all known point processes—which
are analytically tractable. To name a few of these capabilities, the BMAP is able to model an
arbitrary autocorrelation structure of the input stream, batch and single arrivals, and an ar-
bitrary interarrival distribution [22,23]. It is known that all these features may influence the
performance of the buffering policy. For instance, the effects of the interarrival distribution
are known from elementary queueing theory [24]. The impact of the correlation structure
was thoroughly investigated when positive autocorrelation was discovered in LANs [25].
The batch structure of traffic was shown to follow from the design of the TCP protocol [26],
and is also known to deeply impact the queueing characteristics [24,27].

Secondly, the transmission times are assumed to have an arbitrary distribution. This
means every needed packet length distribution can be used in numeric calculations.

Lastly, the function d(k) is not specified in the analysis and may be of any mentioned
type [11–17], or some other.

3. Related Work

Based on the author’s knowledge, the results of this article are new.
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Specifically, there are no published papers devoted to the output stream of packets
leaving a buffer governed by the d(k)-based policy. This is rather unexpected, bearing in
mind the importance of the d(k)-based policy in networking and the significance of the
characteristics of the output stream, discussed in Section 2.

The work related to this paper can be categorised into four groups.
First, there are published articles on the output stream from a buffer for various

types of input stream and = service time, but without the d(k)-based packet dropping
policy. For instance, in the classic work [28], the output stream for a Poisson input stream
and exponential service is shown to be Poisson. In [29], the case with a general, single,
uncorrelated input stream and general service times is studied. In [30], a system with a
batch, uncorrelated input stream and general service times is investigated. Lastly, some
papers are devoted to analysis of the output stream from a buffer with correlated batch
arrivals, see, e.g., [31–33].

In none of the mentioned above work was the d(k)-based dropping policy considered,
whereas it is a crucial component of the system studied here. Obviously, this policy
deeply influences the system performance in general and the output stream behaviour
in particular.

Second, there are studies on buffers that do incorporate the d(k)-based policy, but
without an analysis of the output stream. In these papers, different queueing character-
istics are studied either via simulations [11–17] or mathematically [34–42] under diverse
assumptions of system parameters. As it was argued above, the characteristics of the output
stream are very important for both theoretical and practical reasons. Therefore, we study
them herein.

Third, as it was already mentioned, there are papers on AQM, in which the probability
of deletion of a packet at the buffer depends on different variables [1,4–10].

Fourth, there are many studies on the BMAP and queueing models for telecommunica-
tion networks, which are very loosely related to the model studied herein, see, e.g., [43–46]
and the references provided there.

Lastly, it is worth mentioning that usage of the BMAP process is not limited to net-
working. Other real-world applications of the BMAP include inventory models [47,48],
supply chain management [49], maintenance and spare parts [50], disaster models [51] and
vehicular traffic [52,53].

All the mentioned references are gathered in Table 1, in which the originality of this
paper is highlighted when compared to them.

Table 1. Research related to AQM, the BMAP and the output stream.

d(k)-based AQM, this work
analysis of the output stream

no AQM at all, [28–33]
analysis of the output stream

d(k)-based AQM, [11–17,34–42]
no analysis of the output stream

different AQM to here, [1,4–10]
various characteristics

BMAP traffic models and queueing, a vast literature, see [43–53]
no AQM at all and the references there

4. Model

We are going to analyse the model depicted schematically in Figure 2.
Firstly, the aggregated input stream on the left-hand side of Figure 2 is modelled by a

BMAP [54].
To parametrise the BMAP, matrices Db, b = 0, 1, . . ., are needed, each of size M×M.

They have to fulfill the following requirements:
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• D0 is negative on its diagonal but non-negative outside the diagonal;
• Db is non-negative for b > 0;
• D = ∑∞

k=0 Db is a transition-rate matrix, i.e., each row of D sums to zero;
• D0 6= D.

Matrix D constitutes the intensity matrix of the underlying Markov chain of the BMAP,
v(t), which has possible states {1, . . . , M}. In what follows, when saying that the BMAP is
in state i, we will mean that this underlying chain is in state i, i.e., v(t) = i.

The evolution of v(t) governs arrivals of batches. In particular, diagonal entries of Db
for b > 0 correspond to arrivals of batches of length b, while off-diagonal entries correspond
to arrivals of batches of length b together with changes in v(t). Off-diagonal elements of D0
correspond to changes in v(t) without arrivals. In practice, we usually deal with a few Db
matrices only, each corresponding to a possible batch length. All the remaining Db values
are zero.

Two important characteristics of a BMAP are νi and pi,j(b). Specifically, νi is the
parameter of the exponentially distributed sojourn time before the next change of state,
given that the BMAP is now in state i, whereas pi,j(b) is the probability that after this
sojourn time the state switches from i to j with arrival of a batch of b packets. It holds that

νi = −[D0]i,i, (1)

and
pi,j(0) = ν−1

i [D0]i,j, i 6= j, (2)

pi,j(b) = ν−1
i [Db]i,j, b > 0. (3)

More on the mathematical properties of BMAPs can be found in the monograph [43].
Now, we presume that a buffer of capacity N packets is fed by a stream of packets

modelled by a BMAP. The packets create an FIFO queue in this buffer, which is served from
the head by a transmission process. The transmission time of each packet is random and
distributed in accordance with some distribution function F(t).

When N packets are present in the buffer, a newly incoming packet is deleted. How-
ever, even with fewer than N packets in the buffer, a new packet may be deleted. This
may happen with every incoming packet with probability d(k), where k denotes the buffer
occupancy at the time of arrival of this new packet. Therefore, arguments of function d(k)
are non-negative integers, k = 0, 1, 2, . . .

It is presumed that the packet being currently transmitted is the first one in the buffer;
i.e., there is no separate room for the packet under service. Therefore, the phrase “buffer
occupancy” includes the packet being transmitted, if any.

By λ we denote the rate of the aggregate input stream, i.e., the BMAP rate. The load of
the buffering mechanism is:

ρ = λµ−1, (4)

where
µ−1 =

∫ ∞

0
(1− F(t))dt, (5)

is the average packet transmission time.
When characterising the output process, we will be interested in the following three

characteristics: Dn,i(t), Vn,i(t) and V.
Specifically, Dn,i(t) is the average number of packets occurring in the output stream in

(0, t), assuming the buffer occupancy at t = 0 was n and the state was i.
Vn,i(t) is the momentary rate of the output stream at time t, defined by:

Vn,i(t) =
dDn,i(t)

dt
, (6)
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Finally, V is the steady-state rate of the output stream, defined by:

V = lim
t→∞

Vn,i(t). (7)

As the limit in (7) is independent of n and i, any n = 0, . . . , N and i = 1, . . . , M can
be used.

All model parameters and characteristics of interest are gathered in Table 2.

Table 2. Summary of model parameters and characteristics of interest.

Db BMAP matrices (parameters of the input stream)

v(t) underlying Markov chain of the BMAP

N buffer size in packets

d(k) dropping probability for buffer occupancy k in AQM

F(t) distribution function of the packet transmission time

M number of states of v(t)

λ packet input rate

ρ load of the buffering mechanism

µ−1 average packet transmission time

V state-state rate of the output stream

Finally, note that herein we consider only the aggregated traffic without distinguishing
between individual flows from users. The information about which packet comes from
which individual user is not included in the BMAP. Naturally, the rates and distributions
of particular users influence the aggregated traffic. Fortunately, several algorithms for
fitting BMAP matrices to the aggregated traffic have already been proposed, see, for
example, [22,23,55,56]. In these fitting algorithms, the rates and distributions of particular
users are incorporated into the resulting BMAP matrices. We assume herein that we already
have the BMAP matrices reflecting the statistical properties of the aggregated traffic and,
indirectly, the particular users within it.

5. Output Stream Analysis

To make it easier to follow the derivations in this section, the workflow of the analysis
of the output stream is shown in Figure 3.

Therefore, we begin derivations by constructing the first integral equation for Dn,i(t).
Assume first that the buffer occupancy is 0 at t = 0. For an arbitrary initial state i,

we have:

D0,i(t) =
∞

∑
b=0

N

∑
a=0

M

∑
j=1

∫ t

0
νie−νix pi,j(b)q(0, b, a)Da,j(t− x)dx, (8)

where νi and pi,j(b) are given in (1) and (3), respectively. Furthermore, q(n, b, a) denotes
the probability that on arrival of a batch of b packets, a packets are admitted to the buffer,
while b− a packets are dropped, presuming the buffer occupancy on the arrival of this
batch is n. A formula for q(n, b, a) will be shown at the end of this section.

Equation (8) is inferred by conditioning on the initial moment of any change in the
input stream, x. At time x, a packets are admitted to the buffer, so the new buffer occupancy
is a, and the new state is j. There could not be any departure by x, so the new average
number of packets departed by t, counting from x, will be Da,j(t− x).

Calculating the Laplace transform for both sides of (8), we achieve:

D∗0,i(s) =
νi

νi + s

∞

∑
b=0

N

∑
a=0

M

∑
j=1

pi,j(b)q(0, b, a)D∗a,j(s), i = 1, . . . , M, (9)
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with
D∗n,i(s) =

∫ ∞

0
e−stDn,i(t)dt. (10)

Then, adopting vectors and matrices in (9), i.e.,

D∗n(s) = [D∗n,1(s), . . . , D∗n,M(s)]T , (11)

P(b, s) =
[ pi,j(b)νi

νi + s

]
i,j=1,...,M

, (12)

yields:

D∗0 (s) =
∞

∑
b=0

N

∑
a=0

q(0, b, a)P(b, s)D∗a (s). (13)

Lastly, (13) can be ordered with regards to growing a as follows:

[R(0, 0, s)− I]D∗0 (s) +
N

∑
a=1

R(0, a, s)D∗a (s) = 0, (14)

where

R(n, a, s) =
∞

∑
b=0

q(n, b, a)P(b, s), (15)

0 = [0, . . . , 0]T , (16)

and I is the identity matrix.

Figure 3. Workflow of derivations.

Now, we can deal with the eventuality where the buffer occupancy is non-zero at
t = 0. In such a situation, we can construct the following equation:

Dn,i(t) =
N−n

∑
a=0

M

∑
j=1

∫ t

0
Hi,j(n, a, x)[1 + Dn+a−1,j(t− x)]dF(x), n = 1, . . . , N, (17)
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where Hi,j(n, a, x) denotes the probability that until the time x, the number of packets
admitted to the buffer is a; the state at the time x is j, given that no departure took place by
the time x; the initial occupancy was n; and the initial state was i.

Equation (17) is inferred by conditioning on a different moment to (8). Specifically, x in
(17) is the first departure moment, distributed according to F(x). Just after x, we have one
packet already transmitted from the buffer, the new buffer occupancy of n + a− 1 and the
new state of j. Consequently, the new average number of packets departed by t, counting
from x, will be 1 + Dn+a−1,j(t− x).

Calculating the Laplace transform for both sides of (17) yields:

D∗n,i(s) =
N−n

∑
a=0

M

∑
j=1

ai,j(n, a, s)
[

1
s
+ D∗n+a−1,j(s)

]
, n = 1, . . . , N, (18)

with
ai,j(n, a, s) =

∫ ∞

0
e−sx Hi,j(n, a, x)dF(x). (19)

Denoting:
A(n, a, s) =

[
ai,j(n, a, s)

]
i,j=1,...,M, (20)

e = [1, . . . , 1]T , (21)

we have from (18):

D∗n(s) =
N−n

∑
a=0

A(n, a, s)
[

1
s

e + D∗n+a−1(s)
]

, n = 1, . . . , N. (22)

Lastly, (22) leads to:

N−n

∑
a=0

A(n, a, s)D∗n+a−1(s)− D∗n(s) = B(n, s), n = 1, . . . , N, (23)

where:

B(n, s) = −1
s

N−n

∑
a=0

A(n, a, s)e. (24)

Equations (14) and (23) constitute a system of algebraic equations with unknowns:
D∗0 (s), . . . , D∗N(s). Combining these unknowns in a vertical vector D∗(s), we can derive the
solution of (14) and (23), which can be recapitulated as follows.

Theorem 1. The average number of packets at time t in the output stream has the Laplace transform:

D∗(s) = (C(s)− I)−1E(s), (25)

where
D∗(s) =

[
D∗0 (s)

T , . . . , DN(s)T
]T

, (26)

C(s) = [Cn,m(s)]n,m=0,...,N , (27)

Cn,m(s) =


R(0, m, s), if n = 0,
A(n, m− n + 1, s), if n ≥ 1, n− 1 ≤ m ≤ N − 1,
O, otherwise,

(28)

E(s) =
[
0T , B(1, s)T , . . . , B(N, s)T

]T
, (29)

whereas R(n, m, s), A(n, m, s) and B(n, s) are given in (15), (19) and (24), and O is the zero matrix.
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Take note that to use this result in practice, one needs to be able to calculate the values
of functions q(n, b, a) and Hi,j(n, a, x), which occur in (15) and (19), respectively. Both
these functions are rather easy to compute recursively using the method shown in [40].
Specifically, for q(n, b, a), we have:

q(n, 0, 0) = 1, (30)

q(n, 0, a) = 0, a ≥ 1, (31)

q(n, b, 0) = (d(n))b, b ≥ 1, (32)

q(n, b, a) = 0, min{N − n, b} < a, (33)

and

q(n, b, a) = q(n, b− 1, a)d(n) + q(n + 1, b− 1, a− 1)(1− d(n)), b ≥ 1, a ≥ 1, (34)

which enables recursive calculation of q(n, b, a) for arbitrary n, b and a.
For Hi,j(n, a, x), we have the following formulas, recursive with respect to a:

H∗(n, 0, s) = (I − R(n, 0, s))−1Z(s), (35)

H∗(n, a, s) = (I − R(n, 0, s))−1
a

∑
l=1

R(n, l, s)H∗(n + l, a− l, s), a ≥ 1, (36)

where
H∗(n, a, s) =

[
H∗i,j(n, a, s)

]
i,j=1,...,M

, (37)

H∗i,j(n, a, s) =
∫ ∞

0
e−stHi,j(n, a, x)dx, (38)

Z(s) = diag
[

1
s + ν1

, . . . ,
1

s + νM

]
. (39)

and R(n, a, s) is given in (15).
Note also that Dn,i(t) is, by definition, non-decreasing with respect to t. For a visualisa-

tion of the properties of the output stream, it is more convenient to use the time-dependent
rate of the output stream, Vn,i(t), which is defined in (6).

Applying the well-known derivative theorem on the Laplace transform, we have:

V∗n,i(s) = sD∗n,i(s), (40)

where
V∗n,i(s) =

∫ ∞

0
e−stVn,i(x)dx, (41)

whereas D∗n,i(s) can be calculated using (25).
The steady-state rate of the output stream, V, can be computed using another well-

known property of the transform. Specifically, using the Final-Value Theorem on (40),
we have:

V = lim
s→0

s2D∗0,1(s). (42)

with D∗0,1(s) obtained from (25) again.
Lastly, note that (25) and (40) are expressed in the transform domain based on variable

s. To return to the time domain, t, we have to employ an inversion method. A great variety
of such methods is accessible (see monograph [57] on the subject). In the following numeric
examples, the Zakian approach is exploited (Formula (7.12) in [57]).
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6. Numeric Examples

In the numeric examples, we will use a few parameterisations of the BMAP which
exemplify different features of the input stream. These include single arrivals, batch arrivals,
positive autocorrelation, negative autocorrelation and no autocorrelation.

Specifically, the following five parameterisations will be employed:

• BMAP1:

D0 =

 −0.827091 0.787708 0.005626
0.022505 −0.545767 0.011255
0.001442 0.001203 −1.950544

, D1 =

 0.005626 0.016879 0.011252
0.501318 0.005626 0.005063
0.019469 0.000961 1.927469

.

• BMAP2:

D0 =

 −1.331696 1.268285 0.009057
0.036235 −0.878738 0.018121
0.015328 0.012775 −20.731246

, D1 =

 0.009059 0.027177 0.018118
0.008153 0.009059 0.807170
20.485996 0.010218 0.206929

.

• BMAP3:
D0 = −0.2I, D1 = 0.016667J, D3 = 0.022221J, D9 = 0.027778J, J = [1]n,m=1,...,3.

• BMAP4:

D0 =

 −0.165418 0.157543 0.001127
0.004505 −0.109154 0.002253
0.000289 0.000242 −0.390109

, D1 =

 0.000281 0.000844 0.000562
0.025066 0.000281 0.000253
0.000973 0.000048 0.096377

,

D3 =

 0.000375 0.001125 0.000750
0.033419 0.000375 0.000337
0.001297 0.000064 0.128493

, D9 =

 0.000468 0.001406 0.000937
0.041776 0.000468 0.000421
0.001622 0.000080 0.160624

.

• BMAP5:

D0 =

 −0.266339 0.253653 0.001823
0.007250 −0.175748 0.003627
0.003067 0.002557 −4.146250

, D1 =

 0.000452 0.001358 0.000905
0.000407 0.000452 0.040360
1.024340 0.000510 0.010346

,

D3 =

 0.000603 0.001811 0.001207
0.000543 0.000603 0.053809
1.365680 0.000681 0.013794

, D9 =

 0.000754 0.002264 0.001509
0.000679 0.000754 0.067264
1.707180 0.000851 0.017244

.

The total input rate of each of these streams is 1. BMAP1 and BMAP2 have single
arrivals only, whereas BMAP3–BMAP5 have batch arrivals. BMAP1 and BMAP4 are
positively autocorrelated with a one-lag autocorrelation of 0.425, whereas BMAP2 and
BMAP5 are negatively autocorrelated with a one-lag autocorrelation of −0.425. BMAP3 is
not autocorrelated. Lastly, BMAP3–BMAP5 have common average batch length of 5, and a
common rate of arrivals of batches of 0.2.

Unless indicated otherwise, the following function d(k) will be utilised in the examples:

d(k) =


0, for k = 0, . . . , 15,
1.8− 1.8e−(k−16)/20, for k = 16, . . . , 31,
1, for k = 32, 33, . . . .

(43)

This is a negative-exponential function of REM type (see, e.g., [12]). The buffer on which
this function operates is of length 32.
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Unless indicated otherwise, the transmission time distribution is hyper-exponential
with parameters λ1 = 0.75, λ2 = 1.75, p1 = 0.3, p2 = 0.7, the average value of 0.8 and the
std. deviation of 0.94. Therefore, unless indicated otherwise, the system load is ρ = 0.8.

In Table 3, the rate of the output stream is shown for all considered BMAPs at different
times and in the steady state, t = ∞. In all instances, the buffer occupancy at t = 0 was 0
and the initial state was 1.

Table 3. Rate of the output stream at different times for different input streams. n = 0, i = 1.

t = 20 t = 50 t = 100 t = 200 t = 500 t = ∞

BMAP1 0.536 0.717 0.809 0.822 0.822 0.822

BMAP2 0.941 0.980 0.994 0.994 0.994 0.994

BMAP3 0.830 0.900 0.908 0.908 0.908 0.908

BMAP4 0.351 0.434 0.526 0.627 0.710 0.715

BMAP5 0.801 0.886 0.893 0.894 0.894 0.894

Let us focus first on the steady-state output rate, shown in the last column of Table 3.
As is evident, the rate may differ greatly depending on the internal nuances of the input
stream. The worst result, 0.715, differs by almost 30% from the best result, 0.994, even
though the input rate was the same in all cases. Note that 0.715 (or even 0.822) is a quite
bad output rate, given that the system is significantly underloaded, ρ = 0.8.

Clearly, positive autocorrelation produces worse results than negative autocorrelation.
Specifically, positively correlated BMAP1 produces a worse output rate than negatively
correlated BMAP2, while they both have no batch arrivals. Similarly, positively correlated
BMAP4 provides a worse rate than negatively correlated BMAP5, while they both have
the same average batch length. It is interesting, however, that uncorrelated BMAP3 offers a
slightly better rate than negatively correlated BMAP5.

Moreover, batch arrivals produce worse results than single arrivals. This becomes
evident if we compare BMAP1 with BMAP4, and BMAP2 with BMAP5. Within each of
these pairs, the autocorrelation is common but the former input stream is single, whereas
the latter is of batch type.

Summarising the steady-state results, the worst rate, 0.715, is obtained when both
positive autocorrelation and the batch structure are involved, while the best rate, 0.994, is
obtained when the autocorrelation is negative and there are no batch arrivals.

Now we can focus on the time-dependent output rates shown in Table 3. Apparently,
the convergence time to the steady state may vary greatly depending on the internal
nuances of the input stream. In the case of BMAP2 and BMAP3, the steady-state output
rate is achieved at the relatively low t = 100, whereas for BMAP4, it is not achieved even
at t = 500. The convergence time seems to be prolonged by positive autocorrelation and
the batch structure. This can be observed by performing comparisons in the same pairs, as
previously, i.e., BMAP1 vs. BMAP2, BMAP4 vs. BMAP5, BMAP1 vs. BMAP4 and BMAP2
vs. BMAP5.

A detailed evolution in time of the output rate is depicted in Figures 4 and 5 for all
considered BMAPs. Figure 4 differs from Figure 5 in that the former is computed for an
initially empty buffer, while the latter for an initially full buffer. In the full buffer scenario,
the output rate is initially rather high for every considered BMAP. This is because efficient
transmission (ρ < 1) can temporarily provide an output rate greater than the input rate
using packets stored in the buffer.

Interestingly, in both Figures 4 and 5, the curves for BMAP3 and BMAP5 are close
to each other, despite the fact that the former stream has no autocorrelation, whereas the
latter has negative autocorrelation. Apparently, the negative autocorrelation provides
very close (slightly worse) output rates to zero autocorrelation. Conversely, both these
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curves are in sharp contrast with the BMAP4 curve, obtained for positively autocorrelated
input streams.
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Figure 4. Time-dependent rate of the output stream for different input streams. n = 0, i = 1.
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Figure 5. Time-dependent rate of the output stream for different input streams. n = 32, i = 1.

Lastly, we can observe in detail the convergence to the steady state in Figures 4 and 5.
For BMAP2, BMAP3 and BMAP5, each with negative or zero autocorrelation, the conver-
gence is pretty quick. It is a little bit slower for BMAP1, which has positive autocorrelation,
but no batch arrivals, and much slower for BMAP4, which has positive autocorrelation and
batch arrivals.

A detailed evolution in time of the output rate, depending on the initial occupancy,
is depicted in Figures 6 and 7, for one selected input stream, BMAP4. In both figures, the
curves for initial occupancies of 0, 25%, 50%, 75% and 100% are shown. Figure 6 differs
from Figure 7 in that the former is computed for the initial state 1, while the latter for the
initial state of 3.

Firstly, we can notice that the initial state may severely influence the evolution of the
output rate—the figures are not alike.

Secondly, the discussed above effect of the initially high output rate is not charac-
teristic to the initially full buffer only. In fact, this effect occurs for every non-zero initial
occupancy. Therefore, all the curves for n > 0 differ greatly from the curve for n = 0 in
both Figures 6 and 7.
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Figure 6. Time-dependent rate of the output stream for BMAP4 and different initial buffer occupan-
cies. i = 1.

0 20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Vn,iHtL

n=32

n=24

n=16

n=8

n=0

Figure 7. Time-dependent rate of the output stream for BMAP4 and different initial buffer occupan-
cies. i = 3.

In the next figure, we may examine the dependence of the steady-state output rate on
the system load. To achieve that, parameters λ1 and λ2 of the transmission time distribution
are scaled by a factor r, resulting in a variable system load from 0 to 2.

The results are depicted in Figure 8. For BMAP2, which has neither a batch structure
nor positive autocorrelation, a good output rate is maintained almost up to the load of 1. For
BMAP1, BMAP3 and BMAP5, which have either batch arrivals or positive autocorrelation,
the output rate begins to deteriorate much earlier, for the load about 0.6. However, the
impact of the positive autocorrelation in BMAP1 prevails, and the output rate in this case
drops faster than for BMAP3 and BMAP5. Lastly, for BMAP4, which has both a batch
structure and positive autocorrelation, the output rate begins to deteriorate at as low a ρ as
0.3. The shape of the curve is in this case quite close to the shape for BMAP1—both curves
were obtained for the same autocorrelation.
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Figure 8. Steady-state rate of the output stream versus load for different input streams.

In the final set of results, we examine the dependence of the steady-state output rate
on the function d(k). To achieve this, we can focus on the most demanding input stream,
BMAP4, with a class of functions d(k) depending on two parameters, u and w:

du,w(k) = dw
(

16k− 32u + 512
32− u

)
, (44)

where d(k) is given in (43).
Parameter u establishes the interval of effective operation of function du,w(k), which is

(u, 32). Parameter w establishes how steep the function is, i.e., how quickly the dropping
probability grows in the operation interval.

In Figure 9, we can see function du,w(k) for a few combinations of parameters u and w.
The resulting steady-state output rate as a function of u and w for BMAP4 is depicted

in Figure 10. As one could foresee, the output rate grows with each of the two parameters.
What is more interesting, however, is that both parameters seem to influence the output
rate in a similar manner, i.e., the surface is almost symmetrical.
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Figure 9. Function du,w(k) for different combinations of parameters u and w.
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Figure 10. Steady-state rate of the output stream for BMAP4 vs. parameters u and w in du,w(k).

7. Conclusions

We analysed the output stream from a packet buffer governed by the policy that
incoming packets are dropped with a probability related to the buffer occupancy.

In the mathematical part, formulas for the number of packets departing the buffer
in a specific time, the time-dependent output rate and the steady-state output rate were
derived. A powerful and versatile model of the input stream was used, the BMAP, and
accompanied with a general transmission time distribution and a general function d(k).
These make the results broadly applicable in networks of completely different statistical
properties of traffic and exploiting different d(k) probabilities.

In the numeric examples, we used the obtained formulas to examine the influence of
the properties of the input stream, system load and function d(k) on the properties of the
output stream.

7.1. Insights of this Research Work

In the steady-state examples, it was shown that the output rate may differ greatly
depending on the internal nuances of the input stream, even if the input rate is unaltered.
Furthermore, it was demonstrated that the output rate can be quite low, even if the load of
the buffering mechanism is low.

An essential takeaway from this is the following. For a given input packet rate λ, a
given load ρ and a particular function d(k), there is absolutely nothing we can say about
the output rate without taking into consideration the internal statistical structure of the
input stream.

As was demonstrated, the most important factors causing deterioration of the output
rate are the batch structure and positive autocorrelation, especially when combined together.
Interestingly, a negative correlation in the input stream produced a slightly worse output
rate than a zero correlation.

In the time-dependent examples, its was shown that a batch structure and positive
autocorrelation make the convergence time to the steady state much longer than in the case
without these factors.

Lastly, it was established that a batch structure and positive autocorrelation can cause
much quicker deterioration of the output rate with a growing load.

Namely, in uncorrelated examples with single arrivals, close to the maximum output
rate was maintained up to the load approaching 1. If either batch arrivals or positive
correlation was introduced, the output rate started to deteriorate at the load of about 0.6. If,
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however, both these factors were combined together, the output rate began to deteriorate at
as low a load as 0.3.

7.2. Future Work

Future work can branch off in several ways.
First, the buffering mechanism from Figure 2 can be further studied with respect to

other characteristics. For example, the average response time of this mechanism has not
been derived so far. The response time of a system is the total time that a packet spends in
this system. (Herein, it would be the time spent in the buffer plus the transmission time.) It
is therefore a key characteristic of the mechanism, reflecting the latency that it adds to the
entire packet delivery time.

Second, extensions of the mechanism in Figure 2 can be proposed and studied. For
example, instead of one function d(k), a separate function d(k) for each flow of traffic can
be used. For some reasons, we may prefer to filter one flow differently than another.

Third, completely different AQM mechanisms than those considered here can be
analysed using queueing models, e.g., the mechanisms of [1,4–10]. To date, they have been
tested mainly using network simulations.

Finally, computations for other transmission time distributions can be carried out, e.g,
gamma, uniform, degenerate, etc., distributions.
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