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Abstract: The expected huge number of connected devices in Internet of Things (IoT) applications
characterizes the massive machine-type communication (mMTC) scenario, one prominent use case of
beyond fifth-generation (B5G) systems. To meet mMTC connectivity requirements, grant-free (GF)
random access (RA) protocols are seen as a promising solution due to the small amount of data that
MTC devices usually transmit. In this paper, we propose a GF RA protocol based on a multi-agent
reinforcement learning approach, applied to aid IoT devices in selecting the least congested RA pilots.
The rewards obtained by the devices in collision cases resemble the congestion level of the chosen
pilot. To enable the operation of the proposed method in a realistic B5G network scenario and aiming
to reduce signaling overheads and centralized processing, the rewards in our proposed method are
computed by the devices taking advantage of a large number of base station antennas. Numerical
results demonstrate the superior performance of the proposed method in terms of latency, network
throughput, and per-device throughput compared with other protocols.

Keywords: random access protocol; grant-free; beyond 5G; reinforcement learning; massive MIMO

1. Introduction

Cellular Internet of Things (IoT) is an important research topic within beyond fifth-
generation (B5G) networks [1]. Typical applications involve wireless sensor networks,
smart cities, smart grids, smart factories, and connected vehicles [2,3]. The number of
IoT devices has been explosively increasing recently, while most devices are low-power
nodes whose batteries are expected to be usable for years. Furthermore, such IoT devices
are usually distributed over a long range. Therefore, we can point out the main require-
ments of cellular IoT in B5G networks: massive connectivity, low power consumption,
and broad coverage [1]. Exploiting new wireless technologies, such as massive multiple-
input multiple-output (MIMO), intelligent reflecting surfaces, and others, is essential to
achieve such goals.

Massive MIMO is already a successful technology [4]. Its fundamental idea is to
equip base stations (BSs) with many antennas to serve single-antenna users scattered in
the cell. It benefits from the fact that the effects of uncorrelated noise and fast fading
disappear as the number of BS antennas grows to infinity, remaining only the inter-cellular
interference that results from pilot contamination [5]. Massive MIMO systems usually
employ a time-division duplex scheme that demands the transmission of only uplink (UL)
pilot signals to acquire channel state information, since the downlink (DL) channel can be
estimated by channel reciprocity [6]. However, while the number of devices is continually
increasing, motivated by the wide spread of IoT applications, the number of resources the
cellular network offers remains scarce. This fact gives rise to performance issues such as
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pilot collisions when two or more users choose the same pilot trying to access BS resources.
Therefore, establishing an effective random-access (RA) policy is mandatory.

Several methods have been presented to enhance the traditional random access perfor-
mance, such as access class barring (ACB), slotted access, and backoff [7]. Among several
proposed solutions for the congestion problem resulting from massive access, there are,
for instance, (a) [7], which investigates an efficient random access procedure based on ACB
to decrease the access delay and the power consumption under wireless network conges-
tion resulting from massive access; (b) the strongest-user collision resolution (SUCRe) protocol
from [8]. The SUCRe protocol is a grant-based, four-step RA approach whose main idea
consists of allowing just the strongest pilot competitor to access the BS resources each time.
Numerical results indicate that the SUCRe protocol can solve about 90% of all collisions.
However, the four-step procedure required for the BS to grant exclusive communication
resources to devices could result in a performance bottleneck, being a source of excessive
delay and signaling overhead. Therefore, it is not the ideal choice for massive machine-type
communication (mMTC) systems, where accessing devices usually have small data packets
to transmit sporadically. Other works such as [9–12] present proposals for optimization
of the SUCRe protocol, showing promising results. However, they are also grant-based
protocols that introduce extra complexity or overhead to the SUCRe protocol. B5G RA
schemes should achieve high scalability under latency and reliability constraints to support
new use cases. For this purpose, grant-free (GF) RA protocols have gained increasing
interest, as they can drastically reduce control signaling for connection establishment [1].

Many GF RA protocols available in the literature are derived from the contention reso-
lution diversity slotted ALOHA [13] and irregular repetition slotted ALOHA [14]. The idea
behind such schemes is to repeat the transmission of data packets in several randomly
chosen slots, including the indices of the chosen slots as side information [15,16]. Whenever
a particular device chooses a non-colliding slot, its payload is successfully decoded, and its
interference in the other slots is canceled through successive interference cancellation,
increasing the occurrence of other non-colliding slots. Although achieving exceptional
performances, these protocols have the drawbacks of requiring packet re-transmissions,
a substantial overhead for side information signaling, increased complexity for succes-
sive interference cancellation evaluation, and the possibility of propagation errors in the
decoding process.

RA optimization is challenging in ultra-dense mMTC networks while using machine
learning tools is quite promising [17]. Among them, reinforcement learning (RL) has drawn
much attention in the research community and has been demonstrated to assign RA slots to
MTC devices effectively. RL is a machine learning technique that enables agents/devices to
interact with the environment and learn efficient strategies that maximize long-term system
performance. The most typical RL algorithm is the Q-learning (QL) algorithm, which can
be implemented in a decentralized way at the user equipment even without an operating
model of the environment.

Several recent works deal with the RA problem for IoT applications in low power
wide area networks using LoRaWAN as access technology [18–20]. LoRaWAN networks
use chirp spread spectrum modulation at the physical layer and pure the ALOHA method
at the link layer [20], and can achieve low power and long-range communications. In [18],
an adaptive algorithm is proposed to select the spreading factors of the nodes in a Lo-
RaWAN scenario with multiple gateways, improving the throughput and packet delivery
ratio of the network. Ref. [19] tackles the same problem by using a decentralized RL
algorithm known as the multi-armed bandit, optimizing the spreading factors to minimize
interference and maximize the energy efficiency of the end devices in the network. Similarly,
Ref. [20] uses a deep RL algorithm optimizing the distribution of network resources such
as spreading factor, transmission power, and channel, aiming to minimize the LoRaWAN
energy transmission. Besides, several recent works have also applied RL algorithms for
optimizing RA in non-orthogonal multiple access (NOMA) systems [21–23], in industrial
edge-cloud networks [24], and in vehicle-to-everything (V2X) networks [25].



J. Sens. Actuator Netw. 2024, 13, 30 3 of 18

A different context is the use of cellular technology for IoT connectivity. As discussed
in [26], using cellular technology for IoT access instead of wide area networks such as
LoRaWAN presents significant benefits in terms of coverage. Since cellular IoT uses pre-
existing mobile networks, an extensive coverage area is already in place. This allows one to
manage device deployments in different locations. Network switching is also an advantage
when using cellular IoT since the device will automatically connect to the network with the
strongest signal in the area, ensuring constant and reliable connectivity. Given the above
scenario, cellular IoT networks are widely disseminated worldwide and are expected to
reach a number of 5.4 billion IoT connections by the end of 2028 [27].

In [28], an RL-based GF RA for pilot collision control is proposed in a cellular IoT
scenario. The RL algorithm used in [28] is the Q-Learning, where each accessing device
is an independent agent, and the rewards are simply +1 when it chooses a unique RA
slot or −1 otherwise. A similar procedure is proposed in [29], in which the BS also sends
+1 or −1 depending on the outcome of the device’s transmission. However, in the case
of collision, the actual reward computed by the device is −1 times the ratio of packets
already transmitted by it, e.g., if the device has already transmitted 20% of its packets and
collided in the current instant, its actual reward is −0.2. As an improvement, a collaborative
QL RA scheme is proposed in [30], in which the negative rewards in case of collisions
are proportional to the congestion level of the chosen RA slot. However, the protocol
assumes that devices know the exact number of devices colliding by their chosen RA slot.
The performance results are better than those obtained by the independent QL approach
of [28]. Nonetheless, Refs. [28–30] do not assume a realistic system model and do not consider
channel effects like multipath fading, path loss, thermal noise, and inter-cell interference (ICI),
besides assuming that devices know the exact congestion levels in the case of [30].

In [3], the authors compare the most relevant IoT connectivity technologies, high-
lighting the main challenges and promising solutions. The existing technologies’ main
bottlenecks are high signaling overhead, wireless resource scarcity, and inefficient wireless
resource usage. On the other hand, massive MIMO and machine learning tools are among
the promising solutions to overcome those issues. Therefore, designing RA protocols
leveraging massive MIMO technology in conjunction with machine learning tools for
overcoming the bottleneck of current IoT technologies is quite relevant [3].

In this work, we propose a QL-based GF RA protocol specially designed for realistic
mMTC B5G scenarios, leveraging massive MIMO technology to improve connectivity
performance, avoiding pilot collisions. Our network scenarios consider realistic wireless
propagation effects, including multipath fading, shadowing, path loss, thermal noise,
and ICI. Besides, the devices compute the collaborative QL rewards in collision cases by
estimating the congestion levels with minimal signaling overhead. Different figures of merit,
including latency, network throughput, and per-device throughput reveal the proposed
scheme’s improved performance compared to others available in the literature while ap-
proaching the benchmark performance with perfect congestion level estimates. Besides,
numerical results demonstrate the robustness of the proposed scheme regarding different
system parameter variations, like the number of antennas or the number of packets each
device has to send.

Contributions. The paper’s contributions are threefold:

i. We propose an effective GF RA protocol designed for realistic mMTC B5G scenarios,
leveraging the massive number of BS antennas to improve performance and employing
QL to avoid pilot collisions.

ii. The proposed method employs an improved congestion level estimation at the devices
with minimal signaling overhead, owing to massive MIMO propagation features.

iii. Extensive numerical results demonstrate the competitive performance achieved by
our scheme, approaching the case with perfect congestion level estimates and showing
robustness against system parameter changes.
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Innovation to prior work. RL methods for channel access have already been investigated
in the literature in different scenarios; however, we can highlight the following innovations
of our work. The works in [19,20] proposed RL methods to optimize the spreading factors
in LoRaWAN technology; differently, our focus is the RA problem of cellular IoT networks,
which are known to provide extended coverage in comparison to low power wide area
networks [26]. Besides, a remarkable benefit of addressing the B5G cellular IoT scenario is
the opportunity to exploit massive MIMO, which has been seen as a promising technology
to overcome the bottlenecks of current IoT connectivity technologies [3]. Furthermore,
while [28–30] also proposed RL-based RA protocols for cellular IoT, they assumed a simple
collision channel as a system model. Contrarily, we assume herein a much more realistic
wireless system model for the communication environment, taking into account realistic
effects like multipath fading, shadowing, path loss, thermal noise, and ICI while leveraging
massive MIMO propagation features to achieve improved performance in such challenging
mMTC use mode applications.

Organization. The remainder of this paper is organized as follows. Section 2 presents our
adopted system model. Section 3 revisits the main QL-based GF RA protocols available
in the literature. The proposed two-step QL GF RA massive MIMO protocol is diligently
described in Section 4. Numerical results exploring the main metrics for analyzing the
performance of random access networks are carried out in Section 5. The main conclusions
and possible research directions are offered in Section 6.

2. System Model

The adopted scenario considers a cellular mMTC network where IoT devices employ
a GF RA policy to transmit their packets contending for τp orthogonal pilot resources. We
consider a time-division duplex scheme, where the wireless channels are assumed constant
during an entire time slot. The BS is equipped with a massive number of BS antennas
(M) localized at the center of the cell. Let K be the set of single-antenna devices in the
cell, which decide to activate with probability Pa transmitting payload data together with
a randomly selected pilot sequence to enable UL channel estimation at the BS side. We denote
the τp mutually orthogonal pilot sequences as s1, ..., sτp ∈ Cτp×1, such that each pilot has
length τp and ∥st∥2 = τp, ∀t ∈ [1, τp]. Besides, we denote the number of active devices
as Ka, while each device has a number of Lk packets to transmit. Therefore, considering
St ⊂ K as the set of devices that want to transmit data selecting pilot t; its cardinality
follows a binomial distribution:

|St| ∼ B
(

K,
Pa

τp

)
, (1)

where K = |K| is the total number of devices in the cell. An illustrative representation of
the adopted scenario is presented in Figure 1, while a detailed description of each protocol
step is provided in Section 4.

The channel vector between BS and device k is denoted by hk ∈ CM×1. The channel
follows a complex Gaussian distribution hk ∼ CN (0, βkIM), where βk is the large-scale
fading coefficient, which follows an urban micro scenario [31]. So, the large-scale fading of
the link between device k and the BS is

βk = 10−κ log(dk)+
g+φ
10 . (2)

In this equation dk is the distance between device k and the BS, κ = 3.8 is the path
loss exponent, φ ∼ N (0, σ2

sf) is the shadow fading, with standard deviation σsf = 10 dB,
and g = −34.53 dB is the path loss at the reference distance [31].
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Figure 1. Illustrative representation of the adopted cellular mMTC network with IoT devices employ-
ing GF RA protocol for their activation and payload data transmission.

The devices transmit the payload data prepended with an RA pilot to enable channel
estimation employing a GF RA protocol. If the transmitted payload data packet is success-
fully decoded at the BS, the device proceeds to transmit the next data packet. Otherwise,
the device repeats the transmission of the same packet in the next frame, which increases
latency and decreases the per-device throughput and the network throughput. A pilot collision
occurs when two or more devices choose the same RA pilot in the above process and is
one of the leading causes of packet losses. Therefore, designing strategies for decreasing
the probabilities of pilot collisions is essential in mMTC networks, as described in the
following sections.

3. Existing QL-Based GF RA Protocols

Q-learning can be used as a multi-agent RL method to aid IoT devices in selecting
the least congested RA pilots in a decentralized way. In typical mMTC networks, active
IoT devices cannot coordinate either with the BS or with each other for pilot selection;
therefore, IoT devices act as individual learning agents, using their previous experience to
enhance the probability of selecting exclusive RA pilots, minimizing the occurrence of pilot
collisions. In this section, we revisit two previous works where this framework has been
applied in a simple collision channel, i.e., assuming that the only communication impairment
is pilot collision, while neglecting multipath fading, shadowing, path loss, thermal noise,
and ICI. If the chosen RA pilot is exclusively selected by that device (no interference), it
is assumed that the payload data packet transmitted by it is successfully decoded at the
BS, and the device proceeds to transmit the next data packet. Otherwise, if a collision
occurs, the device repeats the transmission of the same packet in the next frame. Thus,
reinforcement learning techniques can be employed to guide the pilots’ choice of devices
towards the least congested ones, improving the connectivity performance of the network
in the considered scenario.

The interaction between IoT devices and the environment can be modeled as a Markov
Decision Process, where at each time step, a device can change its current state xt ∈ X
to xt+1 ∈ X by taking action at ∈ A based on a transition probability function
f (xt, at, xt+1) [30]. Depending on its state-action pair, the device is rewarded with rt+1 ∈ R
during the transition state. Besides, the expected return of a state-action pair is given by
Qπ(x, a) = E

[
∑J

j=0 γjrt+j+1|xt = x, at = a, π
]
, where π is the established policy, γ ∈ [0, 1]

is the discount factor and J is the length of one episode [30].
Satisfying the Bellman optimality equation, the Q-function can then be written as

Q∗(x, a) = maxπ Qπ(x, a). If a greedy policy π(x) = arg maxa Qπ(x, a) is established for the
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Q-function, then we have a QL algorithm that selects only the actions associated with the
highest Q-value Q(x, a) at each state, calculated iteratively as:

Qt+1(xt, at) = Qt(xt, at) + δt

[
rt+1 + γ max

a
Qt(xt+1, a)− Qt(xt, at)

]
, (3)

where δt is the learning rate at the tth time step. This model can then be applied for
decentralized pilot selection as described in [28,30], in which each device has a Q-table of τp
elements evaluating its experience in selecting the different pilots to transmit data. This
Q-table can be updated according to:

Qt+1(k, ℓ) = Qt(k, ℓ) + δ[R(k, ℓ)− Qt(k, ℓ)], (4)

where Qt(k, ℓ) is related to the experience of the kth device in choosing the pilot ℓ = c(k),
and R(k, ℓ) indicates the reward function for this choice. It is worth emphasizing the
differences between Equations (3) and (4). The former represents the general framework for
establishing a policy for selecting the changing-state actions of a Markov Decision Process
under a greedy perspective, i.e., seeking to maximize the associated rewards. Applying this
model to the specific problem of decentralized pilot selection in mMTC, the state represents
the pilot the device has chosen in the current access attempt, and the action represents
the pilot it chooses for the next access attempt. As the action determines univocally the
state, the Q-table of a single device can be represented in a single dimension. However,
the problem is multi-agent since we have K devices, and thus we have K unidimensional
Q-tables, which can be better organized in a single Q-table with K lines. It is worth noting
that updating each line occurs without considering the values of the other lines since there
is no coordination between the devices. Finally, no discount factor is implemented in the
mMTC random access context as proposed in [28,30], and thus we arrive at the Equation (4).

A simple way to compute the rewards R(k, ℓ) in (4) is proposed in [28] through an
independent QL approach for mMTC (iQmMTC), where R(k, ℓ) = +1 if the transmission
succeeds, or R(k, ℓ) = −1, otherwise. However, [30] has shown that better results can be
achieved through a collaborative approach (cQmMTC), where the device is rewarded either
with R(k, ℓ) = +1 for a successful transmission or with R(k, ℓ) = −Pc(k) if the transmission
fails, with the collaborative penalty function Pc(k) being computed as

Pc(k) =
1

Ka
CL(k), (5)

where Ka is the number of active devices in the cell and the congestion level CL(k) = |Sc(k)|
is the number of contenders for pilot c(k) [30], while Sc(k) is the set of devices choosing the
same pilot c(k).

In this framework, each device keeps its own 1 × τp Q-table. Initially, this Q-table is
filled with zeros, and all τp RA pilots are equally likely to be chosen by it. Then, at each
subsequent transmission attempt, the devices are rewarded with R(k, ℓ), and their Q-tables
are updated according to (4). Once an individual device has updated its Q-table, it will
only choose pilots among the ones with the highest Q-value. The process is repeated until
the L packets are transmitted.

In the cQmMTC approach of [30], the congestion levels in case of collisions are com-
puted as the number of contending devices, |Sc(k)|. However, nothing is discussed about
the feasibility of making this information available on the device’s side. At first glance,
it would require conceiving an estimator to be employed at the BS and then feedback
the result to devices, which would spend significant signaling overhead. For comparison
purposes, herein, we assume perfectly known the congestion level at the device’s side for
this scheme, referring to it as genie cQmMTC. Furthermore, in a practical network not all
IoT devices are active at a given instant since they activate independently with certain
probabilities in such a way that the actual number of active devices is not known by the BS.
To avoid complex computations and excessive signaling overheads while simplifying the
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procedure, we propose a two-step QL-based GF RA protocol making use of a large number
of BS antennas to allow a collaborative penalty function computation at the devices’ side in
case of collisions with minimal complexity and overhead, as described in the following.

4. Proposed QL GF RA Massive MIMO Protocol

Given the importance of designing pilot collision avoidance strategies for the investi-
gated scenario and the unrealistic assumptions made by the available strategies described
in Section 3, we propose in this section a two-step QL GF RA protocol operating in a realistic
B5G system model, as illustrated in Figure 1. The evaluation in the realistic scenario allows
us to leverage the massive number of antennas available at the BS to improve the operation
of the proposed protocol.

When the device k transmits data, it randomly selects one of the τp pilot sequences
and transmits it followed by its UL payload data packet dk ∈ Cτd×1, with a non-zero
transmit power ρk > 0, where τd is the data length. We can denote the chosen pilot as
c(k) ∈ {1, 2, . . . , τp}, and define the UL signal as xk = [sT

c(k), dT
k ]

T ∈ C(τp+τd)×1.
Thus, the BS receives the signal

Y = [Yp, Yd] = ∑
k∈K

√
ρkhkxT

k + N, (6)

where Y ∈ CM×(τp+τd), Yp ∈ CM×τp , Yd ∈ CM×τd , and N ∈ CM×(τp+τd) is the receiver
noise with entries drawn from CN (0, σ2). Besides, we have

Yp = ∑
k∈K

√
ρkhksT

c(k) + Np, and (7)

Yd = ∑
k∈K

√
ρkhkdT

k + Nd, (8)

with N = [Np, Nd]. Hence, the BS correlates (7) with each pilot to generate channel
estimates. For the case of an arbitrary pilot st, with t ∈ [1, τp], it yields:

yt = Yp
s∗t
∥st∥

= ∑
i∈St

√
ρiτphi + nt, (9)

where nt = Np
s∗t
∥st∥ is the effective receiver noise, so that nt ∼ CN (0, σ2IM). As a result,

the BS tries to decode the payloads in (8) using the channel estimates yt, evaluating:

d̂T
k =

yH
t√
τp

Yd. (10)

The signal-to-interference-plus-noise ratio (SINR) of d̂k in (10) can be obtained follow-
ing the SINR analysis of [32], adapting the results to our scenario, as follows:

γul
k =

M ρ2
k β2

k

M ∑i∈St
i ̸=k

ρ2
i β2

i +
[
∑i∈St

ρiβi +
σ2

τp

][
∑j∈K ρjβ j + σ2

] . (11)

We assume that the decoding of d̂k in (10) is always successful when k is the unique
competitor for the pilot t (without pilot collisions). The BS responds with an ACK feedback
message if the decoding of (10) is successful, together with the transmission of a precoded
DL pilot signal V ∈ CM×τp , with power q, according to:

V =

√
q
τp

τp

∑
t=1

y∗
t

||yt||
sT

t . (12)
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In (12), one can note that the BS uses the estimated channel of each pilot, yt, as a precod-
ing vector to transmit such pilot, st, in the DL. By normalizing each precoding vector and
dividing by the total number of transmitted pilots, the BS ensures the average transmitted
power is equal to q. The devices receive zk ∈ Cτp×1, k ∈ St

zT
k = hT

k V + ηT
k , (13)

where ηk ∼ CN (0, σ2Iτp) is the noise. After correlating zk with st, the device calculates

zk = zT
k

s∗t
||st||

=
√

q hT
k

y∗
t

||yt||
+ ηk, (14)

where ηk ∼ CN (0, σ2). It is important to highlight the different roles of UL and DL pilots.
While the UL pilot transmissions allow the BS to acquire channel estimates in (9), which are
then used to try to decode the payloads in (10), the DL pilot transmissions allow the UEs
to compute zk in (14), which are then used to evaluate how congested were their chosen
pilots in the first step, updating their individual Q-table as described in the sequel.

Collaborative penalty function computation. Let αt = ∑i∈St ρiβiτp be the sum of average
channel gains of the devices in St seen at the BS according to (9), then an asymptotically error-
free estimator for αt is proposed in a similar scenario (in [8], the α̂t,k estimate is computed as
part of the four-steps grant-based handshake procedure of the SUCRe protocol and used to
let the devices decide whether they should retransmit the chosen pilot or not, depending
on whether it is the strongest contender. Differently, herein we employ a GF RA protocol,
in which the devices transmit the payload data together with an RA pilot to enable channel
estimation and data decoding in a reduced number of steps) in [8] as follows:

α̂t,k = max

[
Γ(M + 1

2 )

Γ(M)

]2
qρkβ2

kτp

[ℜ(zk)]2
− σ2, ρkβkτp

, (15)

ℜ(·) is the real part and Γ(·) is the complete Gamma function.
Given the estimate α̂t,k in (15), reminding that αc(k) = ∑i∈Sc(k)

ρiβiτp, and since the
device k knows its average channel gain βk, it can compute a measure of how congested is
its chosen pilot as follows

ϕ̂k =
α̂t,k

ρkβkτp
, 1 ≤ ϕ̂k < ∞. (16)

One can note that as long as ϕ̂k approaches 1, it indicates it is likely that no other device
has chosen the pilot c(k). On the other hand, as ϕ̂k increases, it indicates it is likely that
many other devices chose the same pilot c(k). Therefore, ϕ̂k can be seen as a rough estimate
of CL(k); hence, the penalty function Pc(k) in (5) can be computed approximately as

Pc(k) ≈
ϕ̂k

K̂a
, (17)

in which K̂a is an estimate of the number of active devices in the cell. We propose to employ
a simple estimator, which computes K̂a as the expected number of active devices, supposing
no pilot collision occurs. In this way, one can compute:

K̂a = K · Pa ·E[Lk]. (18)

The penalty function Pc(k) in (17) can be used in a realistic massive MIMO scenario,
allowing a practical implementation of the cQmMTC approach in a GF RA protocol.
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Operationalizing RL for GF RA pilot collision mitigation. We can summarize how RL
is made specific to operate in the system under consideration in the proposed protocol
as follows:

(i) the devices choose their RA pilots along the transmissions of the Lk packets according
to their own Q-table;

(ii) based on the outcome of each transmission, its Q-table is updated following (4), while
computing the rewards as:

R(k, ℓ) =

{
+1, if the transmission succeeds

−Pc(k) = − ϕ̂k
K̂a

, in case of pilot collision,
(19)

with ϕ̂k and K̂a being computed as (16) and (18), respectively.

5. Numerical Results

In this section, we evaluate the performance of the proposed QL-based GF RA protocol
in terms of: (i) average latency, considered herein as the total number of attempts, Ak,
the device makes to transmit its Lk packets, (ii) average network throughput, defined as
the ratio between the number of successfully transmitted packets (without collisions) at
certain time step and the number of available pilots τp, and (iii) the per-device throughput,
considered as the ratio of the total number of successfully sent packets by each device,
Lk, to the total number of attempts, Ak, that the device has to make to send them, in such
a way that Lk ≤ Ak. For the simulations, we consider a massive MIMO BS equipped
with M antennas at the center of a hexagonal cell with a radius of 250 m, surrounded by
six neighboring hexagonal cells with the same radius. Each neighboring cell has a fixed
number of Kici = 400 active interfering devices. The simulation parameters are set as
ρ = 27 dBm, q = 40 dBm, τp = 400, and δ = 0.1. It is worth noting that the choice of the
parameters is based on [29,30] in the case of τp and δ, while being based on [8,31] in the
case of ρ and q. Furthermore, concerning the number of active interfering devices in the
neighboring cells Kici, it is made equal to τp similarly as in [8]. Table 1 summarizes the
numerical parameters adopted in our simulations. With respect to L and Pa, we investigate
three different scenarios in this section: (i) Lk = L, ∀k ∈ K, and Pa = 1, such that Ka = K;
(ii) random Lk, and Pa = 1, such that Ka = K; (iii) random Lk, ∀k ∈ K, and Pa = 0.1%,
such that Ka ≤ K is also random. One can see that while scenario (i) results equal to that
evaluated in [29,30], scenarios (ii) and (iii) become gradually more realistic and challenging
with a random number of packets and active devices.

Table 1. Numerical Parameters for Simulation Settings.

Parameter Value Description

M 100 Number of BS antennas in the center and neighboring cells
τp 400 Number of available RA pilot sequences
q 40 dBm Transmit power of the BS
ρ 27 dBm Transmit power of the UEs

σ2 −98.65 dBm Noise variance
fc 3 GHz Carrier frequency
δ 0.1 Learning rate

Kici 400 Number of active devices in each neighboring cell
R 250 m Radius of the cells
σsf 10 dB Shadow fading standard deviation
κ 3.8 Path loss exponent
g −34.53 dB Path loss at the reference distance

10,000 Number of Monte-Carlo realizations
27 dBm Transmit power of UEs in adjacent cells

6 Number of neighboring cells
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We investigate four protocols: the (a) baseline scheme, which is equivalent to the
slotted ALOHA protocol, with the devices choosing the pilots uniformly at random; (b) the
iQmMTC approach of [28]; (c) the cQmMTC approach of [30], assuming that the actual
values of |St| and Ka are perfectly known at the devices’ side, like if a genie could inform this
to them; and (d) our proposed two-step QL GF RA protocol leveraging the massive MIMO
propagation features to efficiently compute the negative rewards of the QL framework at
the devices’ side, which we denote as mQmMTC. Besides, for this last one, we investigate
its performance in the scenarios with and without ICI (it is worth noting that for the
baseline, iQmMTC, and cQmMTC in the adopted scenario, only pilot collisions degrade
their connectivity performance; therefore, ICI does not matter to them).

5.1. Fixed Lk and Pa = 1

In this subsection, we take Lk = L, ∀k ∈ K, and Pa = 1, such that Ka = K. Al-
though these simplifying assumptions usually do not hold in practice, they are useful in
unveiling the full potential of the investigated methods and in evaluating the performance
losses when not assuming them, which is carried out in the following subsections. The per-
formance results presented in Figures 2 and 3 have been generated with 10,000 Monte-Carlo
realizations. Each realization is a frame or a time step in the QL framework, in which each
device can transmit only one pilot and the payload packet. The number of antennas is kept
fixed at M = 100, and the number of devices varies from 25 to 800 in steps of 25.

Figure 2 shows average latency versus K results. The proximity of the proposed
mQmMTC results for both scenarios with and without interference with the ideal cQmMTC
protocol is noteworthy. Also, both the mQmMTC and the ideal cQmMTC results are below
the baseline for any value of K. Also, they are below the independent QmMTC for K > 400,
which corroborates the cQmMTC superiority presented in [30]. Similarly, Figure 3 reveals
the average network throughput vs K results where the mQmMTC is very close to the ideal
cQmMTC performance for both the scenarios with and without interference while being
consistently superior to the baseline results for any number of devices K. Furthermore,
compared with iQmMTC, the obtained performances are very similar in the region of
K ≤ τp = 400 devices, while the performance obtained by the proposed mQmMTC
approach becomes remarkably superior for a higher number of devices. For example,
with K = 600 active devices, while baseline and iQmMTC achieve network throughputs of
≈0.34 and 0.36, respectively, our mQmMTC protocol achieves a network throughput of
≈0.49, an improvement of ≈44% and ≈36%, respectively.

The performance results presented in Figures 4 and 5 are generated with 80,000 Monte-
Carlo realizations. The number of devices is fixed at K = 400, and the number of available
pilots is also fixed at τp = 400. The number of BS antennas varies in the range M ∈ [1, 100],
both in the home cell as well as in the neighboring cells. Figure 4 depicts the average latency
with an increasing number of BS antennas M, while Figure 5 reveals the behavior of the
average network throughput vs. M. Both figures of merit for the proposed mQmMTC ap-
proach improve with the increasing number of antennas M since the reward computations
in (17) benefit from the large number of BS antennas (favorable propagation effect). Besides,
in both cases the presence of ICI slightly deteriorates the congestion level estimates in (16)
and the reward computations, leading to a small performance degradation. Despite that,
the scenarios with and without ICI perform similarly, achieving improved connectivity
performances by benefiting from the many BS antennas. The results of the ideal cQmMTC
are also included in the figures as a lower bound (avg. latency) and upper bound (avg.
throughput), respectively. The average percentual degradations of the results of mQmMTC
regarding the ideal cQmMTC are also shown in both figures for M = 30 and M = 100.
One can see that the improvement caused by increasing M from M = 10 to M = 100 is not
as significant as when increasing M from M = 1 to M = 10. Therefore, we can conclude
that our proposed mQmMTC RA protocol can achieve improved connectivity performance
even with a small number of BS antennas. Indeed, M ≈ 30 antennas at the BS are revealed
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to be sufficient to attain reliable congestion level estimation ϕ̂k when a maximum acceptable
degradation level of 3.5% is considered.
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Figure 2. Average latency ×K, for L = 10 packets, and M = 100.
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Figure 3. Average network throughput ×K, for L = 10 packets, and M = 100.

Figures 6 and 7 present, respectively, the curves of the latency and network throughput
versus L. The results shown in both figures are generated with 10,000 Monte-Carlo realiza-
tions. The number of active devices is kept fixed at K = 600, and the number of antennas is
also fixed at M = 100. These results demonstrate the superiority of the proposed methods
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even when each device has a small number of packets to send (L ≤ 10). In fact, a minimum
number of L = 2 is enough for the proposed methods (mQmMTC without and with ICI) to
produce a result superior to the baseline and the iQmMTC methods while approximating
the cQmMTC method.
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Figure 4. Average latency × M, for L = 10 packets, and K = 400.
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Figure 5. Average network throughput × M, for L = 10 packets, and K = 400.
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Figure 6. Average latency × L, for K = 600, and M = 100.

0 10 20 30 40 50 60 70 80 90 100

Number of packets (L)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
v
e

ra
g

e
 n

e
tw

o
rk

 t
h

ro
u

g
h

p
u

t

Baseline

iQmMTC

genie cQmMTC

No interf. mQmMTC

Interf. mQmMTC

Figure 7. Average network throughput × L, for K = 600, and M = 100.

5.2. Random Lk and Pa = 1

In this subsection, we evaluate the scenario when the number of packets Lk sent by
each device is random and follows a discrete uniform distribution as Lk ∼ U [1, 10], while we
still maintain Pa = 1 such that K = Ka. Figures 8 and 9 show, respectively, the performance
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results of latency and network throughput. One can note that the superiority of the results
achieved by the proposed methods over the results achieved by the iQmMTC and baseline
methods are preserved. Indeed, the curves in Figures 8 and 9 practically present the
same shapes as the ones in Figures 2 and 3, respectively, but with a little performance
degradation due to the reduction in the average number of transmitted packets, which
limits the learning capability of the QL algorithm in seeking less congested pilots.
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Figure 8. Average latency ×K, for Lk ∼ U (1,10), and M = 100.
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Figure 9. Average network throughput ×K, for Lk ∼ U (1,10), and M = 100.
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5.3. Random Lk and Pa = 0.1%

We consider in this subsection a random number of packets sent by each device
following Lk ∼ U [1, 10], and a random number of devices being activated at each frame
following a binomial distribution with an activation probability of Pa = 0.1%, such that
Ka ≤ K. The number of available RA pilots is also reduced to τp = 40 in order to keep
the simulation time short. The results presented in Figures 10 and 11 are generated with
64000 Monte-Carlo realizations. Figure 10 presents the average per-device throughput
and Figure 11 the average network throughput. The reward in the QL framework of the
mQmMTC GF RA protocol is calculated using (19) while assuming that E[Lk] = 5.5 is
known at the devices’ side. In terms of both performance metrics, our proposed mQmMTC
protocol remains quite close to that of the ideal cQmMTC protocol, while always superior
to that of Baseline and iQmMTC. While the per-device throughput of Baseline drops below
0.5 for K ≈ 2400, this happens with K ≈ 2800 for iQmMTC, with K ≈ 3100 for mQmMTC,
and with K ≈ 3400 for the ideal cQmMTC. Similarly, the network throughput falling
point in Figure 11 occurs with K ≈ 2300 for the Baseline, with K ≈ 2400 for iQmMTC,
with K ≈ 2800 for mQmMTC, and with K ≈ 3100 for the ideal cQmMTC. These results
corroborate the feasibility of the proposed mQmMTC GF RA protocol to address the
challenges of massive machine-type communications in the framework of next-generation
massive multiple access systems.
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Figure 10. Average per-device throughput ×K, for Lk ∼ U (1,10), and M = 100.
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Figure 11. Average network throughput ×K, for Lk ∼ U (1,10), and M = 100.

6. Final Remarks

In this work, we have applied the collaborative, distributed, and decentralized QL-
based GF RA protocol to a massive MIMO scenario for pilot collision control, assuming
realistic wireless propagation effects, such as multipath fading, shadowing, path loss,
thermal noise, and ICI. As devices cannot know the exact number of pilot contenders
without incurring excessive complexity and signaling overhead, our proposed approach
takes advantage of the massive number of BS antennas to allow the devices to compute
the QL rewards in a simplified way. We have also shown that our proposed approach is
robust regarding the number of packets to transmit, which can be as small as 10 or even
random, following a discrete uniform distribution, and regarding the number of active
devices, which can be randomly activated following a binomial distribution. Our proposed
method is also robust regarding the number of antenna variations and does not require
more than ≈30 antennas at the BS to produce significantly improved performance, very
close to the ideal (genie) cQmMTC protocol of [30]. Possible research directions involve the
extension of the protocol to non-terrestrial networks or leveraging other technologies like
reconfigurable intelligent surfaces and cell-free massive MIMO.
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