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Abstract: In this paper, we propose a new approach for the detection of OFDMA and other

wideband signals in the context of centralized cooperativespectrum sensing for cognitive

radio (CR) applications. The approach is based on the eigenvalues of the received signal

covariance matrix whose samples are in the frequency domain. Soft combining of the

eigenvalues at the fusion center is the main novelty. This combining strategy is applied

to variants of four test statistics for binary hypothesis test, namely: the eigenvalue-based

generalized likelihood ratio test (GLRT), the maximum-minimum eigenvalue detection

(MMED), the maximum eigenvalue detection (MED) and the energy detection (ED). It is

shown that the eigenvalue fusion can outperform schemes based on decision fusion and

sample fusion. A tradeoff is also established between complexity and volume of data sent to

the fusion center in all combining strategies.

Keywords: cognitive radio; eigenvalue fusion; eigenvalue spectrum sensing; wideband

spectrum sensing; GLRT; MMED; MED; ED; OFDMA

1. Introduction

Due to the increased demand for wireless communication services and the adoption of a fixed spectral

allocation policy that designates a specific band for primary systems in a given geographical region and

on a long-term basis, spectral scarcity has become of main concern. The spectral scarcity is one of the
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greatest obstacles to the deployment of existing and new wireless communication systems and services.

With the advent of the concept of cognitive radio (CR) [1], cognition-based dynamic access techniques

to spectral bands have arisen to contribute to solving the problem of spectrum congestion and scarcity.

This is done by allowing for the opportunistic occupation ofan underutilized portion of the spectrum by

secondary CR networks.

Spectrum sensing is the fundamental task performed by a CR inorder to gain access to a band of

interest. As the name suggests, it is the task of monitoring agiven band of interest in order to find

spectral holes for subsequent opportunistic occupation. CRs with spectrum sensing capability have to

identify spectrum holes efficiently and avoid harmful interference to primary users by either switching

to an unoccupied band or keeping the interference below a maximum acceptable level [2].

Third-generation (3G) broadband systems are mostly based on direct-sequence spread

spectrum (DSSS), such as Evolution-Data Optimized (EV-DO)or High-Speed Packet Access

(HSPA). Fourth-generation (4G) systems, however, predominately use multicarrier systems, like

orthogonal frequency division multiplexing (OFDM), combined with or without its access counterpart,

the orthogonal frequency division multiple access (OFDMA)[3,4]. A reason for the adoption of

OFDM is that it has some advantages in delivering high speed data, especially in a multipath, frequency

selective fading channel [3]. As OFDM/OFDMA is being adopted as the scheme of choice in broadband

communication systems, it is important for CR networks to sense this kind of signal.

Due to the high importance of OFDMA signals in wireless communication systems and the high

importance of spectral sensing in the context of cognitive radio networks, ongoing researches are

proposing new methods of wideband spectral sensing and existing ones are being combined to improve

the performance of cognitive radio networks. This paper aims at contributing to this research effort by

proposing a new approach to the spectrum sensing of OFDMA andother wideband signals.

1.1. Related Works

Several spectrum sensing techniques have been proposed so far, which can be classified as narrowband

and wideband according to the bandwidth of the spectrum sensed. Narrowband sensing techniques are

limited to detect the presence of primary signals in a singleband, while wideband techniques aim at

jointly or sequentially monitoring multiple bands.

In what concerns narrowband sensing, energy detection (ED)[5,6], matched filter detection (MFD) [7]

and cyclostationary feature detection (CFD) [8] are widely discussed in the literature. For wideband

sensing, recent studies point to three major techniques: energy detection [9,10], wavelet-based detection

(WD) [11] and compressed (or compressive) sensing detection (CSD) [12,13]. Eigenvalue-based

detection [14–17] are one of the most recent and promising techniques for spectrum sensing. Likewise

ED, eigenvalue detection can be applied to narrowband and towideband signals.

In wideband ED, the presence of the primary signal is detected from the energy of the received signal

in each pre-defined band. The spectral partition can be done by using a filter bank approach [18] or by

splitting the wideband signal into parallel narrowband signals via fast Fourier transform (FFT) [9,10].

In this case, the FFT is applied to the time domain samples of the received signal and the presence or
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absence of primary signals in each band is jointly determined by the energy level of the corresponding

frequency-domain signal samples.

Wavelet detection uses the wavelet transform to detect discontinuities in the power spectrum density

(PSD) of the signal received by a CR, thus defining the frequency boundaries in the primary signal [11].

The frequency boundaries are in local maxima of the first derivative of the wavelet transform. Having

established the boundaries, the level of the PSD is estimated by the average of the signal’s PSDs in each

frequency band estimated via wavelet transform.

Compressed sensing uses a procedure of parameter estimation from a sampling with rate below the

Nyquist rate (sub-Nyquist sampling) [12,13]. Through the solution of an optimization problem, which is

typically convex, the signal’s PSD is estimated and the signal presence in each band is determined using

a procedure analogous to the one adopted in the wavelet transform approach.

In eigenvalue-based spectrum sensing, the test statistic is computed from the eigenvalues of the

received signal covariance matrix [14,15], as for instance the eigenvalue-based generalized likelihood

ratio test (GLRT), the maximum-minimum eigenvalue detection (MMED), also known as eigenvalue

ratio detection (ERD), and the maximum eigenvalue detection (MED), also known as Roy’s largest root

test (RLRT). The advantage of eigenvalue-based spectrum sensing is that noa priori knowledge about

the primary transmitted signal is needed for computing the test statistic. In schemes like the GLRT and

MMED, the knowledge of the thermal noise variance is not needed either.

Although spectrum sensing can be performed by each CR individually and independently from others

CRs, cooperative spectrum sensing is being considered as a possible solution for problems experienced

by cognitive networks with a non-cooperative spectrum sensing, such as receiver uncertainty, multipath

fading and correlated shadowing [2].

Cooperative spectrum sensing can be centralized, distributed or relay-assisted [2]. In centralized

cooperative sensing, data collected by each cooperating CR(e.g., samples from the received signal) is

sent to a fusion center (FC) through a dedicated control channel. This process is called data fusion.

After the data is processed, the FC decides upon the occupation state of the channel. Centralized

cooperative spectrum sensing can be executed as well from the decisions about the channel occupancy

state made by each cooperating CR individually. This operation is called decision fusion, where the final

decision about the channel state is accomplished through binary operations on the CR decisions. In both

centralized schemes, the final decision is informed back to the CRs through the control channel. The

access algorithm adopted by the secondary network then takes place.

It is worth mentioning that the role of an FC in a centralized cooperative spectrum sensing can be

assigned to a cluster-head in the context of clustered network topologies [19], which is the case of

most wireless sensor networks (WSN). This clustering approach can be of particular value in large

area networks, where the adoption of a single FC could prohibitively increase the control channel

traffic and lead to inefficient spectrum utilization. This inefficiency can be caused by the distinctive

spectrum occupancy in different regions of the network, which could be misled by large-area-based

centralized decisions.
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1.2. Contributions and Structure of the Paper

This paper proposes a new eigenvalue-based centralized cooperative spectrum sensing approach for

OFDMA and other wideband signals. In this approach, the energy detection in [9,10] is replaced

by a technique based on the eigenvalues of the received signal covariance matrix. For general

wideband signals (This eigenvalue fusion scheme was brieflydiscussed in a shorter paper, in Portuguese,

which was presented in the 30th Brazilian Telecommunications Symposium (SBrT’12), under the

title “Sensoriamento Espectral Cooperativo Baseado em Autovalores para Sinais de Banda Larga”

(Eigenvalue-Based Cooperative Spectrum Sensing for Wideband Signals) [20]), the technique aims at

locating spectral holes to the level of sub-bands. An adapted version of the technique that addresses

the problem of sensing OFDMA signals to the level of subchannels is also proposed. In this case, the

interest is to jointly sense all carriers of a subchannel, allowing for the opportunist occupancy of a vacant

subchannel by one CR or allowing for the division of a vacant subchannel to multiple CRs.

Three forms of data fusion were addressed: (i) the fusion of samples from each CR, but in the

frequency domain; (ii) the fusion of binary decisions made by all cooperating CRs and (iii) the new

fusion approach in which the eigenvalues estimated by each CR are combined at the FC.

Simulation results show that the new eigenvalue fusion scheme can overcome the performance of the

sample and decision fusion for detection of unoccupied sub-bands in a general wideband signal and for

detection of unoccupied subchannels in an OFDMA signal.

The eigenvalue fusion scheme demands less transmitted datato the FC when compared with sample

fusion schemes with similar performances. However, the amount of data transmitted to the FC in

eigenvalue fusion and sample fusion can be, by far, greater than those in decision fusion schemes with

similar system parameters.

The remaining of the paper is organized as follows. Section2 briefly reviews the cooperative

centralized eigenvalue-based spectrum sensing technique. In Section3, the proposed eigenvalue fusion

and other fusion schemes are considered for the detection ofgeneral wideband signals. In Section4,

the eigenvalue fusion and other fusion schemes are considered for the detection of OFDMA signals.

Numerical results and their interpretations are presentedin Section5. Section6 deals with the tradeoff

between the complexity of the radios and the volume of data sent to the fusion center. Conclusions and

suggestions for new research are in Section7.

2. Traditional Eigenvalue-based Cooperative Spectrum Sensing

Consider a discrete-time memoryless multiple input multiple output (MIMO) model, where each of

them sensors (antennas) in a CR or each single-sensor CR collectsn samples of the received signal from

p primary transmitters during the sensing period. Those samples are arranged in a matrixY ∈ Cm×n.

Analogously, consider that the signals transmitted by thep transmitters are organized in a matrixX ∈
Cp×n. Let H ∈ Cm×p be the channel matrix with elements{hi}, i = 1, 2, . . . , m and = 1, 2, . . . , p,

representing the channel gain between the-th primary transmitter and thei-th sensor (antenna or CR).

It is assumed that these gains do not vary during the sensing period. Finally, letV ∈ Cm×n be the matrix
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with thermal noise samples corrupting the signal received by them sensors. Therefore, the matrix with

received samples under this MIMO channel model is given by

Y = HX+V (1)

In eigenvalue-based cooperative spectrum sensing, a spectral hole is detected by applying a binary

hypothesis test where the test statistic is built from the eigenvalues of the received signal ensemble

covariance matrixRe = E[YY
†], whereE[·] is the expected value operator. Since the ensemble

covariance matrix is normally unknown, it is replaced by itsmaximum-likelihood estimate, the sample

covariance matrix

R =
1

n
YY

† (2)

where(·)† denotes the conjugate and transpose operations. The eigenvalues{λ1 ≥ λ2 ≥ · · ·λm} of R
are computed and then, the test statistics for the GLRT, MMED, MED and ED are formed. In [21–23],

binary hypothesis tests for multiple sources are deduced. Here, for simplicity reasons, we consider just

a single primary transmitter, and in this case the followingtest statistics apply [14]:

TGLRT =
λ1

1
m

tr(R)
=

λ1

1
m

m
∑

i=1

λi

(3)

TMMED =
λ1

λm
(4)

TMED =
λ1

σ2
(5)

TED =
‖Y‖2F
mnσ2

=
1

mσ2

m
∑

i=1

λi (6)

whereσ2 is thermal noise variance at the input of each sensor, and tr(·) and‖ · ‖F correspond to the trace

and the Frobenius norm of the matrix, respectively. The sensing process is then concluded by comparing

the test statistic with a threshold pre-defined according tothe desired performance of the sensing process.

If the test statistic is greater than the threshold, the channel is deemed occupied; otherwise the channel

is declared vacant.

The performance of a sensing technique is usually measured in terms of the probability of false alarm

(Pfa) and the probability of detection (Pd). Pfa is the probability of inferring that a sensed band is occupied

when it is in fact vacant,i.e., Pfa = Pr[T > γ|H0]. Pd is the probability of inferring that a sensed band

is occupied when it is indeed occupied,i.e., Pd = Pr[T > γ|H1]. Hereγ is the decision threshold, and

H0 andH1 are the hypotheses that the primary transmitted signal is absent and present, respectively. It

is thus desirable thatPfa is minimized andPd is maximized. However, these objectives are conflicting

ones: increasing the threshold decreasesPfa, but also decreasesPd. As a consequence, a tradeoff must

be adopted so that the correct threshold is established. Thetradeoff is usually determined with the aid of

receiver operating characteristic (ROC) curves that show the variation ofPfa versusPd with changes in

the threshold value.



J. Sens. Actuator Netw. 2013, 2 6

3. Eigenvalue Fusion and other Fusion Methods for DetectingGeneral Wideband Signals

The eigenvalue-based detection for narrowband signals canbe used to detect wideband signals as

well. To this end, the model considered in the previous section has to be adapted to a situation in

which received samples are represented in the frequency domain. Therefore, before going into the

specifics of the proposed eigenvalue fusion scheme, we first address the channel and signal models

in the frequency domain. Then we discuss how the sample fusion process works when samples are

in the frequency domain. The proposed eigenvalue fusion is presented in the sequel. For the sake of

completeness, the section ends with the description of the decision fusion process in the context of

general wideband signals.

3.1. Channel and Signal Models

Consider a wideband communication system in which the overall bandwidth is partitioned into

K non-overlapping narrow bands, as in [9,10]. Some of these bands may be vacant during a time

interval in a specific geographic region, being available for opportunistic secondary transmissions.

The wideband spectrum sensing problem in this case can be cast as a hypothesis test whereH0,k

represents the absence of the primary signal andH1,k represents the presence of the primary signal

in thek-th band withk = 1, . . . , K.

Assume a multipath frequency-selective fading channel, wherehℓ, ℓ = 0, 1, . . . , L− 1, represents its

discrete-time impulse response withL resolvable paths between a single primary transmitter and aCR.

Omitting the CR index, without loss of generality, the signal received by a CR can be written as

yt =
L−1
∑

ℓ=0

hℓst−ℓ + vt, t = 1, 2, . . . , 2L− 1 (7)

wherest is the primary transmitted signal samples andvt is the complex additive white Gaussian noise

(AWGN) samples with zero mean and varianceσ2, i.e., vt ∼ CN (0, σ2). We assume that noise samples

are independent of signal samples.

In a multipath fading channel, a wideband signal undergoes frequency-selective fading. The

frequency-selective behavior of the channel in a given observation instant (snapshot) can be unveiled

from its frequency response, which can be obtained by aK-point FFT of the channel impulse response,

i.e.,

Hk =
1√
K

L−1
∑

i=0

hie
−j2πik/K , k = 1, . . . , K (8)

Analogously, a snapshot of the received signal can be represented in the frequency domain by the

K-point FFT ofyt, i.e.,

Yk =
1√
K

K−1
∑

i=0

yie
−j2πik/K

= HkXk + Vk, k = 1, . . . , K

(9)

whereXk is the primary signal in the frequency domain andVk is the thermal noise in the frequency

domain at thek-th band. These frequency-domain noise samples will be Gaussian with zero mean and
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varianceσ2, as the FFT operation is a linear transformation and the samples of a Gaussian noise in the

time domain are Gaussian distributed. We also model the primary signal samples as a Gaussian random

signal, since most of the modulated signals, especially OFDM signals, can be accurately modeled as

having Gaussian distributed amplitudes. We also assume a slow fading channel, meaning that the channel

frequency response is constant during a sensing period, butindependent from one period to another.

3.2. Sample Fusion to Detect General Wideband Signals

Traditional data fusion cooperative spectrum sensing combines the samples collected by each CR at

the FC, as described in Section2. In order to form a matrix with received samples in the frequency

domain, consider that each CR collectsN samples from thek-th sub-band—we can also viewN as the

number of snapshots of the received signal samples in the frequency domain given in Equation (9).

Thek-th matrix of received samples in the frequency domain is made up by grouping theN samples

taken from thek-th sub-band by each of them sensors (antennas or CRs). In this case, the order of the

resulting matrix will bem × N . The matrices with received samples in this sample fusion scenario for

general wideband signals are then

Ak =







Y
(1)
k (1) . . . Y

(1)
k (N)

...
. . .

...

Y
(m)
k (1) · · · Y

(m)
k (N)






(10)

whereY (i)
k (j) is the j-th sample collected by thei-th CR in thek-th sub-band. The total number of

samples received by the FC is thenmKN . The sample covariance matrix in this case is computed at the

FC and is given by

Rk =
1

N
AkA

†
k (11)

The eigenvalues ofRk are also computed at the FC and the test statistic for thek-th sub-band of a

general wideband signal with sample fusion is formed via Equations (3)–(6).

3.3. Eigenvalue Fusion for General Wideband Signals

We now propose a new eigenvalue fusion scheme, where each CR is responsible for computing its

own sample covariance matrix, estimating its eigenvalues and transmitting these eigenvalues to the FC.

The aim is to detect the presence of a primary signal to the level of subcarriers in OFDM systems, or

to the level of predefined channels or sub-bands in general wideband signals. The adaptation of the

eigenvalue combining is discussed in the next section.

Again, letN be the number of snapshots of the signal received by each CR inthe frequency domain,

and letJ be the desirable number of eigenvalues per frequency band orsubcarrier of a general wideband

signal, which is the order of the sample covariance matricesto be subsequently computed. Assuming

thatN/J is an integer number, a matrixA(i)
k with samples from thek-th sub-band or subcarrier can

be formed by arranging theN samples taken by thei-th CR inJ rows andN/J columns, preferably
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with N/J ≫ J (which impliesN ≫ J) for more accuracy of the subsequent sample covariance matrix

computation. MatrixA(i)
k is then

A
(i)
k =







Y
(i)
k (1) . . . Y

(i)
k (N/J )

...
. . .

...

Y
(i)
k (n+ 1−N/J ) · · · Y

(i)
k (N)






(12)

The sample covariance matrices in this case are computed in each CR and are given by

R
(i)
k =

J

N
A

(i)
k A

(i)
k

†
(13)

The eigenvalues of these covariance matrices are then computed and sent to the FC. The next part

of the sensing process is to combine the eigenvalues received by the FC for the computation of the test

statistic. For a quantitym of cooperating CRs, the total number of eigenvalues received by the FC is

mKJ . Through some modifications in Equations (3)–(6), we propose the following test statistics for the

k-th sub-band in the eigenvalue fusion scheme for general wideband signals:

TGLRT,k =

1
m

m
∑

i=1

λ1,k,i

1
JKm

J
∑

j=1

K
∑

z=1

m
∑

i=1

λj,z,i

(14)

TMMED,k =

1
m

m
∑

i=1

λ1,k,i

1
Km

K
∑

z=1

m
∑

i=1

λJ,z,i

(15)

TMED,k =
1

mσ2

m
∑

i=1

λ1,k,i (16)

TED,k =
1

Jmσ2

J
∑

j=1

m
∑

i=1

λj,k,i (17)

where{λ1,k,i ≥ λ2,k,i ≥ · · ·λJ,k,i} are theJ eigenvalues associated with thek-th sub-band andi-th

CR. For the modified GLRT, the proposed combination rule of eigenvalues is the arithmetic mean of the

maximum eigenvalues obtained from thek-th sub-band divided by the arithmetic mean of all eigenvalues

received by the FC. For the modified MMED, the test statistic is determined from the arithmetic mean

of the maximum eigenvalues obtained from thek-th sub-band divided by the arithmetic mean of the

minimum eigenvalues from each band and CR. The modified MED test is computed calculating the

arithmetic mean of the maximum eigenvalues obtained from the k-th sub-band divided by the noise

variance. Finally, the modified ED test is computed from the arithmetic mean of all eigenvalues obtained

from thek-th sub-band divided by the noise variance.

Notice that the difference between the sample fusion and theeigenvalue fusion schemes goes beyond a

simple shift of the eigenvalue computations from the FC to the CRs. In sample fusion, samples collected

by the CRs are sent to the FC, where one sample covariance matrix from all CR samples is formed. The

eigenvalues of this matrix are computed and then the desiredtest statistic is formed. In the proposed
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scheme, each CR forms one covariance matrix based solely on its samples and computes its eigenvalues.

The eigenvalues from different CRs are then sent to the FC, where they are combined to form the test

statistic. Notice that this approach aims at reducing the volume of data sent in the reporting channel

(from the CRs to the FC) when compared with the sample fusion scheme.

It is worth mentioning that the modified test statistics Equations (14)–(17), as well as other ones

defined later in this paper, were determined empirically. This means that it is not guaranteed that they

are the optimal versions of the corresponding hypothesis tests derived from a likelihood ratio test. Then,

all the modified test statistics from this point on can be castas GLRT-like, MMED-like, MED-like and

ED-like tests.

3.4. Decision Fusion for General Wideband Signals

In Section1 we have mentioned that centralized cooperative spectrum sensing can be made on a

decision fusion basis, in which CR decisions are combined atthe FC. Commonly used decision fusion

combining rules are AND, OR and majority-voting [2,24], which are collectively classified under the

general termz-out-of -M . If z is 1 andM , thez-out-of -M becomes the OR and AND rules, respectively.

If z ≥ M/2, thez-out-of -M becomes the majority-voting rule.

The final decision at the FC related to a given band is arrived at as follows: letui represent the

decision made by thei-th CR upon a given sub-band andu represent the final decision made at FC for

that sub-band, withui, u ∈ {0, 1}, where “0” (“1”) indicates the absence (presence) of a primary signal

in the sensed sub-band. For the AND rule, the FC determinesu = 1 if ui = 1 for i = 1, 2, . . . , m. For the

OR rule,u = 1 if ui = 1 for anyi. For the majority-voting rule, the FC declaresu = 1 if
∑

ui > m/2

andu = 0 if
∑

ui < m/2; an arbitrary decision is made when
∑

ui = m/2 [2,24].

Individual CR decisions can be made by applying any of the detection techniques discussed so far.

The test statistics for thei-th CR decision upon thek-th sub-band of a general wideband signal can be

determined from minor modifications in Equations (14)–(17), leading to:

TGLRT,k,i =
λ1,k,i

1
JK

J
∑

j=1

K
∑

z=1

λj,z,i

(18)

TMMED,k,i =
λ1,k,i

1
K

K
∑

z=1

λJ,z,i

(19)

TMED,k,i =
λ1,k,i

σ2
(20)

TED,k,i =
1

Jσ2

J
∑

j=1

λj,k,i (21)

where, again,{λ1,k,i ≥ λ2,k,i ≥ · · ·λJ,k,i} are theJ eigenvalues associated with thek-th sub-band and

i-th CR.
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4. Eigenvalue Fusion and other Fusion Methods for DetectionOFDMA Signals

The proposed eigenvalue fusion scheme can be applied to any wideband signal. From the previous

section we saw that it can be directly applied to the level of subcarriers in OFDM signals, for example,

or to the level of predefined sub-bands in general wideband signals. Moreover, it can be adapted to

sense an OFDMA signal to a subchannel level. This adaptationis described in this section. For the

sake of completeness, the sample fusion and the decision fusion are also described in the context of

OFDMA signals.

4.1. Eigenvalue Fusion for OFDMA Signals

While OFDM assigns an entire block of frequencies to one user, OFDMA is a multiple access

technique that allocates to a given user a set or multiple sets of subcarriers, allowing for simultaneous

access to the overall band by several users. A set of frequencies is called a subchannel. The formation

of a subchannel can be classified in two types: adjacent subcarrier method (ASM), which groups a

set of contiguous subcarriers to form a subchannel, and diversity subcarrier method (DSM), in which

non-contiguous subcarriers are chosen to form a subchannel[4]. As a consequence, when the proposed

eigenvalue fusion scheme is applied to the detection of a primary OFDMA signal, it aims at detecting

the signal at the subchannel level,i.e., it aims at detecting if a given subchannel is vacant or not.

Suppose a single OFDMA signal withK available subcarriers andP subchannels. Thereby,

K ′ = K/P subcarriers will form a subchannel indexed bys, wheres = 1, 2, . . . , P . We assume that

each CR knows the subcarrier allocation map for each subchannel. This information can be readily

available from the primary network standard. A matrix of orderK ′ × N with sample values at thei-th

CR ands-th subchannel will be formed according to

A
(i)
s =







Y
(i)
s,1 (1) . . . Y

(i)
s,1 (N)

...
. . .

...

Y
(i)
s,K ′(1) · · · Y

(i)
s,K ′(N)






(22)

whereY (i)
s,k′(j) is thej-th sample collected by thei-th CR in thek′-th subcarrier pertaining to thes-th

subchannel. From Equation (22), the next step is to compute the corresponding sample covariance

matrices, according to

R
(i)
s =

1

N
A

(i)
s A

(i)
s

†
(23)

from wheremK ′P eigenvalues are estimated and sent to the FC. The test statistics for the s-th

OFDMA subchannel are computed at the FC according to the following slightly-modified versions of

Equations (14)–(17):

TGLRT,s =

1
m

m
∑

i=1

λ 1, s,i

1
mPK ′

K ′

∑

j=1

P
∑

z=1

m
∑

i=1

λj,z,i

(24)
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TMMED, s =

1
m

m
∑

i=1

λ1, s,i

1
mP

P
∑

z=1

m
∑

i=1

λK ′,z,i

(25)

TMED,s =
1

mσ2

m
∑

i=1

λ1, s,i (26)

TED, s =
1

K ′mσ2

K ′

∑

j=1

m
∑

i=1

λj, s,i (27)

where{λ1,s,i ≥ λ2,s,i ≥ · · ·λK ′,s,i} are theK ′ ordered eigenvalues associated with thes-th subchannel

andi-th CR.

4.2. Sample Fusion for OFDMA Signals

Here we describe how the sample fusion strategy can be adapted to detect the occupancy of an

OFDMA subchannel. Several sample combining rules can be implemented in this case; below we

describe two alternatives that produce a sample covariancematrix at the FC with the same order

as in the case of eigenvalue combining. These alternatives are designated as concatenation and

maximum-ratio-combining.

A number ofK ′N samples are collected by each CR for each of theP subchannels. These samples

are then sent to the FC, where they are processed as follows: First, a number ofmP sample matrices

of orderK ′ × N , as in Equation (22), are formed. In one situation, the matrices correspondingto the

subchannels from all CRs are concatenated, leading toP sample matrices of orderK ′ ×mN given by

As =
[

A
(1)
s A

(2)
s · · · A

(m)
s

]

(28)

In another situation, the rows corresponding to all CRs are maximum-ratio-combined, resulting inP

sample matrices of orderK ′ ×N given by

As =
m
∑

i=1

H
(i)
s A

(i)
s (29)

whereH(i)
s = diag

[

H
(i)
s,1, H

(i)
s,2, . . . , H

(i)
s,K ′

]

is the diagonal gain matrix whose diagonal entries{H(i)
s,k′}

are the channel gains in the frequency domain between the primary transmitter andi-th CR in thek′-th

subcarrier of thes-th OFDMA subchannel,i = 1, 2, . . .m; s = 1, 2, . . . P ; k′ = 1, 2, . . .K ′. From the

matrices in Equation (28) or Equation (29), the corresponding sample covariance matrices

Rs =
1

N
AsA

†
s (30)

of orderK ′ ×K ′ are computed and their eigenvalues{λ1,s ≥ λ2,s ≥ · · ·λK ′,s} are estimated. The test

statistics Equations (3)–(6) are now modified to detect thes-th OFDMA subchannel, leading to:

TGLRT,s =
λ 1, s

1
PK ′

K ′

∑

j=1

P
∑

z=1

λj,z

(31)
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TMMED,s =
λ 1, s

1
P

P
∑

z=1

λK ′,z

(32)

TMED, s =
λ1,s

σ2
(33)

TED, s =
1

K ′σ2

K ′

∑

j=1

λj,s (34)

The decision upon the occupancy of thes-th OFDMA subchannel is then reached at the FC after

comparing the adopted test statistic with the decision threshold.

4.3. Decision Fusion for OFDMA Signals

Now we describe how the decision fusion strategy was adaptedto detect the occupancy of an

OFDMA subchannel. A matrix with sample values at each CR and for each subchannel will be formed

according to Equation (22), from where the corresponding sample covariance matricesare computed

via Equation (23). From each of the resultingP sample covariance matrices,K ′ eigenvalues are

estimated in each CR and ordered as{λ1,s ≥ λ2,s ≥ · · ·λK ′,s}. The occupation of each subchannel

is determined by comparing any of the test statistics Equations (31)–(34) with the decision threshold.

The resulting decisions are then sent to the FC for binary arithmetic combining and final decisions upon

each subchannel.

5. Numerical Results

In this section, we compare the proposed eigenvalue fusion scheme with schemes using sample and

decision fusions. Two types of primary signal were considered: a general wideband signal and an

OFDMA signal. In the case of a general wideband signal, the performance is relative to sensing at

the level of sub-bands. In the case of OFDMA, the performanceis relative to sensing at the subchannel

level. In all cases, the ROC curves were built from the average ofPfa andPd in all frequency sub-bands

of general wideband signals, or in all subchannels of OFDMA signals. The curves were obtained via

Monte Carlo simulations, counting a minimum of100 false alarm or detection events (which occurs

first) or a maximum of 5000 runs. The code was implemented in MATLAB according to the models

and test statistics described throughout the paper. The primary radio signal activity in each sub-band and

subchannel was modeled as a Bernoulli random variable with50% of the time in the ON state (forPd

computations) and50% in the OFF state (forPfa computations).

5.1. Results for a General Wideband Signal Detection

To simulate the detection of a general wideband signal, we have considered a single primary

transmitter whose total bandwidth was partitioned intoK = 8 sub-bands. We have also considered:

m = 6 single sensor (single antenna) cooperating CRs, signal-to-noise ratio SNR= −10 dB, and

Gaussian-distributed primary signal with unitary transmitted power. The channel between the primary



J. Sens. Actuator Netw. 2013, 2 13

transmitter and each CR was a multipath fading channel withL = 8 uncorrelated propagation paths

having Rayleigh-distributed magnitudes, unitary second moment and uniformly-distributed phase in

(0, 2π]. The channel was considered static during a sensing period,changing independently and

identically distributed from one period to another.

It is known that the number of collected samples and the orderof the sample matrix used in the

computation of the covariance matrix influence the sensing performance of eigenvalue-based spectrum

sensing. Then, for a fair comparison, both should be the samein all fusion schemes analyzed here.

However, this is only possible in the case of the eigenvalue and decision fusion, as can be verified in

Section4; see Equations (10) and (11). For comparisons considering general wideband signals, we

have chosen to make the order of the sample matrices the same.The consequence of this is that the

number of collected samples in each CR had to be larger for theeigenvalue and decision fusion schemes,

when compared with the decision fusion. In practice, this will not be an issue, since a larger amount of

samples in a given sensing interval can be obtained by increasing the sampling rate. Nevertheless, as a

counterexample, we have also carried out simulations assuming an equal number of collected samples

per carrier in all fusion schemes.

For the eigenvalue and decision fusion schemes, the total number of samples collected by each CR

wasn = KN = 8 × 300 = 2, 400 (N = 300 samples in each frequency sub-band). To simulate the

sample fusion scheme,n = KN = 8 × 50 = 400 samples (N = 50 in each frequency sub-band) were

utilized to form the covariance matrix at the FC. In order to consider the same number of samples for all

fusion schemes, we have also simulated the sample fusion withN = 300 samples per carrier. The order

of the covariance matrix for sample fusion wasm ×m = 6 × 6 andJ × J = 6 × 6 for eigenvalue and

decision fusions.

Figures1–4 show ROC curves for the proposed eigenvalue fusion scheme parallel to sample and

decision fusion curves. The test statistics Equations (3)–(6) were used for the sample fusion, and the

tests Equations (18)–(21) were used for individual CR decisions. The test statisticsEquations (14)–(17)

were considered for the eigenvalue fusion. The performances with sample fusion are in close agreement

with those reported in [14], which were obtained under the same system parameters adopted here. As

expected, this indicates that processing the samples in thefrequency domain leads to the same results as

in the case of processing them in the time domain.

From Figures1–4, one can notice that the proposed eigenvalue fusion scheme outperforms all other

fusion and combining methods for all test statistics considered in this paper, except in the case of

N = 300 samples per carrier for the sample fusion. The performance of the eingenvalue fusion is closely

followed by the OR decision fusion, except for MED where the performance gap is larger. For MMED

and ED, the sample fusion is worse than the decision fusion with OR and majority-voting combining,

overcoming only AND. For GLRT and MED, the sample fusion overcomes the AND rule significantly,

showing a slightly better performance than majority-voting. The AND is the worst among all fusion

rules and test statistics under analysis. These results arenot meant to state that the relative performances

of the decision combining rules will always be kept the same.As mentioned in [2], the performance

ranking of AND, OR and majority-voting can vary with different system parameters or scenarios.
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Figure 1. ROCs for sample fusion, decision fusion and eigenvalue fusion using GLRT for

sensing a general wideband signal.
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Figure 2. ROCs for sample fusion, decision fusion and eigenvalue fusion using MMED for

sensing a general wideband signal.
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Figure 3. ROCs for sample fusion, decision fusion and eigenvalue fusion using MED for

sensing a general wideband signal.
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Figure 4. ROCs for sample fusion, decision fusion and eigenvalue fusion using ED for

sensing a general wideband signal.
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WhenN = 300 samples per carrier in the sample fusion scenario, the performance is better than the

performance of the other fusion schemes, except in the case of ED (for the same number of samples per

carrier, computing the signal energy using sample values isequivalent to computing the energy using
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the average of the eigenvalues). However, whenN = 300, the number of samples sent to the FC is six

times the number of samples whenN = 50. Moreover, the sample matrices used for covariance matrices

computations have order6×300 for N = 300 and6×50 for N = 50. Although the resulting covariance

matrices have the same order (6×6), it was expected that more samples led to better performances. This

scenario is clearly favoring the sample fusion, resulting in unfair comparisons.

Still referring to the results in Figures1–4, surprisingly the ED tests overcome the MED tests for

eigenvalue combining and for the decision fusion schemes with majority-voting, AND and OR rules,

inverting the behavior obtained with the use of sample fusion. In other words, the test statistics

proposed in Equations (17) and (21) unveiled more statistical power than the test Equations (16) and (20),

respectively, indicating that the latter ones have margin for further improvements in their expressions.

5.2. Results for an OFDMA Signal Detection

To simulate the application of the eigenvalue fusion technique for detecting subchannels of a single

OFDMA signal, we have considered a primary network withP = 4 subchannels. The number of

cooperating CRs wasm = 6. An OFDMA channel withK = 20 subcarriers was adopted. The

subchannels were created by formingP = 4 sets withK ′ = K/P = 5 subcarriers randomly selected.

We also considered unitary primary signal power and SNR= −10 dB. The wireless channel was

modeled as a 20-path slow frequency-selective fading channel whose frequency response was kept

constant during a sensing period, being varied from one sensing period to another. As in the case of

general wideband signals, the second moment of the channel gains were normalized so as to keep the

average received signal power equal to the average transmitted signal power. The number of samples

collected in each subcarrier frequency wasN = 60 for all fusion schemes.

The test statistics Equations (31)–(34) were used for the sample fusion (using concatenation and

MRC) and for individual CR decisions. The test statistics Equations (24)–(27) were considered for the

eigenvalue fusion.

Figures5–8 show the ROCs for the eigenvalue fusion, the sample fusion and the decision fusion

schemes for the detection of the OFDMA signal previously considered, for all test statistics considered

in this paper. It is in order to remember that the aim of the spectrum sensing in this case is to determine

the status of an entire subchannel occupation, differing from the sub-band occupation in the case of a

general wideband signal.

As in the case of a general wideband signal, the eigenvalue fusion scheme delivered the best

performance among all fusion methods under analysis, for all test statistics, closely followed by the

sample fusion using the concatenation approach for constructing the sample matrices. The performance

of the sample fusion using the MRC approach produced a worse performance than the concatenation

approach, also having the drawback of needing to know the channel gains. The better performance of the

concatenation approach can be accredited to the large number of columns in the matrices used to compute

the sample covariance matrices, as shown by Equation (28). We conjecture that the poor performance of

the sample fusion for sensing OFDMA signals can be accredited to the different channel gains affecting

each row of the sample matrices used for covariance matricescomputations: notice in Equation (28) that

the concatenated matrices come from different CRs and, thus, result from different channel gains. This
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is in contrast with the model presented in Section2, which assumes that the channel gain present in the

elements of each row of the sample matrix is the same. The teststatistics Equations (3)–(6) considered

as references for all test statistics proposed in this papersubsumes this invariant gain. Then, when the

gains vary within a given row, performance degradation is expected.

Figure 5. ROCs for sample fusion, decision fusion and eigenvalue fusion using GLRT for

sensing OFDMA subchannels.
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Figure 6. ROCs for sample fusion, decision fusion and eigenvalue fusion using MMED for

sensing OFDMA subchannels.
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Figure 7. ROCs for sample fusion, decision fusion and eigenvalue fusion using MED for

sensing OFDMA subchannels.
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Figure 8. ROCs for sample fusion, decision fusion and eigenvalue fusion using ED for

sensing OFDMA subchannels.
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The ranking of the performances considering different teststatistics still has ED in the first position,

followed by MED, GLRT and MMED. Again it is observed the inversion of the behaviors of ED and

MED when comparing with traditional eigenvalue detection of narrowband signals via Equations (3)–(6).
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This indicates that the empirical test statistics Equations (27) and (34) have more statistical power than

Equations (26) and (33), which means that Equations (26) and (33) have margin for improvements in

their definitions.

Still referring to Figures5–8, the AND decision combining scheme has shown to be the worst among

all fusion rules, as happened with the detection of subcarriers or sub-bands of general wideband signals.

However, the performance gap from the best result was reduced when comparing with the results in

Figures1–4. Also notice that the majority-voting has gained the best results among the decision

combining rules, whereas it was the second better result in the case of detecting general wideband

signals. This reinforces the statement that the AND, OR and majority-voting rules can alternate their

performance ranking in different system parameters or scenarios.

The major difference between the sample fusion and the eigenvalue fusion strategies is the amount

of data sent to the FC. For the parameters used in the numerical results for the OFDMA signal, we had

the following situation: The primary signal was made up withn = KN = 20 0 = 1, 200 samples in

the time domain. Therefore, the number of samples sent to theFC in the sample fusion scheme was

mKN = 6 × 1, 200 = 7, 200. With K ′ = 5 subcarriers in each subchannel, the order of the covariance

matrices wasK ′×K ′ = 5×5 . Thus, the total number of eigenvalues sent to the FC wasmK ′P = 6×5×
4 = 120. Considering that sample values and eigenvalues are digitized with the same number of bits, the

required amount of data in the case of the eigenvalue fusion ismKN/mK ′P = mKN/m(K/P )P =

N = 60 times less than in the case of sample fusion. Obviously, thisreduction in the volume of data sent

to the FC must be traded with the increased complexity of the CRs due to the need of local estimation of

the eigenvalues.

A general analysis of the volume of data sent to the FC and the complexity tradeoff is made in the

next section, also considering the sensing of general wideband signals.

6. Complexity and Volume of Data Sent to the FC

In this section, we generalize the exemplifying analysis given in the previous subsection, concerning

the tradeoff between the volume of data sent to the FC and the complexity related to the number of

samples handled and to the computations of eigenvalues for all fusion methods under analysis. We

consider a WiMAX system as a case study for providing numerical results as well.

Assume that the WiMAX channel has2048 subcarriers. For spectral roll-off reasons, only1, 680

subcarriers are utilized, leaving unused the subcarriers at the edge of the channel. The OFDMA

subchannels are created by partitioning theK = 1, 680 useful subcarriers in groups ofK ′ = 24

subcarriers, resulting inP = 70 subchannels.

Let us consider first that detecting theunused subcarriers of the OFDM signal is the objective of the

spectrum sensing. For a sample fusion scheme, the number of samples must be much greater (say, 10

times or more) than the number of cooperating CRs, so that a good estimate of the sample covariance

matrix is achieved. Considering a secondary network withm = 10 cooperating CRs and assuming that

each CR collectsN = 100 samples per subcarrier, a total ofn = KN = 1, 680 × 100 = 168, 000

samples are collected per CR. Therefore,mKN = 10 × 1, 680 × 100 = 1, 680, 000 samples are sent
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to the FC. Assuming that each sample undergoes a 3-bit quantization [25], then the total amount of data

sent to the FC is5, 040, 000 bits.

Consider now an eigenvalue fusion scheme. For a fair comparison, assume again that received

sample matrices of orderJ × N/J = 10 × 100 are formed at each CR per subcarrier, also leading

to covariance matrices of orderJ × J = 10 × 10. The total number of samples taken by each CR is

thenn = KJ(N/J) = KN = 1680 × 1000 = 1, 680, 000, ten times more than in the case of sample

fusion (notice that this increased number of samples can be obtained during the same sensing period by

increasing the sampling rateJ times compared with the sample fusion case). Each CR computesJ = 10

eigenvalues per subcarrier to be transmitted to the FC. Alsoassuming that each eigenvalue undergoes a

3-bit quantization, the total amount of data sent to the FC is3mKJ = 3×10×1, 680×10 = 504, 000 bits.

The above analysis shows that the volume of data sent to the FCin the case of sample fusion

(∝ mKN bits) is much greater than in the case of eigenvalue fusion (∝ mKJ bits), sinceN ≫ J .

In the scenario of decision fusion, only the individual CR decisions are sent to the FC. Therefore, the FC

receivesmK binary decisions, which represents a volume of data much smaller than in the case of other

fusion schemes.

In terms of complexity, in the case of eigenvalue and decision fusions, each CR must be capable of

processingn = KJ(N/J) = KN samples and estimateKJ eigenvalues. In the case of sample fusion,

the complexity of the CR is reduced, since the eigenvalues are computed at the FC. However, the FC

must be capable of processingm times more samples,i.e., mn = mKN samples and estimatemK

eigenvalues (notice thatm = J in the above fair scenario).

Now, let us consider that detecting the unused subchannels of the OFDMA signal is the goal. Consider

first the eigenvalue fusion scheme. The number of lines in thereceived sample matrix Equation (22) is

equal to the number of subcarriers in a subchannel, which isK ′ = 24 in the WiMAX example under

analysis. Again, for a good estimation of the sample covariance matrix, the number of samples must be

much greater (say, 10 times or more) than the number of subcarriers in a subchannel, which is the order

of the covariance matrices. Then, let us consider that the number of samples per subcarrier isN = 240.

Thus, the total number of samples collected by the each CR isn = KN = 1, 680 × 240 = 403, 200.

Each CR generatesP = 70 sample matrices (one per subchannel) of orderK ′×N = 24×240, resulting

in 70 covariance matrices of orderK ′ ×K ′ = 24 × 24 andK ′ = 24 eigenvalues per subchannel. Also

assuming that each eigenvalue undergoes a 3-bit quantization, then the total amount of data sent to the

FC is3mK ′P = 3mK = 3×10×1, 680 = 50, 400 bits in the case of eigenvalue fusion. The scenario of

decision fusion is similar, but only the individual CR decisions about a subchannel occupation are sent

to the FC. Therefore, onlymP = 10× 70 = 700 binary decisions are sent to the FC, which represents a

much smaller volume than in the case of the other fusion schemes.

Let us now consider a sample fusion process, using the concatenation approach to form the received

sample matrices, as determined from Equation (28). The choice for the concatenation approach is based

on the fact that it produces better performance than MRC, also avoiding the need of knowing the channel

gains used in the MRC. A number ofK ′N = 24 × 240 = 5, 760 samples are collected by each CR

for each of theP = 70 subchannels. These samples are then sent to the FC, where a number of

mP = 10×70 = 700 sample matrices of orderK ′×N = 24×240, as in Equation (22), are formed. The

matrices corresponding to the subchannels from all CRs are concatenated according to Equation (28),
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leading to P = 70 sample matrices of orderK ′×mN = 24×2400. A number ofPK ′ = 70×24 = 1, 680

eigenvalues are subsequently estimated to form the test statistics for theP = 70 subchannels.

The analysis considering the detection of unused OFDMA subchannels shows that the volume of

data sent to the FC in the case of decision fusion ismP bits. For the eigenvalue fusion this volume

is bmK = bK ′mP bits, whereb is the number of bits per eigenvalue. For the sample fusion, this

volume grows tobmKN bits. Then, the volume of data sent to the FC in the case of eigenvalue fusion

is bK ′ times the volume of data in the case of decision fusion, andN times smaller than in the case of

sample fusion.

In terms of complexity, in the case of eigenvalue and decision fusions, each CR must be capable of

processingn = KN samples and estimateK ′P = (K/P )P = K eigenvalues. In the case of sample

fusion the complexity of the CR is reduced, since the eigenvalues are computed at the FC. However,

the FC must be capable of processingmKN samples, which ism times greater than the number of

samples processed by each CR. Nevertheless, the FC must estimatePK ′ eigenvalues, the same number

of eigenvalues estimated by each CR in the decision fusion and eigenvalue fusion cases.

Let us make a last comparison between the eigenvalue fusion and the samples fusion by fixing the

number of samples. Assume that each CR will takeN samples per subcarrier. Therefore each CR will

collectn = NK samples in the time domain. If the purpose is to sense each subcarrier or sub-band

of a general wideband signal, in a sample fusion scenario theamount of samples sent to the FC will be

mNK = m2KN/m. In the eigenvalue fusion scheme, if each CR forms covariance matrices of order

J = m (as before) and computesJ = m eigenvalues, the total amount of samples sent to the FC is

m2K. Notice that the sample fusion scheme sendsN/m times more data than the proposed eigenvalue

scheme. Since the expected number of cooperating CRs is by far smaller than the number of collected

samples in a real system, one can conclude that the eigenvalue fusion is capable of reducing considerably

the amount of data in the control channel when compared with the sample fusion.

7. Conclusions and Suggestions for New Research

In this paper, a new eigenvalue-based fusion scheme has beenproposed for sensing subcarriers or

sub-bands of general wideband signals and for sensing subchannels of OFDMA signals, in the context

of cognitive radio systems.

Simulations were performed, comparing our scheme with the fusion of samples collected by the

cooperating CRs and with the fusion of CR decisions, considering the test statistics GLRT, MMED,

MED, ED and their empirically-modified versions proposed here.

If the system parameters are chosen to build a fair comparison scenario, the eigenvalue strategy can

provide better performance than all fusion schemes, for anytest statistic and for any wideband signal.

Moreover, the eigenvalue fusion can drastically reduce theamount of data sent to the fusion center when

compared with the sample fusion method, reducing the volumeof data in the corresponding control

channel. If local decisions at the CRs are made from the eigenvalues computed, a decision fusion strategy

can be adopted, which can further reduce the amount of data sent do the fusion center. The reduction in

the volume of data produced by the eingenvalue and decision fusion, however, must be traded with the

increased complexity of the cognitive radios, since they must be able to compute the eigenvalues of the
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received signal covariance matrices before forwarding them (or the decisions) to the fusion center. An

analysis of this tradeoff was also presented in this paper.

Comparing the spectrum sensing of general wideband signalswith that of OFDMA signals, one can

notice that two major differences arise: the general wideband channel is partitioned according to the

channelization chosen for sensing purposes, while the OFDMA channel is partitioned according to

the sub-channel definition. As a consequence, the strategies for constructing the sample matrices are

different from each other. Nevertheless, the approach for detecting OFDMA signals can be adapted

to the detection of a general wideband signal by partitioning each sub-band or channel of the general

wideband signal as follows: the number of sub-bands or channels of the wideband signal becomes

the numberP of sub-channels of the OFDMA approach; the number of partitions of each sub-band or

channel of the wideband signal becomes the numberK ′ of subcarriers of each OFDMA sub-channel. All

OFDMA sensing procedures apply unchanged in the sequel, as described in Section4. The definition of

the partition of each sub-band or channel of the wideband signal in the OFDMA-like approach, as well as

the influence of the remaining system parameters in this partition and in the overall sensing performance,

remains an open problem.

One can notice that if the sensing of subchannels in OFDMA systems can be coordinated under

the information of unused subchannels in a given area, the data traffic in the control channel for the

eigenvalue fusion can be further reduced, since some subchannels would not need to be sensed at all.

The performances of the decision fusion with OR logic and with majority-voting have shown to be

close to the performances obtained with the eigenvalue fusion, for sensing subcarriers or sub-bands

of general wideband signals, and for sensing subchannels ofOFDMA signals, respectively. Since the

volume of data sent to the FC is smaller than in other fusion schemes, our immediate conclusion is that

these decision fusion strategies are preferred over the eigenvalue fusion. However, we conjecture that

bit errors in the control channel can be more disastrous to the data representing CR decisions than to

the data representing eigenvalues. This in turn would demand increased protection of the decisions

data, reducing the difference in the volume of data in the cases of eigenvalue and decision fusion.

This conjecture represents a good opportunity for further contributions. Nevertheless, this investigation

could be complemented with an analysis of the influence of different system parameters in the spectrum

sensing performance, which could help in constructing the conclusions concerning the influence of these

differences on the ranking of the decision fusion combiningrules.

It was verified that the wideband spectrum sensing approach proposed here can be applied to any

wideband signal. Combined with the subcarrier nulling flexibility of OFDM signals, OFDM-based

cognitive radios [26] can opportunistically reuse underutilized spectrum bands. This is particularly

favorable to the recently-proposed generalized frequencydivision multiplexing (GFDM), which is

arising as a candidate to be used in the next generation of wireless communications [27,28]. GFDM

signals are more flexible than OFDM in terms of spectral shaping capability and are able to produce

much lower out-of-band radiation when compared with OFDM. Thus, for future research, it will be

interesting to investigate the performance of the eigenvalue fusion scheme to detect GFDM signals, as

well as to analyze a GFDM-based opportunistic access strategy in this scenario.

In [14], the authors showed that the GLRT can be viewed as a modified version of the MED, where the

actual noise variance is replaced by its maximum-likelihood estimate. It would be interesting to analyze
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the influence of replacing the actual noise variance with itsestimate in the MED-like and ED-like tests

empirically proposed in this paper. The objective is to verify if this replacement would produce attractive

performance results, thus giving a more practical appeal tothese tests that do not demand the use of the

actual noise variance, which is not accurately known in realsystems.
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