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Abstract: Range-free localization algorithm continues to be an irtgogdrand challenging
research topic in anisotropic Wireless Sensor Networks N#JS Designing range-free
localization algorithms without considering obstacleshales inside the network area
does not reflect the real world conditions. In this paper, \&eehproposed Detour Path
Angular Information (DPAI) based sensor localization aithjon to accurately estimate the
distance between an anchor node and a sensor node. Weduilz&uclidean distance and
transmission path distance among anchor nodes to caldh&at@ngle of the transmission
path between them one by one. Then the estimated hop disgadgusted by the angle
between the anchor pairs. Based on the angle of the detoatie@yhich is the key factor for
accuracy), our algorithm determines whether the path @&gétt or detoured by anisotropic
factors. Our proposed algorithm does not require any glodalviedge of network topology
to tolerate the network anisotropy nor require high sensmtendensity for satisfactory
localization accuracy. Extensive simulations are pertaand the results are observed to be
in good agreement with the theoretical analysis. DPAI agdeaverage sensor localization
accuracy better tha®.3r in isotropic network and.35r in anisotropic network when the
sensor density is abowe
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1. Introduction

By the advances of the Micro Electro Mechanical Systems (MEEMInd communication theory,
wireless networking and embedded processing, ad-hoc netwad devices and sensors capabilities
are becoming increasingly available for commercial appions such as environmental monitoring
(e.g., traffic, habitat, security), industrial sensingy(efactory, appliances), and critical infrastructure
protection applications (e.g., power grids, water disttidn, waste disposal). For these purposes,
each sensor node collaborates with others in sensing, onmgi and tracking events of interests by
exchanging acquired data, usually stamped with the timepasdion information. In many of these
applications, knowledge about sensors’ geometrical jpositare critical for many network protocols,
e.g., topology control, geographical routing, and clustgfl]. It thus becomes one of the fundamental
issues in Wireless Sensor Networks (WSNs) to acquire sepssition knowledge, called sensor
localization problem.

In WSNss, positioning errors can often be masked by featwres as fault tolerance, node redundancy,
data aggregation and other mea2s3]. This makes coarse accuracy of sensor localization sesffi¢or
many WSNs applications. Range-free localization is tleesepursued as a cost effective alternative for
expensive range based scheme, by having no dependence availadility or validity of hardware to
provide range information. The key idea is to place a smaditfon of anchorsi (., special sensors with
known positions) across the network. Positioning of sen&obtained from the estimated distance to
multiple anchors and their coordinates, according totarkd algorithm.

Previous range-free localization work mainly focuses ayular sensor deployment area}, [i.e.,
sensors are uniformly and densely distributed in a convgi®ne However, this assumption does not hold
when a sensor network is deployed in irregular areas withaches, because the packet delivery path
between two sensors can be detoured by obstacles and thisstipath distance is dramatically different
from its geographical Euclidean distance. These detounstholes are inevitable in natural areas such
as valleys where sensors are deployed for habitat mongtoais well as in urban areas where sensors
can be separated by buildings. Therefore, when applyinge-firee techniques to the concave areas, the
position estimates may in fact contain large errddg One response to this irregular area problem is to
partially ignore the erroneous distance information byngsin improved multi-hop algorithn®]. Yet,
distorted anchor information can mislead accurate poségiimates. One way to improve the accuracy
of localization would be to rule out distorted path inforiatfrom some anchors, which however has
two particular difficulties. First, because sensors do aetththe global view of their network, they have
no way of determining which path information is distortediavhich is not. Second, anchors can rely
on the information that they receive from other anchors #natin an unobstructed straight line path,
because they are able to determine their mutual relialibised on the calculation of an expected hop
length. However, anchors and sensors cannot rely on eaehiotthis way because sensors do not know
their own locations and so cannot make an expected hopHeaditulation.

In this paper we introduce a novel method based on angulamnation of the detour transmission
path to estimate the optimal path distance between any fs@nsor nodes in WSNs with arbitrary node
density and low anchor to sensor ratio. The proposed algoriéads to a good position determination
for WSNs as compared with some existing positioning schesuel as pattern-drived], DV-Hop [8],
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Ganget al. [9], Chenet al. [10] and Hop-Count-based Neighbor Parition (HCNR)Y][ The main
contributions of this paper are as follows:

The average localization error is approximately less th&n @ is the radio range of sensors) and
0.35r in isotropic and anisotropic network respectivellgisiiocalization accuracy can satisfy the needs
of many location-dependent protocols and applicatiorduing geographical routing and trackirtg).[
Compared with previous localization algorithms that dexdato tolerate network anisotropy, our
localization scheme excels in (1) higher accuracy stemnfiog its ability to tolerate multiple
anisotropic factors, including the existence of obstactgmrse sensor distribution, and anisotropic
terrain condition; (2) localization accuracy guarantegdh®eoretical analysis and simulation results;
and (3) a distributed solution with comparative communaabverhead but high accuracy and enhanced
robustness to different network topologies and differeagrde of irregualrities.

The rest of the paper is organized as follows. We start byta@lavork in Sectior2. Section3
describes the network model. Our proposed algorithm isspitesl in Sectiod. In Sections, simulation
results are shown and localization performances are disdugrinally, we present our conclusions in
Section6.

2. Related Work

Many range-free approaches have been proposed to detesmms®r locations in WSNs. For
example, the Centroid methotld] is probably the earliest and simplest range-free appraacivhich
each node estimates its location by calculating the cemiglt the anchors it hears. APIT] lets each
node estimate whether it resides inside or outside sev&abular regions bounded by the anchors it
hears, and refines the computed location by overlappingetfiens a sensor could possibly reside in. In
order to improve accuracy, APIT needs many anchors and &sstivat the anchors have radio ranges
that are 10 times larger than those of ordinary nodes. Angitoposed space embedding approdd [
rely on Multidimensional Scaling (MDS) or Singular Value é&@enposition (SVD) based techniques to
project the node proximities into geographic distances.

DV-Hop employs a constant number of anchors and relies ohebgstic of proportionality between
the distance and hop count in isotropic networks. The sysstimates the average distance per hop from
anchor locations and the hop count among anchors. Each nedsunes the hop count to at least three
anchors and translates these into distances. By triangdhe location is then calculated. However,
the DV-Hop method yields high localization errors in aniepic networks, where the existence of
holes breaks the proportionality between the distance amldount and thus leads to inaccurate
location estimates.

To modify the disadvantage of existing DV-Hop localizatiaigorithm, the relevant literature
proposed many improved algorithms9,10,14,15. In [9], the location accuracy is improved by
modifying the network average hop distance based on mininmu@an square error criteria as
HopSizel = % whered;; is the straight line distance between the anchor noded j, h;
is the hop segment number between the anchor nodesl ;. Another algorithm in 10] calculates
the errore’ ase”’ = d’), — d.”’,., whered'”, is the estimated distance between anchor nodesl ;,
dﬁ;{w is the Euclidean distance between anchand;. The average hop distance is finally adjusted by
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HopSizel] =HopSize; — £+ wherem is the closest anchor node to anchor noded HopSize;

is calculated aglopSize; = =% \/(gxf,if(yi*yj)g where(z;,y;) (x;,y;) are the coordinates of anchor
node: and j and h;; is the numberjgf ﬁops between anchicand j. The Algorithms P,10] made
improvements on distance estimation and localization ef@N-Hop algorithm. There are still some
disadvantages in the improved algorithms, such as no obvioprovement on localization accuracy,
especially when the transmission route is not straight btawred.

Another pattern driven localization scheme is proposedjrid tolerate network anisotropy. The
paper proposes three different methods of anchor-senstande calculation based on three patterns,
namely Concentric Ring (CR): isotropic pattern, Centréuradient (CG): anisotropic but slightly
detoured, and Distorted Gradient (DG): anisotropic anahgfly detoured. For the CR pattern, it utilizes
the last hop distance for overall distance calculation. ie¢hod is based on the neighbor node degree
of a sensor node. It requires high node density to work phppeor the CG pattern, the author proposes
DiffTriangle to revise the anchor-sensor distance esesaiith the assistance from the nearest anchor to
the sensor (namely Reference Station), which exhibits Re&tern. This implies that these reference
stations should appear in normal sensors’ CR category aml ttie distance from sensors to their
dominating reference stations should be no more than thrésuo hops. This assumption implicitly
places a high demand for anchor distribution density. In XBegon, the anchors which falls in DG
category are dropped and no longer be used for location &stim However it may be impossible in
practice to accurately recognize the slightly detouredharscfrom the strongly detoured anchors or even
moderately detoured anchors, without the global knowlestgeetwork topologyi.e., network boundary
and obstacles shapes.

In the REndered Path (REP) algorith@®], the authors assumed that the boundaries of holes in the
network have been detected and every node knows if it is adasymode or not. The authors proposed
an approach for computing the straight line distance betwe® nodes by arguing corresponding
shortest path with virtual holes. In HCNRJ], the author proposed source to destination distance
estimation algorithm based on the observation that thehbeig of a destination can have different
hop counts with respect to the same source and such infammigtiused to improve the localization
accuracy only in isotropic network.

3. Network Model

When sensor nodes are randomly deployed in WSNs, we camsiohasany regularity in spacing or
pattern of the sensors. This is due to the fact that most ofdkes sensors are deployed from the low
flying airplanes or unmanned ground vehicles. However arsoten be placed randomly or in the form
of regular tile across the network so as to help in estimatiegsensors position&T]. In this paper we
place anchor and sensor nodes randomly, which is more pahcti

Consider a WSNs in a 2D plane witN sensors, denoted by a s€t= {si, ss..., sy} Wheres;
is the i"* sensor node. All sensor nodes are uniformly and indepelydéeployed in a square area
A = L x L. Such a random deployment results in a 2D Poisson distoibwf sensors with sensor
densityA = N/(Lx L). All sensors are assumed to be homogeneous and statiortboyrandirectional.
Therefore the network can be seen as static or regarded apshert of mobile ad hoc sensor networks.
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In order to simplify the discussion, we are not concernedh\the issues of energy consumption and
robustness of sensor nodes. We believe that these missuggislo not invalidate the correctness of the
proposed method.

Definition 1: Let a (s;, 7) define the transmission range or radio coverage area of arseng/here
the center is sensey and the transmission radiusrisThe radio coverage area of any sensor is assumed
to be circular and symmetrical. 3q(s;,7) = 7r%. Any sensor nodes that are located within this area
can directly communicate with each other and is defined aghbers of each other. It is because we
assume that all the sensors have the same transmissionlitgpab

Definition 2. Let N be the average number of sensors located in the radio cevarag. The
average connectivity denoted by is defined as the average number of neighbor sensors locetieel i
sensors transmission range. Following definition 1, thestréission coverage areadss;,r) = nr.
The sensor density of the networks= N/(L x L). ThereforeNg = Arr? andCy = Ng — 1.

4. The Proposed Algorithm (DPAI)

In real life scenarios, the sensor nodes are deployed rdgdoom the airplanes in areas where
obstacles or holes may exist. Because of obstacles or lioéeggacket transmission paths among anchor
and sensor nodes are not always straight but detoured. de-fage localization, the exact hop distance
calculation is the key problem for estimating location. Hverage hop distance of the network heavily
depends on the data transmission path, if the transmission path is almost straight, then theayer
hop distance is almost accurate, otherwise deviated froattual value if there is an obstacle in between.
We observe that, if we can associate the angle of the detdtargmission path with the calculation
of the average hop distance, then we can accurately cadcthlataverage hop distance and hence the
localization. Utilizing this concept of angular informarti of the detoured transmission path, we propose
the DPAI algorithm for precise localization.

4.1. Detour Path Angular Information Based Localization

Suppose that two anchor nodésndB are separated by an obstacle and thus connected by a detoured
shortest transmission path— S1 — 52 — S3 — S4 — S5 — B as shown in Figurd (left hand side).
From the figure, we can see that the anglbetween the two anchors and the middle of the shortest
transmission path is closely related to the length of thestrassion path. The angle approachesl(®
if the transmission path is almost straight ¢ S1 — S2 — S3 — B) as shown in Figurd (right hand
side), otherwise the angle is much smaller as shown in Fig{edt hand side). Suppose the Euclidean
distance between anchor nodésnd B is D, the distance from anchot and B to the middle of the
transmission path i€ and the number of hop between these anchor nod®g.is
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Figure 1. Packet transmission path between two anchors with obsaadleithout obstacle.
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Now from AAM B , we can write,

D’=d*>+d*>—-2xdxdxcosa

S — (1)

Therefore the average hop distance is
— 2

=N
hd = 2D (2)
Nuv/2 —2cosa

From Figure2 we can see the relation between transmission path lengttharehglen. There are
three different transmission paths from anchAaio anchorB, namely transmission path&\/ B, AN B
and AO B respectively. Obviously the path lengths are differeet, AM B < ANB < AOB. We draw
the line AP through the middleV/ of the transmission patd M/ B and draw one line fronP to B in
such a way that the triangl& AP B is right angle triangle, wherg ABP is the right angle. Similarly
we draw the lineA@Q and AR. From every middle point of the transmission path we draw loreeto
B. The lines aré\/ B, N B andOB. Thus the angleal, a2 anda3 denote the transmission paths route
bend degree, when the transmission path lengthsiards, AN B and AO B respectively. The angles
(1, p2 and 3 are defined as follows:

£1 =cos™! (ﬁ—f;) 3)
4, (AB

[2 = cos (E) (4)
4, (AB

B3 = cos (A—R) (5)

From the above equations, we notice that the valug isf dependent on the length of transmission
paths AP, AQ and AR. This is because the path lengthB between two anchor node$ and B,
is constant for static sensor network. The longer the trésson paths, the larger the value 6f
Consequently the shorter the transmission path, the lesdglee value ofv. In Figure2, 53 > 52 > g1
andal > a2 > «3. To calculate the value eof we present one example as follows:

Suppose in Figur8, A, B andC are three anchor nodes. The Euclidean distance betweend B
Is 20, A andC'is 36 and B andC' is 40 (the figure is not drawn to scale). The number of hops between
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AandBis4, AandC is4 and B and(C is 5. Each anchor node calculates the average hop distance

as follows: 50+ 36
_l_
A =7
=y
20 + 40
B: = 6.6
()
(O 36+ 40 =84
4+5
Now for simplicity, we can consider the case of ancHorAfter calculating the average hop distance,
A will calculate the Transmission Path Lengfhii{ L) by multiplying the number of hops and average
hop distance. So froml to B, theTPL is4 x 7 = 28. But the Euclidean DistancE() betweenA
and B is 20, which is shorter than th€ PL. SinceT PL > ED, A assumes that tHEPL is detoured.
To calculate the angle of the detoured transmission pathirexe one lined P from A to P through the
middle of the transmission patl (Because the length of the transmission path is known) araba/h
length is the length o' PL i.e., in our exampl&8. We draw one line fronP to B in such a way that

the angle/ ABP is right angle. From the middI&/, we draw another line t&. FromA AM B, the two
sidesAM and BM are equal. Hence the angle= v. FromA ABP, we know that,

4, [ AB
b = cos <E) (6)

The anchor node knows the value4B and AP. So it can calculate the angte Now from AAM B,
we know that

B+ a+v=180°

a = 180" — (2 x B)[Since v = f] (7)

In a similar mannerA can calculate the angle betwedrandC' and accordingly adjust the average
hop distance by (2). T"PL < ED, then the value of is set to0° and accordingly can be calculated

by (7).

Figure 2. Relation between transmission path length and the angle

4R
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Figure 3. Calculation of angler.

Algorithm 1 DPAI resides in anchors

Input:

k: Anchor ID; V4: The anchor set;

{(zs,v:); Ni(i, k) }wherel < i < |V4| andi # k: received position of ancharand corresponding hop
count to anchok;

Output:

hd,,: The average hop distance calculated by each anchor;
. FORi € V4 andi # k£ DO

. calculateD; . and N, (i, k);

. calculatenl,,, = szvﬁg’jk);

. calculateél’ P Ly, = hles X Np(i, k);

AFTPLy. > Dy, THEN

. calculates = cos™! (%);

. calculatex = 180° — (B8 +7); [y = 8]

. ELSE

.setd =~ = 0% soa = 180;

10. ENDIF

11. calculatéwd), = Nh(i’kf\x/];fgcos(a);

12. ENDFOR

13. broadcastdy;

O© 0N O O WDN P

Algorithms 1 and 2 represent the pseudo codes of DPAI scheifiesy represent the localization
algorithms conducted in anchors and sensors respectivehgpresents the set of anchor nodgs,L ;.
represents the transmission path length ang represents the Euclidean distance between anchor
andk. At run time, similar to other range-free localization apgehes such as DV-Hop, DPAI scheme
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ensures that anchor nodes first broadcast their locatiahb@m count value set to one. Each receiving
node records the minimum hop count value from an anchor nadetsen flood outwards the same
packet with hop count value incremented by one. Any packetiatoing larger hop count value than the
previous one is ignored. Thus all nodes get the minimum hopl®u from every anchor nodes.

Algorithm 2 DPAI resides in sensors
Input:

j: Sensor ID;V,4: The anchor set;
hd,: The average hop distance broadcast from a nearby anchor;

{(zs,v:); Ni(i,j)}wherel < i < |Vy|landi # j: received position of ancharand corresponding hop
count to sensof;

Output:

(x;,y,): Sensor’s position estimate;

1. Collecthd,, from anchors] < k < |V,

2. Calculatehd = Zlv};?

3. IF|V4| > 3 THEN

4. calculatel;; = Ny, (i,7) x hd; 1 <i < |V
5

6

. ENDIF
. Apply Multilateral method8] to calculate(z;, y;);

4.2. Analysis of Algorithm Complexity

Table 1 summarizes the protocol comparison of DPAI with DV-Hop araditgrn-driven in various
aspects including Communication Overhead (C.0O), Comjut&ost (C.C) and Applicable Network
(A.N). To calculate the average hop distance, each anchde meeds 2 rounds of broadcasts.
Consequently for an entire network the communication ceadhis bounded by)(n?), wheren is
the total number of nodes in the network. The anchor nodesrheat of the computational burden.
Each anchor node deals with angular information based gedrap distance calculation and for each
calculation, the anchor node does at mO$t\/) computations to calculate the average hop distance
from the detour path, wher& is the number of holes or obstacles within the network. Tlou®htire
network each anchor’'s computational overhead (s ).

Table 1. Protocol Comparison.

Protocol cC.0 c.C AN
DV-Hop O(n?)  O(n) Isotropic
pattern-driven O(n?) O(nM) Isotropic,Anisotropic
(

n
DPAI O(n?) O(nM) Isotropic,Anisotropic

On the other hand, DV-Hop presumes isotropic network amaahdulates the nodes location with its
network distances to the three anchors. Each node floodsti®rk for computing the hop count so
the communication cost of DV-Hop ©(n?). Each anchor accepts requests from all the network and
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sends out feedback with(n) computational cost. In the next section we will compare toalization
accuracy of our approach through simulations.

5. Simulation Results and Performance Analysis

A series of simulations are conducted to evaluate the pedoce of our proposed scheme in isotropic
and anisotropic WSNs, where anchor nodes are deployed mayndoFor anisotropic network, we
consider O-shape and C-shape network topology. For eadteddifferent types of network, we run
the simulation for 100 rounds and take the average over 10§, muring which the quantity of the
deployed sensor nodes is kept unchanged. However, theotppof the network varies because we
establish connectivity between pair of sensor nodes rahddim measure the accuracy of localization,
the average localization error is used.

The average localization error is defined as the ratio of itferdnces between the estimated location
(:Ez,yl) and the real locationiz;, ;) to the communication range of sensor nodes. In this paper, th
average localization error is expressed relative to thenashger. The average localization erréx of
the sensor network, which is composeddf| sensor nodes, is expressed as follows:

[Vs]

S ey

i=1

The initial network parameters for simulations are showrahle2. We vary the number of anchors and
sensor density (the average number of sensors per sensmiarad) when necessary to observe their
impact on localization errors.

Table 2. Network Parameters for Simulation.

Network For Isotropic  For Anisotropic

Parameter Network Network

Area 10 x 10m 10 x 10m
Sensor Nodes 200 200
Anchor Nodes 20 20
Radio Range 2m 2m

For simulation, we compared our proposed algorithm with Hdp [8], Gang et al. [9],
Chenet al. [10], HCNP [11] and pattern-drivenq]. The results are shown in the Figurésand 5
for isotropic network, Figures and7 for O-shape, and Figureésand 9 for C-Shape network. Also
we investigate the impact of radio irregularity on the |lazation performance. The result is shown
in Figure 10. From the results, we can say that, our scheme has highdizktaan accuracy than
HCNP [11] (which cannot tolerate anisotropic factor) and patterimenh [7] (which can tolerate multiple
anisotropic factor), DV-Hop{], Ganget al. [9], and Chenret al. [10]. Our scheme is robust in sparse
isotropic network (Figurd 1), anisotropic (O-Shape (Figufe) and C-Shape (Figur&3d)) network, and
under realistic system configurations where the radio tmésson pattern of a sensor node varies per
unit degree change in the direction of radio propagatiorhas/s in Figuresl4 and 15. The other three
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methods §-10] degrades severely in anisotropic network and under @iffedegree of radio irregularity.

HCNP [11], which is only designed for isotropic network, degradegesely in different anisotropic
network conditions.

Figure 4. Location erroivs. number of anchor nodes (isotropic network).
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Figure 6. Location errowvs. number of anchor nodes.(O-shape network).
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Figure 8. Location errowvs. number of anchor nodes (C-shape network).
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Figure 10. Localization errowns. DOIL.
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Figure 12. Initial node deployment in anisotropic O-shape network.

The nodes initial position, Sensor Density=8

10 )
9 =
J - 4 RN W

Figure 13. Initial node deployment in anisotropic C-shape network.

The nodes initial position, Sensor Density=8

S—— NS
=ZAN——"




J. Sens. Actuator Netw. 2013 2

Figure 14. Irregular Radio Pattern when DOI=0.05.

DOI Model When DOI=0.05

-2 -1 0 1 2 3

Figure 15. Irregular Radio Pattern when DOI=0.1.

DOI Model When DOI=0.1

o
(6]
— T

|

o

o
T




J. Sens. Actuator Netw. 2013 2 41

5.1. Localization Error When Varying the Number of Anchors

For the first experiment, we vary the number of anchors insgpesotropic network (sensor density
= 8) to study its impact on location accuracy. Figude$ and8 show that the localization accuracy
of DPAI is better than others. For example, in Figdrevith 20 anchor nodes (which is 10% of total
number of nodes), DPAI has an average localization errdoofig0.3r, whereas in pattern-driver fnd
HCNP [11], the error is 0.37r and 0.36r respectively. We also obs#rag as we increase the anchor
numbers, the localization error of DPAI reduces from 0.30@Lr. It can be seen from Figurésand
8 that in anisotropic network, our proposed algorithm perf®better than the pattern-driven algorithm
and other algorithms. In fact, the performance of DV-Hop atiter (except pattern-driven) algorithms
in anisotropic network is random in nature and worst thaisaropic network. In O-shape and C-shape
region, the transmission paths are more curved and the hoy based distance estimation from sensor
nodes to anchor nodes is dramatically changed if the deddtarsmission paths are treated in the same
manner as in the isotropic network.

Our proposed algorithm outperforms others by using the langalue of the detoured transmission
paths,i.e., the average hop distance among anchor nodes and the seadssrare adjusted according
to the angle of the curved transmission paths. For the samsoiséensity, our scheme outperforms
pattern-driven and other approaches even when the ancrsensor ratio is as low as 10%, which
signifies the cost effectiveness of our approach.

5.2. Localization Error When Varying the Sensor Density

Figuresb, 7 and9 show the performance of our approach and other approaches varying the
sensor density. We vary the sensor density from 6 to 24. feetocalization remains a problem
in sparse networks where the sensor density falls in theerafigs to 15. Kleinrock and Silvester
have proved in 18] that 6 is the optimum sensor density to maintain the netvaanknectivity. The
localization problem in sparse networks deserves invatig, because lower sensor density implies
lower deployment cost, smaller possibility of traffic jamgdaradio interference.

It can be seen from Figurés 7 and9 that DPAI performs better than other schemes when the sensor
density is 6, and as we increase the sensor density from 6, tln@4ocalization error of DPAI as well
as other approaches decreases. This is because, as thedssssty increases, the numbers of one hop
neighbor nodes increases, so the per hop average distdogkatan error decreases and the calculation
error does not propagate to large number of hops. At a lowosatensity such as 6 or 8, if the hop
number is large, then there is a high possibility that thedmaission path between two anchors is not
straight but slightly curved in isotropic network. Howevdrthe hop number is less (which occurs
when the sensor density is high), then the path between twlboamodes is almost straight and the
average hop distance calculation becomes more accuraidé¢hiare. By the value of the angle, we can
determine whether the transmission path is straight or ndtasecordingly the average hop distance is
calculated. In low sensor density isotropic network withatstacle, some holes are created because of
the low sensor density. In such situation, DPAI performsdrdiecause we calculated the average hop
distance by utilizing the angle of the detour transmissiathp In high density isotropic network, the
localization error of DPAI approaches 0.22r (when the sedsasity is 24) and in anisotropic network,
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the localization error is 0.25r for O-shape and 0.26r forh@pe respectively. For low density such as
8, the localization error of DPAI is near to 0.3r for isotropietwork and below 0.35r for anisotropic
network. According to2], this localization accuracy can satisfy the needs of mangtion dependent
protocols and applications, such as geographical routidgracking.

5.3. Localization Error When Varying the Degree of Irregularity (DOI)

Radio irregularity is a common and non-negligible phenoomein wireless sensor networksq. It
results in irregularity in radio range and variations inlgtdoss in different directions, and is considered
as an essential reason for asymmetric links as viewed by lgpers in the protocol stack. The parameter
Degree Of Irregularity (DOI) is used to denote the irregtyaof the radio pattern. It is defined as the
maximum radio range variation per unit degree change in itleettbn of radio propagation. When the
DOl is set to zero, there is no range variation, resultingpedectly circular radio model. To get a better
idea of how this DOI parameter affects signal propagaticaratteristics, Figuret4 and 15 show the
radio patterns generated in simulation with DOI values@@t®5 and 0.1 respectively. The DOI model
is a good start to model signal irregularity. However, itsloet model interference in real devices well.
Since the DOI model is based on an absolute communicatiayerahassumes that within the inner
range, the signal is very strong and can always be receiveeltly, while beyond the outer range there
is no signal at all. This binary pattern is not true in reality

To address the issue of radio irregularity in wireless senstwork, we utilized Radio Irregularity
Model (RIM) [19] in our simulation. This model bridges the discrepancy leetw spherical radio
models used by simulators and the physical reality of raidjioads and also verify the presence of radio
irregularity using empirical data obtained from the MICARtorm. RIM takes into account both the
non-isotropic properties of the propagation media and #terbgeneous properties of devices.

In isotropic radio models, the received signal strength ®sually represented with the
following formula:

ReceivedSignal Strength = SendingPower — PathLoss + Fading (9)

To reflect the two main properties of radio irregularity, rdymon-isotropic and continuous variation,
RIM adjusts the value of path loss models in (9) based on Dkg resulting in the following formula:

ReceivedSignal Strength = Sending Power — DOI Adjusted PathLoss + Fading (10)

DOI AdjustedPathLoss = PathLoss X K; (11)

Here K is a coefficient to represent the difference in path lossffemint directions. Specificallyy;
is the i* degree coefficient, which is calculated in the following way

1.2=0
Ki=4 ' _ (12)
K, 1+ Rand x DOI,0 <1< 360Ai€e N

where|| Ky — Kss0|| < DOI
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It is possible to generat&60 K; values for the360 different directions, based on (12), by randomly
fixing a direction as the starting direction represented by(. For the direction that does not have an
integer value of angle from the start direction, the intémpon of theK; value has been taken based on
the values of the two adjacent directions that have integgiea from the starting direction.

K=K+ (i—s) x (K, — K,) (13)

where,s = [i| At = [i] mod360 N0 <i<360Ai¢ N

The variance of received signal strength in RIM in differehitections fits the Weibull 20|
distribution. The Weibull distribution can be used to maa&iural phenomena such as variation of wind
speed, scattering of radiatiogtc. The Rayleigh distribution, which is commonly used for miatse
multi-path fading in wireless communication, is a specede of the Weibull distribution.

Due to the difference in hardware calibration and batteayust received signal strength can be
different from two sending nodes of the same type. RIM ini&b a second parameter named VSP
(Variance of Sending Power), which is defined as the maximerogmtage variance of the signal sending
power among different devices, to account for such a diffeee The new signal sending power is
modeled by the following equation:

VS P AdjustedSending Power = SendingPower x (1 + Rand x VSP) (14)
Thus with the two parameters, DOI and VSP, the RIM model caiofysulated as follows:

ReceivedSignal Strength = V.S P AdjustedSending Power — DOI Adjusted PathLoss + Fading
(15)

With the help of the RIM model, we explore the impact of radicegularity of our proposed
algorithm (DPAI).

In this experiment, we investigate the impact of irreguéalio patterns on the precision of localization
estimation. It is intuitive that irregular radio patternsncaffect the network topologies resulting in
irregular hop count distributions. We can see, in Figli€e how this inaccurate estimate directly
contributes to localization error as the DOI increases. MWDB®I increases, it means the number of
neighbors around a sensor node decreases, and as a resudri likely that the shortest transmission
path from one sensor node to another is more detoured tharebéf that case our algorithm shows more
robustness than other algorithms because of the angulae balsed average hop distance calculation.
Our algorithm adapts to different detoured transmissidh pecording to dynamic value of the angle and
thus calculates the distance between an anchor node angda sede more accurately. Figur@ shows
the localization error when varying DOI in isotropic netkavhen the sensor density is 16. Obviously,
in anisotropic network, which itself provides additionadiio irregularity in the form of different obstacle
shapes, more localization errors will be introduced as tG¢ iDcreases.

6. Conclusions

Locating sensors is necessary for many location depengphtations in WSNs. The existing range-
free schemes suffer from poor localization accuracy whes@edensity and the numbers of anchor
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nodes are low. Without the help of a large number of uniforayployed anchor nodes and higher
sensor density, those schemes fail in isotropic as well asisotropic WSNs. We have proposed a novel
localization algorithm based on angular information of de¢our path that improves the basic DV-Hop
algorithm as well as three other existing algorithms, paférly when the network is anisotropic as
well as isotropic. In particular, a DPAI scheme, proposethia paper, performs best when irregular
radio patterns, low sensor density and random node pladesmerconsidered. The localization error
of our proposed algorithm is decreased significantly by gisihe angular information of the curved
transmission path between two anchor nodes in such a wawéhedn calculate the average hop distance
more accurately. Thus DPAI achieves better performance with few number of anchor nodes, which
implies the cost effectiveness of our algorithm in bothrigpic and anisotropic network condition. The
extensive simulation results in isotropic, O-shape andh&pe network prove the effectiveness of our
proposed algorithm. We believe that our design of DPAI atbar for both anchors and sensors will
make the range-free localization schemes more practicalddnoc networks and WSNSs.
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