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Abstract:



In this paper, we study the channel allocation in multi-channel wireless ad hoc networks with directional antennas. In particular, we investigate the problem: given a set of wireless nodes equipped with directional antennas, how many channels are needed to ensure collision-free communications? We derive the upper bounds on the number of channels, which heavily depend on the node density and the interference ratio (i.e., the ratio of the interference range to the transmission range). We construct several scenarios to examine the tightness of the derived bounds. We also take the side-lobes and back-lobes as well as the signal path loss into our analysis. Our results can be used to estimate the number of channels required for a practical wireless network (e.g., wireless sensor network) with directional antennas.
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1. Introduction


With the proliferation of various wireless devices and wireless communication services, the demand for wireless spectrum is constantly increasing and the available wireless spectrum becomes scarce. Therefore, the study on the effective and sufficient channel allocation schemes of the wireless spectrum has received extensive attention from both academia and industry. However, most of the current studies on the channel allocation schemes are focused on wireless ad hoc networks with omni-directional antennas (OMN), which radiate wireless signals in all directions and consequently lead to high interference to other concurrent transmissions. As a result, an omni-directional antenna has low spectrum reuse. We call such wireless ad hoc networks with omni-directional antennas as OMN networks. Most of the current wireless sensor networks (WSNs) are OMN networks.



Compared with an omni-directional antenna, a directional antenna (DIR) can concentrate wireless signals on the desired direction and lead to low interference to other current transmissions. Potentially, a directional antenna can improve the spectrum reuse and consequently improve the network performance. Specifically, it is shown in [1,2] that using directional antennas in WSNs can significantly improve the network capacity and reduce the end-to-end delay. We name such wireless networks with directional antennas as DIR networks. In this paper, we study the channel allocation of DIR networks. s In the following, we first survey the related work and then summarize our research contributions.



1.1. Related Work


Many recent studies focused on using multiple channels in OMN networks to improve the network performance. In particular, the experimental results of [3,4,5,6,7,8] show that using multiple channels can significantly improve the network throughput. One possible reason is that using multiple channels can separate multiple concurrent transmissions in frequency domain. On the other hand, the relationship between the number of channels and the network capacity were studied in [9,10]. More specifically, it is shown in [9] that the capacity of OMN networks has different bounds, which only depend on the ratio of the number of interfaces to the number of channels. Reference [10] studied the problem by using linear programming. More specifically, the interference constraint and flow constraint were defined in [10]. In addition, the link scheduling and channel allocation problem has been studied in [11]. Specifically, in [11], a conflict graph was proposed to model the constraints, and the channel assignment problem was converted into a graph coloring problem. Furthermore, the general channel allocation problem in OMN networks was studied in [12]. Moreover, [13] first applied stochastic optimization in channel allocation in OMN networks.



However, most of the current studies on the channel allocation are focused on OMN networks. Recent studies such as [14,15,16,17,18,19,20,21] found that applying directional antennas instead of omni-directional antennas in wireless networks can greatly improve the network capacity. For example, the analytical results in [14] show that using directional antenna in arbitrary networks achieves a capacity gain of [image: there is no content] when both transmission and reception are directional, where α and β are transmitter and receiver antenna beamwidths, respectively. Under random networks, the capacity gain is [image: there is no content]. However, these studies only considered the single channel in DIR networks. There are few studies on the multi-channel allocation of DIR networks, which are shown to have higher performance than OMN networks [14,20,22]. In particular, the channel allocation in IEEE 802.11-based mesh networks with directional antennas was studied in [23]. However, the allocation scheme of this study can only apply for the specific network, in which a wireless station (or a node) can simultaneously transmit to a number of other stations, or simultaneously receive from a number of other stations, but a station cannot simultaneously transmit and receive (i.e., the half-duplexity is still in place).




1.2. Contributions


The primary research contributions of our paper can be summarized as follows.

	
We study the channel allocation in general DIR networks. In particular, we try to answer the question: how many channels are needed to ensure collision-free communications in a DIR network.



	
We formulate the channel allocation problem as a graph coloring problem. We derive the upper bounds on the number of channels to ensure collision-free communications in a DIR network. It is shown that the upper bounds on the number of channels heavily depend on the node density and the interference ratio.



	
We compare our derived upper bounds with the results derived from OMN networks. We also investigate the tightness of our derived upper bounds by constructing several scenarios.



	
We also take the side-lobes and back-lobes of a directional antenna as well as the physical channel characteristics (e.g., the signal path loss) into account. Specifically, our results show that when the beamwidth of a directional antenna is quite narrow, the effect of the side-lobes and back-lobes is so small that they can often be ignored.



	
Our results are also useful in practice. In particular, our results can be used to roughly estimate the number of channels needed in the given configuration of a wireless network (e.g., a WSN with directional antennas). On the other hand, when the number of available channels is limited, our results can be used to suggest the proper network setting.








The remainder of the paper is organized as follows. In Section 2, we describe the models and give the problem formulation. Section 3 presents the derived upper bounds on the number of channels under different values of the interference ratio. In Section 4, we construct several communication scenarios and examine the tightness of our derived bounds. Section 5 compares our results with those derived with omni-directional antennas and presents some useful implications. Finally, we conclude our work in Section 7.





2. Models and Problem Formulation


In order to clarify our analysis, we firstly propose a directional antenna model and an interference model in Section 2.1. Then Section 2.2 gives the definitions for a link set, a valid assignment as well as the node density, and presents the problem formation for the upper bound on the number of channels. In Section 2.3, we define the conflict graph.



2.1. Models


2.1.1. Antenna Model


The radiation pattern of a direction antenna is often depicted as the gain values in each direction in space. We can project the radiation pattern of an antenna to an azimuthal or elevation plane. The projection of the pattern typically has a main lobe (beam) of the peak gain and side-lobes and back-lobes of smaller gains.



Since modeling a real antenna with precise values for main and side-/back-lobes is difficult, we use an approximate antenna pattern in [15]. In an azimuthal plane, the main lobe of antenna can be depicted as a sector with angle [image: there is no content], which is denoted as the beamwidth of the antenna. The side-lobes and back-lobes are aggregated to a circle, as shown in Figure 1. The narrower the main beamwidth of the antenna is, the smaller the side-lobes and back-lobes are. Let us take the above antenna model as an example: the gain of the main beam is more than 100 times of the gain of side-lobes when the main beamwidth is less than 40∘ [15]. Thus, we temporarily ignore the effects of the side-lobe and back-lobes of an antenna in the follow sections. Specifically, we will extend our analysis with the side-lobes and back-lobes in Section 6.


Figure 1. The Antenna Model.



[image: Jsan 02 00213 g001]








Our simplified model assumes that the directional antenna gain is within the main beam. The gain outside the main beam is assumed to be zero. At any time, the antenna beam can only be pointed to a certain direction, as shown in Figure 1, in which the antenna is pointing to the right.




2.1.2. Interference Model


We propose an interference model, which extends the Protocol Model in [24] to directional antennas. Our model only considers directional transmission and directional reception, which can maximize the benefits of directional antennas.



Two nodes [image: there is no content] and [image: there is no content] can establish a bi-directional link denoted by [image: there is no content] if and only if the following conditions are satisfied.




	(1)

	
[image: there is no content] is within the transmission range of [image: there is no content] and [image: there is no content] is within the transmission range of [image: there is no content].




	(2)

	
[image: there is no content] is covered by the antenna beam of [image: there is no content]. Similarly, [image: there is no content] is also covered by the antenna beam of [image: there is no content].




	(3)

	
No other node within the interference range(the interference range is used to denote the maximum distance within which a node can be interfered by an interfering signal) is simultaneously transmitting over the same channel and in the same direction toward [image: there is no content].









We call two nodes in conflict with each other if they are located within the interference range of each other and their antenna beams are pointed toward each other. For example, in Figure 2, node [image: there is no content] within the interference range of node [image: there is no content] may conflict with [image: there is no content]. Link [image: there is no content]conflicts with link [image: there is no content] if either node of one link conflicts with either node of the other link.


Figure 2. The Interference Model.
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2.2. Definitions and Problem Formulation


In this paper, we assume that there are n nodes in a plane and each node has only one antenna (interface), i.e., it can only transmit or receive with at most one neighboring node at one time.



We also assume that each node is equipped with an identical antenna with the same beamwidth [image: there is no content]. Each node also has the same transmission range, denoted by [image: there is no content] and the same interference range, denoted by [image: there is no content]. Typically, [image: there is no content] is no less than [image: there is no content], i.e., [image: there is no content]≥[image: there is no content].



Basic definitions are stated as follows.




Definition 1 

Link Set. A link set is defined as a set of links among which no two links in this set share common nodes. Such a link set is denoted as [image: there is no content]. A link set is used to describe a set of links that need to act simultaneously.








Definition 2 

Valid Assignment. A valid assignment to a link set is an assignment of channels such that no two conflicting links are assigned an identical channel. A link set is called a Schedulable Link Set if and only if there exists a valid assignment for the link set.








Definition 3 

Interference Ratio. The interference ratio is the ratio of the interference range to the transmission range, i.e., r=[image: there is no content]/[image: there is no content]. Since [image: there is no content]≥[image: there is no content], it is obvious that the interference ratio [image: there is no content]. The number of interfering nodes around a node heavily depends on the interference ratio.








Definition 4 

Node Density. There are n nodes randomly located in the plane. Let S denote the (infinite) set of sectors on the plane with radius [image: there is no content]and angle [image: there is no content]. The number of nodes within sector s is denoted as [image: there is no content]. The density of nodes is defined as [image: there is no content].







In order to compare our derived results to those with OMN networks [12], we re-state the definition here.




Definition 5 

[12] Node Density with Omni-directional Antennas. There are n nodes uniformly located in the plane. Let C denote the (infinite) set of circles on the plane with radius [image: there is no content]. The number of nodes within circle c is denoted as [image: there is no content]. The density of nodes is defined as [image: there is no content].







Then we give the definition of the upper bound on the number of channels to ensure collision-free communications in DIR networks.




Definition 6 

Upper Bound on the number of channels. There exist possibly many valid link sets, which represent different combination of communication pairs among the nodes. The problem is to find a number, denoted as U, such that any link set [image: there is no content]derived from n nodes is schedulable using U channels. In other word, U is the upper bound of channels needed to ensure a collision-free link assignment.








2.3. Conflict Graph


The link assignment problem can be converted to a conflict graph problem, which is first addressed in [11]. A conflict graph is used to model the effects of interference.




Definition 7 

Conflict Graph. We define a graph in which every link from a link set [image: there is no content]can be represented by a vertex. Two vertices in the graph are connected by an edge if and only if the two links conflict. Such a graph is called a conflict graph. The conflict graph G constructed from link set [image: there is no content]is denoted as [image: there is no content].









3. Upper Bounds on the Number of Channels


In this section, we first convert the channel assignment problem of DIR networks to the vertex coloring problem in graph theory. We then derive the upper bounds on the number of channels.



3.1. Background Results


By constructing the conflict graph for a link set, and representing each channel by a different color, we found that the requirement that no two conflicting links share the same channel is equivalent to the constraint that no two adjacent vertices share the same color in graph coloring. Therefore, the problem of channel assignment on a link set can be converted to the classical vertex coloring problem (in graph theory, the vertex coloring problem is a way of assigning “labels”—colors—to vertices of a graph such that no two adjacent vertices share the same color) on the conflict graph. The vertex coloring problem, as one of the most fundamental problems in graph theory, is known to be NP-hard even in the very restricted classes of planar graphs [25]. A coloring is regarded as valid if no two adjacent vertices use the same color.



The minimum number for a valid coloring of vertices in a graph G is denoted by a chromatic number, [image: there is no content]. There are two well-known results on the upper bound of [image: there is no content], which will be used to derive our results.




Lemma 1 

[26] If [image: there is no content]denotes the largest degree among G’s vertices, i.e., [image: there is no content], then we have


[image: there is no content]
















Lemma 2 

[27] If G contains a subgraph H in which each node has a degree at least [image: there is no content], we define such degree as [image: there is no content]. We have


[image: there is no content]








where the maximum degree among all the [image: there is no content]is denoted by [image: there is no content].








3.2. Upper Bounds on the Number of Channels


We then derive several upper bounds under different network settings in terms of the interference ratio r.




Theorem 1 

If there are n nodes in a planar area with the density D and each node is equipped with an antenna with the identical beamwidth [image: there is no content], for any valid link set [image: there is no content]derived from the n nodes, the corresponding conflict graph [image: there is no content]can be colored by using [image: there is no content]colors.







Proof. Consider link [image: there is no content] that consists of nodes [image: there is no content] and [image: there is no content], as shown in Figure 3. The interference region is denoted as two sectors with radius [image: there is no content] and angle [image: there is no content] (the gray area in Figure 3). From the definition of node density, each sector has at most D nodes. Other than nodes [image: there is no content] and [image: there is no content], there are at most [image: there is no content] nodes in either sector. After we combine the nodes in the two sectors, the gray area contains no more than [image: there is no content] nodes excluding nodes [image: there is no content] and [image: there is no content].


Figure 3. The Interference Region.
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Suppose link [image: there is no content] is one of the links that conflicts with [image: there is no content]. It is obvious that at least one node of that link, e.g., [image: there is no content], should be in [image: there is no content]’s interference region, the gray sector centered at [image: there is no content] in Figure 3. At the same time, the antenna of [image: there is no content] should be pointed to [image: there is no content] if it can interfere with [image: there is no content]. Thus, [image: there is no content]’s interference region must also cover [image: there is no content]. So, |[image: there is no content]-[image: there is no content]|≤[image: there is no content]. Since the antenna beam of the other node [image: there is no content] should be turned toward [image: there is no content], it must also fall in the interference region of [image: there is no content], as shown in Figure 3. Hence, |[image: there is no content]-[image: there is no content]|≤[image: there is no content].



It seems that any link that conflicts with link [image: there is no content] must fall in the gray area representing the interference regions of nodes [image: there is no content] and [image: there is no content]. However, consider the case that [image: there is no content] and [image: there is no content] form a link [image: there is no content] in Figure 3. [image: there is no content] is outside the gray region of [image: there is no content], but [image: there is no content] can interfere with [image: there is no content] since its beam covers [image: there is no content]. So, a link conflicting with link [image: there is no content] must contain at least one node falling in the gray area.





Therefore, there are at most [image: there is no content] links that conflict with [image: there is no content]. Hence, the maximum degree of the vertices of G is [image: there is no content]. From Lemma 1, the conflict graph can be colored by using [image: there is no content] colors.   ☐



Theorem 1 can be applied to any settings of the interference ratio r. When r is greater than 1, we can get tighter upper bounds. Specifically, we have the result when [image: there is no content].




Theorem 2 

When [image: there is no content]and n nodes are distributed in a planar area with density D, and each node is equipped with an antenna with the identical beamwidth [image: there is no content], for any valid link set [image: there is no content]derived from those n nodes, the corresponding conflict graph [image: there is no content]can be colored by using [image: there is no content]colors.







Proof. Without loss of generality, we assume [image: there is no content]=1 so [image: there is no content]=2. Since the number of nodes n is a finite number, the number of links derived from n is also a finite number. Given a finite number of links on the plane, we can always find a line, such that at least one node is on the line, and all the other nodes are on the right hand side of the plane (as shown in Figure 4). We denote the node on the line as [image: there is no content], and the other node on the corresponding link [image: there is no content] is [image: there is no content]. Then we will calculate the number of links that may conflict with link [image: there is no content].


Figure 4. The plane is divided into two parts.
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Let us consider link [image: there is no content] consisting of two nodes [image: there is no content] and [image: there is no content] (as shown in Figure 5). For any link [image: there is no content] that interferes with node [image: there is no content], at least one node of that link must fall in the interference range of [image: there is no content]. Thus, any interfering link must have an acute angle with link [image: there is no content]. Therefore, we draw a line in parallel with the line segment [image: there is no content][image: there is no content] and a line in parallel with the upper border of the interference region of [image: there is no content] to bound those interfering nodes. Similarly, we draw other two lines in parallel with [image: there is no content][image: there is no content] and the lower border of the interference region of [image: there is no content]. Those lines and the arc of the interference region of [image: there is no content] form the region [image: there is no content] with the bold border, as shown in Figure 5 (note that the length of [image: there is no content] is equal to the length of [image: there is no content], which is equal to the length of [image: there is no content][image: there is no content]). Thus, those interfering nodes should all fall in this region.


Figure 5. The proof of Theorem 2.
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Then we illustrate that this region can be covered by three identical sectors with radius [image: there is no content]=2 and angle [image: there is no content]. We place these three sectors as follows. First, we put a sector with one of its edge tightly clinging to the thick line as shown in Figure 5. By calculating the coordinates of point A and point B, we can prove that [image: there is no content] is greater than segment [image: there is no content]. Then we place the second sector next to the first one as shown in Figure 5. Similarly, we can prove that points C and D fall in the second sector by calculating the coordinates of C and D. Then we put the third sector next to the second one. Point E falls in the third sector. Points F and G also fall in the first sector. So, the region [image: there is no content] can be covered by the three sectors.





Since the region [image: there is no content] can be covered by three identical sectors with radius [image: there is no content] and angle [image: there is no content], by definition of the node density, the number of nodes in region [image: there is no content] is at most [image: there is no content]. Those [image: there is no content] nodes can form at most [image: there is no content] links in this area. Other than link [image: there is no content], there are at most [image: there is no content] links that can interfere with link [image: there is no content]. Therefore, every vertex in subgraph H (the gray area in Figure 5) of G has a vertex with degree at most [image: there is no content]. From Lemma 2, the conflict graph can be colored by using [image: there is no content] colors.   ☐



Note that the result of Theorem 2 also holds for any [image: there is no content]. More specifically, we have the following result.




Theorem 3 

If an upper bound U is valid for the interference ratio [image: there is no content], [image: there is no content]and [image: there is no content], then the upper bound U is also valid for [image: there is no content].







Proof. Without loss of generality, we have the assumption that the interference range is fixed at [image: there is no content]=1 in both following two cases.



Case I ([image: there is no content]):



The transmission range in this case [image: there is no content]=[image: there is no content]r1=1r1 and U is a valid upper bound.



Case II ([image: there is no content]):



Thus, the transmission range in the second case [image: there is no content]=[image: there is no content]r2=1r2. Since [image: there is no content], we have [image: there is no content]. This means that the transmission range [image: there is no content] in the first case ([image: there is no content]) is larger than the transmission range [image: there is no content] in the second case ([image: there is no content]). That is to say any valid link set [image: there is no content] in the second case is also valid in the first case. Since interference ranges are equal in the two cases, link set [image: there is no content] will result in the same conflict graph in the two cases. Recall the assumption that when [image: there is no content], U colors are enough to satisfy [image: there is no content]. Therefore, U is also a valid upper bound when [image: there is no content].   ☐



As shown in Theorem 3, the upper bound is monotonically non-increasing as interference ratio r increases. Intuitively, the larger the interference ratio r is, the further reduced the upper bound U can be. When [image: there is no content], we have the following result.




Theorem 4 

When [image: there is no content]and n nodes are distributed in a planar area with density D, and each node is equipped with an antenna with beamwidth [image: there is no content], for any valid link set [image: there is no content]derived from those n nodes, the corresponding conflict graph [image: there is no content]can be colored by using D colors.







Proof. We take the similar proof techniques to prove Theorem 4. Without loss of generality, we assume that [image: there is no content]=1 and [image: there is no content]=4.



From Lemma 2, it is sufficient to prove that [image: there is no content]. This is equivalent to prove that every vertex of every subgraph of G has a degree at most [image: there is no content]. In other words, we prove that for every subset of link set [image: there is no content], there exists link [image: there is no content] such that there are at most [image: there is no content] links that interfere with link [image: there is no content].



Similar to the proof of Theorem 2, we also show that the nodes interfering link [image: there is no content] will all fall in a region that can be covered by two identical sectors with radius [image: there is no content] and angle [image: there is no content].



As shown in Figure 6, for any link [image: there is no content] that interferes with node [image: there is no content], at least one node of that link must fall in the interference range of [image: there is no content]. The other node of such link [image: there is no content] must fall into region [image: there is no content] with the bold border.


Figure 6. The proof of Theorem 4.
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We illustrate that this region with the bold border can be covered by two identical sectors with radius [image: there is no content]=2 and angle [image: there is no content]. We place these two sectors as follows. First, we put a sector horizontally. By calculating the coordinates of point A and point B, we can prove that points A and B are falling into the first sector. Then we put the second sector contiguous to the first sector. By calculating the coordinates of points C, D and E, we can prove that points C, D and E fall into the second sector. Similarly, we can prove that points F and G fall into the first sector. So, the region [image: there is no content] can be covered by the two sectors.



Since the region [image: there is no content] can be covered by two identical sectors with radius [image: there is no content] and angle [image: there is no content], by definition of the node density, the number of nodes in region [image: there is no content] is at most [image: there is no content]. Those [image: there is no content] nodes can form at most D links in this area. Other than link [image: there is no content], there are at most [image: there is no content] links that can interfere with link [image: there is no content]. Therefore, every vertex in subgraph H (the gray area in Figure 6) of G has a vertex with degree at most [image: there is no content]. From Lemma 2, the conflict graph can be colored by using D colors.   ☐





4. Tightness of the Upper Bounds


In this section, we construct several scenarios to examine the tightness of the derived upper bounds. In particular, we have the following results.




Theorem 5 

When [image: there is no content], the upper bound cannot be reduced to be lower than [image: there is no content].







Proof. When [image: there is no content], [image: there is no content]=[image: there is no content]. We construct a scenario, as shown in Figure 7. The density D is 14 in Figure 7. We first draw a sector of radius [image: there is no content]/2 and angle [image: there is no content]. Then we place [image: there is no content] (13) nodes equally on the arc of the sector with radius [image: there is no content]/2. For each node on the circle, we establish a link with length [image: there is no content]=[image: there is no content] toward the center of the sector, as shown in Figure 7.


Figure 7. The proof of Theorem 5.
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It is obvious that the node set we have just constructed is of density D since there are D nodes within the sector of radius [image: there is no content] and angle [image: there is no content]. For the link set from the constructed node set, the corresponding conflict graph is a [image: there is no content]-clique (i.e., each link interferes with each other), which needs exactly [image: there is no content] colors to color. So the upper bound cannot be lower than [image: there is no content].   ☐



When the interference ratio r is increased, the upper bound can also be reduced. More specifically, when [image: there is no content], we have the following result.




Theorem 6 

When [image: there is no content], the upper bound cannot be reduced to lower than ⌊β[image: there is no content]·D2⌋+1, where β=2arctan(tan[image: there is no content]2·((2r-1)tan2[image: there is no content]2+r2-(r-1))(r-1)tan2[image: there is no content]2+(2r-1)tan2[image: there is no content]2+r2), which only depends on the beamwidth [image: there is no content]and the interference ratio r.







Proof. When [image: there is no content], we construct a scenario shown in Figure 8. We first draw a sector with radius d≥[image: there is no content]/2 and put n nodes equally on the arc of the sector. For each node on the circle, we establish a link with length [image: there is no content] directed against the center of the sector, as shown in Figure 8.


Figure 8. The proof of Theorem 6.
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For this example, the node density [image: there is no content] since we can put a sector with radius [image: there is no content] and angle [image: there is no content] to cover those n links (each link has two nodes). Then, we need to calculate the number of links that a link can interfere with. We take link [image: there is no content] as an example. All the nodes falling in the interference region of nodes [image: there is no content] may interfere with node [image: there is no content]. In order to calculate the number of susceptible links, we need to calculate the coverage angle, denoted as β. The details on the calculation of the coverage angle β can be found in Appendix A. Thus, we have


β=2arctan(tan[image: there is no content]2·((Ri2-d2)tan2[image: there is no content]2+Ri2-d)dtan2[image: there is no content]2+(Ri2-d2)tan2[image: there is no content]2+Ri2)



(1)







Since [image: there is no content]=r·[image: there is no content] and d=[image: there is no content]-[image: there is no content]=(r-1)[image: there is no content], we substitute the corresponding parts in Equation (1). Then we have


β=2arctan(tan[image: there is no content]2·((2r-1)tan2[image: there is no content]2+r2-(r-1))(r-1)tan2[image: there is no content]2+(2r-1)tan2[image: there is no content]2+r2)



(2)









From Equation (2), the coverage angle β is less than the beamwidth [image: there is no content]. It only depends on [image: there is no content] and the interference ratio r. This angle monotonously increases with [image: there is no content] when 0<[image: there is no content]≤π2. Furthermore, it monotonously decreases with the increased interference ratio r. There are nearly ⌊β[image: there is no content]·D2⌋+1 links falling in the interference region of node [image: there is no content]. Thus, in order to separate those links, we need at least ⌊β[image: there is no content]·D2⌋+1 colors.   ☐



It is shown in Theorem 6 that the number of required channels can be reduced when r is increased.




Theorem 7 

The upper bound cannot be reduced to lower than [image: there is no content], for any r and any [image: there is no content].







Proof. Suppose that there are D nodes that are closely located. The distance between any two of them is ϵ, where ϵ is a quite small number and [image: there is no content]. Any link is constructed from any two of the D nodes. When the distance is quite narrow, the collisions among links are quite high and any link can almost conflict with other links. So, there are [image: there is no content] links that conflict with each other. Therefore, the number of channels cannot be reduced to [image: there is no content].   ☐




5. Discussions and Implications


We summarize our results in Table 1. We also compare our results with omni-directional cases [12]. Note that we assume [image: there is no content]=1 is fixed and [image: there is no content] is adjustable. The coverage angle β is given in Equation (1), which decreases with the increased interference ratio r. When [image: there is no content], the angle is denoted by [image: there is no content]. When [image: there is no content], the angle is denoted by [image: there is no content]. Thus, we have [image: there is no content]<[image: there is no content].



Table 1. Comparisons of OMN networks and DIR networks.







	

	
OMN Networks [12]

	
DIR Networks






	
r

	
Upper bounds

	
Lower constraints

	
Upper bounds

	
Lower constraints




	
1

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
2

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
⌊[image: there is no content][image: there is no content]D2⌋+1




	
4

	
[image: there is no content]

	
12[image: there is no content]

	
D

	
⌊[image: there is no content][image: there is no content]D2⌋+1




	
∞

	
12[image: there is no content]

	
12[image: there is no content]

	
[image: there is no content]

	
1












When interference ratio [image: there is no content], the upper bound for the network with directional antennas is [image: there is no content] and the upper bound for the network with omni-directional antennas is [image: there is no content]. Different from the node density D with directional antennas, [image: there is no content] is defined as the maximum number of nodes within a circle of interference range. Generally, we have D≠[image: there is no content].



When [image: there is no content], the upper bound on the number of channels is [image: there is no content] for directional antennas and [image: there is no content] for omni-directional antennas. Similarly, when [image: there is no content], the upper bound is reduced to D for directional antennas and [image: there is no content] for omni-directional antennas. From those results, we have found that the number of channels needed for a collision-free transmission scales linearly with the node density D, and is non-increasing as the interference ratio r increases.



When the interference ratio r approximates the infinity, then [image: there is no content] approximates 0. This means all links have length 0. So, any link will conflict with at most [image: there is no content] links in the directional case and 12[image: there is no content]-1 links in the omni-directional case.



From Table 1, we also observe that upper bounds derived from the omni-directional antennas have almost the same coefficients as those derived from the directional antennas except for the case when [image: there is no content] (although they have different node densities, i.e., D and [image: there is no content]). Both the upper bounds derived from the omni-directional case and those derived from the directional case heavily depend on the node density and the interference ratio. An interesting question is whether the upper bounds are independent of the actual radiation patterns of antennas.



Our derived theoretical results can be applied to solve many practical problems. For example, given a wireless network with a number of wireless nodes, our derived bounds can be used to estimate the number of channels required to ensure a collision-free communication. For another example, when the number of channels is given (e.g., there are 14 channels but only three orthogonal channels available in IEEE 802.11), our results can be used to offer suggestions on the node density in the node deployment or suggestions on the channel assignment for a given network.




6. Extension with Side-Lobes/Back-Lobes as Well as the Path Loss Effect


In this section, we take side-lobes and back-lobes of a directional antenna as well as the signal path loss effect into our analysis. We next derive the results on the upper bounds of the number of channels with consideration of the above factors.



6.1. Antenna Model with Side-Lobes and Back-Lobes


To measure the directivity of an antenna, we often consider the three-dimensional spatial distribution of antenna gains, which is called the radiation pattern of an antenna. Figure 9 shows the radiation pattern of a realistic directional antenna in 3-D space, which typically consists of the main lobe (or beam) with the largest radiation intensity and the side-lobes and back-lobes with smaller radiation intensity.


Figure 9. Radiation pattern of a realistic directional antenna.



[image: Jsan 02 00213 g009]








As shown in Figure 9, we use vector r to represent the direction of the radiation intensity in 3-D space. In particular, we use θ to represent the angle between the vector r and the z-axis ([image: there is no content]), and ϕ to represent the angle between the x-axis and the projection of the vector r into the [image: there is no content] plane ([image: there is no content]). We then define the gain of an antenna as


[image: there is no content]



(3)




where η is the efficiency factor, which is usually set to be 1 since all the antennas in this paper are assumed to be lossless, [image: there is no content] is the radiation intensity, which is defined as the power radiated from an antenna per unit solid angle, and [image: there is no content] denotes radiation intensity of an isotropic antenna with the same radiation power [image: there is no content] as a directional antenna. Note that an isotropic antenna is a point that radiates/collects radio power uniformly in all directions in 3-D space. In this paper, we regard an isotropic antenna as being equivalent to an omni-directional antenna since both of them have the same projected radiation pattern—a circular area in a 2-D plane.



We next analyze the antenna gain of omni-directional antennas and the antenna gain of directional antennas, which will be used in the physical channel model in Section 6.2.



6.1.1. Omni-Directional Antenna


It is obvious that an omni-directional antenna has antenna gain [image: there is no content] since an omni-directional antenna radiates the power uniformly in all directions, i.e., U(θ,ϕ)=[image: there is no content]. Note that we consider the linear gain instead of logarithmic gain (dBi) for an antenna in this paper in order to maintain consistency with the physical channel model (see Section 6.2).




6.1.2. Directional Antenna


As mentioned in Section 2, we consider an approximated radiation pattern of directional antennas [15]. In this model, the main lobe of a directional antenna is represented as a cone with angle [image: there is no content] and side-lobes and back-lobes are approximated as a sphere with beamwidth 2π-[image: there is no content]. Figure 10 shows the approximated radiation pattern of a directional antenna.


Figure 10. Approximated radiation pattern of a directional antenna.



[image: Jsan 02 00213 g010]








We then to calculate the antenna gain of the main lobe of a directional antenna and the antenna gain of the side-lobes and back-lobes, which are denoted as [image: there is no content] and [image: there is no content], respectively. We first derive the maximum beamwidth [image: there is no content] of the main beam. As shown in Figure 10, we consider a sphere with radius [image: there is no content], where the radiated power of the main beam is concentrated within the small surface with area A. The area A can be approximated as A=[image: there is no content]tan[image: there is no content]/2. We denote S as the surface area of the sphere. By Equation (3), we have


[image: there is no content]=[image: there is no content]A[image: there is no content]S=[image: there is no content]πrd2tan2[image: there is no content]2[image: there is no content]4πrd2=4tan2[image: there is no content]2



(4)







We next derive the maximum approximated beamwidth [image: there is no content] for [image: there is no content].


[image: there is no content]=2arctan4[image: there is no content]



(5)







Usually, the main beamwidth [image: there is no content]<[image: there is no content]. Similar to [15], we simply choose [image: there is no content] to be the largest multiple of 10 that is less than [image: there is no content]. Given [image: there is no content] and [image: there is no content], we now derive the antenna gain of side-lobes and back-lobes [image: there is no content] as the following steps.



By Equation (3), we have


[image: there is no content]·[image: there is no content]S·A+[image: there is no content]·[image: there is no content]S(S-A)=η·[image: there is no content]



(6)







Solving the equation, we have


[image: there is no content]=η·SA-[image: there is no content]SA-1



(7)




where SA=4tan2[image: there is no content]2 and η is usually set to be 1.



We then calculate the main beam gain [image: there is no content] by Equation (4). We next choose [image: there is no content] to be the largest multiple of 10 that is less than [image: there is no content]. Finally, we calculate the side-lobe and back-lobe gains by Equation (7). Table 2 lists both the linear gains and logarithmic gains (dBi).



Table 2. Antenna gains (linear and logarithmic).







	
Main Beamwidth [image: there is no content]

	
Main Beam Gain [image: there is no content]

	
Side-Lobe and Back-Lobe Gain [image: there is no content]






	
[image: there is no content]

	
10 (10 [image: there is no content])

	
[image: there is no content] (−7.4 [image: there is no content])




	
[image: there is no content]

	
25.12 (14 [image: there is no content])

	
[image: there is no content] (−7.6 [image: there is no content])




	
[image: there is no content]

	
100 (20 [image: there is no content])

	
[image: there is no content] (−6.5 [image: there is no content])




	
[image: there is no content]

	
398 (26 [image: there is no content])

	
[image: there is no content] (−4.0 [image: there is no content])












As shown in Table 2, when the main beamwidth of a directional antenna is decreased, the ratio of [image: there is no content]/[image: there is no content] is significantly increased. In particular, when the main beamwidth is quite narrow (e.g., [image: there is no content]≤[image: there is no content]), we have [image: there is no content]≫[image: there is no content].





6.2. Physical Channel Model


We denote the node whose transmission causes the interference to other nodes as the interfering node. The node whose reception is interfered by other interfering nodes is denoted as interfered node.



We assume that the interfering node transmits with power [image: there is no content]. The received power at the interfered node at a distance d from the interfering node is denoted by [image: there is no content], which can be calculated by


[image: there is no content]=C[image: there is no content][image: there is no content][image: there is no content]1rα



(8)




where C is a constant, [image: there is no content] and [image: there is no content] denote the antenna gain of the interfering node and the antenna gain of the interfered node, respectively, and α is the path loss factor usually ranging from 3 to 4 [28].



When an interfering node interferes with an interfered node, the received power at the interfered node [image: there is no content] is required to be no less than a threshold [image: there is no content], i.e., [image: there is no content]≥[image: there is no content]. Thus, to calculate [image: there is no content], we


[image: there is no content]=C[image: there is no content][image: there is no content][image: there is no content]1Riα



(9)




where [image: there is no content] is defined as the interfering range in the physical channel model.



Solving this equation, we have


[image: there is no content]=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α



(10)







We next analyze the interfering range [image: there is no content] according to the four different scenarios, which are summarized in Table 3.



Table 3. Four scenarios.







	
Scenarios

	
Interfering Node

	
Interfered Node

	
Interference Range [image: there is no content]






	
I

	
Main beam

	
Main beam

	
[image: there is no content](MM)




	
II

	
Main beam

	
Side-lobes and back-lobes

	
[image: there is no content](MS)




	
III

	
Side-lobes and back-lobes

	
Main beam

	
[image: there is no content](SM)




	
IV

	
Side-lobes and back-lobes

	
Side-lobes and back-lobes

	
[image: there is no content](SS)












In particular, in Scenario I, two nodes [image: there is no content] and [image: there is no content] interfere with each other if and only if they fall into the interference range of each other and their main antenna beams are pointed toward each other, as shown in Figure 11(a). In this case, the interference range denoted by [image: there is no content](MM) can be calculated by


[image: there is no content](MM)=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α



(11)




where we replace both [image: there is no content] and [image: there is no content] in Equation (10) by [image: there is no content].


Figure 11. Four scenarios. (a) Scenario (I); (b) Scenario (II); (c) Scenario (III); (d) Scenario (IV).



[image: Jsan 02 00213 g011]








In Scenario II, the main antenna beam of the interfering node [image: there is no content] is pointed to the interfered node [image: there is no content], which also falls into the interference range of [image: there is no content]. However, the main beam of the interfered node [image: there is no content] is not necessarily pointed to the interfering node [image: there is no content]. Due to the existence of the side-lobes and the back-lobes, the reception of node [image: there is no content] is interfered by node [image: there is no content], as shown Figure 11(b). Thus, the interference range denoted by [image: there is no content](MS) can be calculated by


[image: there is no content](MS)=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α



(12)




where we replace [image: there is no content] and [image: there is no content] in Equation (10) by [image: there is no content] and [image: there is no content], respectively.



Similar to Scenario II, the interference range in Scenario III, which is denoted by [image: there is no content](MS), can be calculated by


[image: there is no content](SM)=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α



(13)




where we replace [image: there is no content] and [image: there is no content] in Equation (10) by [image: there is no content] and [image: there is no content], respectively.



It is obvious that [image: there is no content](MS)=[image: there is no content](SM). Thus, we regard [image: there is no content](MS) as [image: there is no content](SM) interchangeably throughout the remaining paper.



In Scenario IV, the side-/back-lobes of the interfering node [image: there is no content] and the interfered node [image: there is no content] cover each other. Thus, we can calculate the interference range denoted by [image: there is no content](SS)


[image: there is no content](SS)=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α



(14)




where we replace both [image: there is no content] and [image: there is no content] in Equation (10) by [image: there is no content].



With regard to [image: there is no content](SS), [image: there is no content](MS) and [image: there is no content](MM), we have the following result, which can be used to compare the different interference ranges under the above scenarios.




Lemma 3 

When the main beamwidth [image: there is no content]is narrow, we have [image: there is no content](SS)≪[image: there is no content](MS)≪[image: there is no content](MM).







Proof. First, we have


[image: there is no content](SS)[image: there is no content](MS)=(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α(C[image: there is no content][image: there is no content][image: there is no content][image: there is no content])1α=([image: there is no content][image: there is no content])1α



(15)







Similarly, we have


[image: there is no content](MS)[image: there is no content](MM)=([image: there is no content][image: there is no content])1α



(16)







As shown in Table 2, when the beamwidth [image: there is no content] is narrow (e.g., [image: there is no content]≤[image: there is no content]), [image: there is no content]≪[image: there is no content]. Since the path loss factor α usually ranges from 2 to 4, it is obvious that [image: there is no content](SS)≪[image: there is no content](MS)≪[image: there is no content](MM).   ☐



We then follow the similar steps in Theorem 1 and derive the upper bounds on the number of channels with consideration of side-lobes and back-lobes.




Theorem 8 

If there are n nodes in a planar area with the density D and each node is equipped with a directional antenna with the beamwidth [image: there is no content], the main beam gain [image: there is no content]and the side-/back-lobes gain [image: there is no content], for any valid link set [image: there is no content]derived from the n nodes, the corresponding conflict graph [image: there is no content]can be colored by using 2D+4πD[image: there is no content]·([image: there is no content][image: there is no content])2α-1colors.







Proof. Consider link [image: there is no content] that consists of two nodes [image: there is no content] and [image: there is no content]. The distance between [image: there is no content] and [image: there is no content] is denoted by d. To ensure that [image: there is no content] can communicate with [image: there is no content], we require d≤[image: there is no content], where [image: there is no content] is the transmission range of [image: there is no content]. The area of the interference region (including the interference region of the main beam as well as the interference region of the side-/back-lobes) varies with the different distance d. However, d cannot be too large, otherwise [image: there is no content] and [image: there is no content] cannot communicate with each other. It holds that d≤[image: there is no content]. To simply our analysis, we consider the following two cases.



Case 1 (when d=[image: there is no content]):



In this case, the interference region of side-/back-lobes is totally covered by the interference region of the main beam of a directional antenna as shown in Figure 12(a). This is because the interference range of side-/back-lobes denoted by [image: there is no content](SS) or [image: there is no content](MS) (note it depends on whether the interfering node is pointing its main beam or its side-/back-lobes toward the interfered node) is far less than the interference range of the main beam denoted by [image: there is no content](MM) as proved in Lemma 3.


Figure 12. Two cases for Theorem 8. (a) Case 1; (b) Case 2.



[image: Jsan 02 00213 g012]






Following the proof of Theorem 1, the interference region contains no more than [image: there is no content] nodes excluding nodes [image: there is no content] and [image: there is no content]. From Lemma 1, the conflict graph can be colored by [image: there is no content] colors.



Case 2 (when d<[image: there is no content]):



When the distance d is decreased, the interference region caused by the side-/back-lobes may not be totally covered by the interference region of the main beam. For example, there is an extreme case (when [image: there is no content]), as shown in Figure 12(b), where the interference region consists of two sectors of main lobes and two circles of side-/back lobes, which cannot be totally covered by the interference region of the main lobes. In this case, the interference region has the maximum coverage area.



We then calculate the number of nodes in this interference region. The number of nodes in the two circles is at most D[image: there is no content]2([image: there is no content](MM))2·2π([image: there is no content](MS))2=4πD[image: there is no content]·([image: there is no content][image: there is no content])2α, which is obtained by Equation (16) of Lemma 3. Note that we choose [image: there is no content](MS) instead of [image: there is no content](SS) because [image: there is no content](MS)≫[image: there is no content](SS). Besides, the number of nodes in the two sectors is at most [image: there is no content]. Thus, there are at most 2D-2+4πD[image: there is no content]·([image: there is no content][image: there is no content])2α nodes in the interference region. From Lemma 1, the conflict graph can be colored by 2D+2πD[image: there is no content]·([image: there is no content][image: there is no content])2α-1 colors.   ☐





As shown in Theorem 8, the upper bound on the number of channels is 2D+2πD[image: there is no content]·([image: there is no content][image: there is no content])2α-1. When the beamwidth [image: there is no content] of a directional antenna is narrow, the term 2πD[image: there is no content]·([image: there is no content][image: there is no content])2α is so small that we can often ignore the effect of the side-/back-lobes.





7. Conclusions


Many previous studies are focused on using multiple channels in wireless networks with omni-directional antennas, which have high interference. There are few studies considering multiple channels in wireless networks with directional antennas, which can lead to low interference. In this paper, we study the channel allocation problem in wireless networks with directional antennas. In particular, we derive the upper bounds on the number of channels to ensure the collision-free communication in multi-channel wireless networks using directional antennas. We found that the upper bounds heavily depend on the node density and are also related to the interference ratio. Our results can be used to estimate the number of channels in practical wireless networks.
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A. Appendix 1. Calculation of the Coverage Angle β


To calculate the coverage angle β, we need to obtain coordinates [image: there is no content] and [image: there is no content] of the intersection point A first, as shown in Figure A1. The circle is denoted by the equation


[image: there is no content]



(17)






Figure A1. Calculate the coverage angle β.



[image: Jsan 02 00213 g013]








The line [image: there is no content] is denoted by the equation


y=tan[image: there is no content]2·(x-d)



(18)







After joining Equations (17) and (18), we have the coordinates x and y of the point A.


[image: there is no content]=d·tan2[image: there is no content]2+(Ri2-d2)tan2[image: there is no content]2+Ri21+tan2[image: there is no content]2



(19)






[image: there is no content]=tan[image: there is no content]2·(Ri2-d2)tan2[image: there is no content]2+Ri2-d1+tan2[image: there is no content]2



(20)







On the other hand, we have tanβ2=[image: there is no content][image: there is no content]=tan[image: there is no content]2·((Ri2-d2)tan2[image: there is no content]2+Ri2-d)dtan2[image: there is no content]2+(Ri2-d2)tan2[image: there is no content]2+Ri2. Thus, we have


β=2arctan(tan[image: there is no content]2·((Ri2-d2)tan2[image: there is no content]2+Ri2-d)dtan2[image: there is no content]2+(Ri2-d2)tan2[image: there is no content]2+Ri2)



(21)




  ☐
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