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Abstract: This work presents a computational framework for the analysis and design of large-scale
algorithms utilized in the estimation of acoustic, doubly-dispersive, randomly time-variant,
underwater communication channels. Channel estimation results are used, in turn, in the proposed
framework for the development of efficient high performance algorithms, based on fast Fourier
transformations, for the search, detection, estimation and tracking (SDET) of underwater moving
objects through acoustic wavefront signal analysis techniques associated with real-time electronic
surveillance and acoustic monitoring (eSAM) operations. Particular importance is given in this
work to the estimation of the range and speed of deep underwater moving objects modeled as point
targets. The work demonstrates how to use Kronecker products signal algebra (KSA), a branch of
finite-dimensional tensor signal algebra, as a mathematical language for the formulation of novel
variants of parallel orthogonal matching pursuit (POMP) algorithms, as well as a programming
aid for mapping these algorithms to large-scale computational structures, using a modified Kuck’s
paradigm for parallel computation.

Keywords: orthogonal matching pursuit; acoustic signal; multiple object tracking; delay-Doppler
MIMO estimation; Kuck’s paradigm; Kronecker products signal algebra

1. Introduction

This work formulates a computational framework for the development of efficient algorithms to
effect computational signal processing operations to address the problem of electronic surveillance
and acoustic monitoring (eSAM) of deep underwater moving objects. From the point of view of
computational complexity theory, the combined problem of search, detection, estimation and tracking
(SDET) of deep underwater moving objects through active signal sensing is considered an NP-hard
problem [1–3]. This is in the context of transmitter signal waveform design and signal-to-noise ratio
(SNR) optimization. For this reason, large-scale modeling and simulation environments are needed in
order to analyze, design and implement high performance computational signal processing algorithms
that may provide optimal approximate solutions to this problem. In order to facilitate the exposition of
the proposed computational framework, we proceed to simplify the formulation of the SDET problem
in the following manner.
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Problem formulation: There is a need to develop approximate algorithms for the estimation
of the range and speed of deep underwater moving objects to facilitate tracking operations [4,5].
These tracking operations are performed in a communication medium that manifests time-frequency
dispersion effects and must be characterized as an acoustic, linear, stochastic (ALS), time-variant
channel [6].

To obtain approximate solutions to this simplified SDET problem, we decomposed the problem
itself into three main stages: (i) how to characterize the communication channel between the set of
signal transmitters, assumed here to be M transmitters, and the set of scattering moving objects; (ii) how
to characterize the scattering interaction among the transmitted signals and the scattering moving
objects, assumed here to be KL scattering objects; and (iii) how to characterize the communication
channel between the set of scattering moving objects and the set of signal receivers, assumed here to
be N signal transducers?

Stages (i) and (iii) were integrated in a unified manner, and the communication channels were
modeled as ALS time-variant systems resulting in a MIMO channel characterization formulation.
Stage (ii) was addressed using multidimensional, multi-component, polynomial phase (MMPP)
signals and operator theoretic properties associated with discrete Cohen distributions (DCDs) under
a bidimensional harmonic analysis setting. This approach at solving the SDET problem allowed
us to integrate the channel estimation problem of digital communications and the scattering object
parameter estimation problem of sensor array signal processing.

This paper presents algorithmic formulations for the solution of the simplified SDET problem
using Kronecker products signal algebra (KSA) as the mathematical language to convey our proposed
computational signal processing methods in parallel format, which, to the best of our knowledge, are
original formulations. Thus, this work extends the work of Li, W.and Preisig, J.C. on the estimation of
rapidly time-varying sparse channels by providing a solution to the estimation problem for the
multiple-input multiple-output (MIMO) case in parallel form, using Kronecker products signal
algebra [7]. The language of Kronecker products has been demonstrated to be a very useful tool
for the mathematical formulation of fast unitary transforms. In 1990, Rodríguez, D. co-authored
a 52-page tutorial article on a methodology for designing, modifying and implementing Fourier
transform algorithms on various architectures using tensor or Kronecker products and an associated
class of stride group permutations for numerical data flow management [8].

The results presented here are based on two additional works: first, on the work of Carrascosa, P.C.
and Stojanovic, M. on underwater acoustic channel estimation, where they introduce spatial
multiplexing to increase the data rate supported by the band-limited restriction of the channel [9,10];
second, on the work of Yatawatta, S. and Petropulu, A. on blind channel estimation, where they allow
the users at the transmitter to transmit simultaneously, without any bandwidth restrictions, each user
utilizing a single antenna [11]. This work introduces innovation along three main venues: (i) using
a mathematical language formulation to describe the processes of channel estimation and multiple
object tracking in a unified manner; (ii) developing unique cyclic discrete time-frequency distributions
for range-Doppler estimation; and (iii) exploiting the algebraic properties of block circulant structures
in order to reduce the overall computational complexity of channel estimation algorithms. We provide
in Table 1 a description of the salient attributes of the channel estimation algorithms of these selected
works, as well as the salient features of multiple object tracking (MOT) MIMO estimation algorithms
presented in this work.

In 1993, Van Loan, C. wrote a now well-known book on computational frameworks for fast
Fourier transform algorithms. The book explains how “different FFT algorithms correspond to
different factorizations of the discrete Fourier transform (DFT) matrix,” and it shows how computer
implementations of FFT algorithms are directly related to their mathematical formulations in Kronecker
products notation [12]. Van Loan’s book extended, in a systematic manner, the approach presented
in [8] for identifying Kronecker products expressions with computational constructs. In 2006,
Franchetti, F. et al., presented a software program generator and optimizer for linear signal transforms,
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such as the DFT [13]. This language generator was written using the Kronecker products notation
formulated in [8]. In 2007, Ali, A. et al. developed a portable framework for FFT algorithms to run on
various parallel architectures. The computational framework was also formulated using the language
of Kronecker products [14]. In 2008, Rodríguez, D. co-authored an article where a methodology was
presented for the high-level partitioning of signal transforms onto distributed hardware architectures
using, again, the language of Kronecker products signal algebra [15].

Table 1. Attributes of selected channel estimation algorithms. MOT, multiple object tracking.

Features
Algorithms RTVSC UWA-MIMO BCE-MIMO MOT-MIMO

Authors Li, W. Carrascosa, P.C. Yatawatta, S. Rodriguez, D.; Aceros, C.;
Preisig, J.C. Stojanovic, M. Petropulu, A. Valera, J.; Anaya, E.

Reference [7] [9] [11] Proposed Work

MIMO × X X XFormulation

Tracking
X X × XCapability

Kronecker
X × X XProducts

Formulation

MIMO Parallel
× × × XAlgorithm

Implementation

A direct mapping from Kronecker products expressions, which we termed functional primitives,
to MATLAB (MATrix LABoratory) pseudocode, was clearly established by Franchetti, F. et al., in
2009, in an article that provides “the techniques needed to implement the discrete Fourier transform
(DFT) efficiently on current multicore systems”, and also discusses optimization techniques for good
multicore performance [16]. In 2009, Kepner, J. wrote a book for parallel programming in MATLAB,
with specific examples of application algorithms written using the open source pMatlab software
library [17]. A good feature of this book is how it presents “a more sophisticate model [to] handle
hierarchical collections of processors, memories, and networks”.

The rest of this document is structured as follows. Section 2 introduces the concept of
delay-Doppler MIMO estimation, describes our original MIMO channel model and presents three
matching pursuit algorithm variants for its impulse response function estimation. Section 3 describes
Kuck’s paradigm for parallel computation used in our work as the computational model for the
implementation of the Kronecker products-based algorithms. Section 4 presents a description of
the implementation results obtained from our computational testbed for a particular solution of the
simplified SDET problem when we simulate the detection and tracking of two deep underwater
objects, at rest or moving at a constant speed. Two acoustic signal transmitters and two acoustic signal
receivers are used to actively sense the communication medium. The section also describes an example
of deep underwater tracking simulation of ten (10) objects, four (4) of them permanently fixed. Finally,
Section 5 provides our conclusions.

2. Delay-Doppler MIMO Channel Characterization

In this section, we formulate the characterization of MIMO acoustic, linear, stochastic (ALS),
time-variant systems and describe a set of matching pursuit greedy algorithms to estimate MIMO
channel parameters. The characterizing channel function used in this work is the delay-Doppler
spread function U(ξ, ν) [18]. This function plays the role of surrogate function for the input-delay
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spread function; that is, for the impulse response function h(t, ξ) of acoustic linear stochastic (ALS)
channels [19].

The parameters to be estimated are time-delays and the Doppler shifts associated with the
delay-Doppler spread function. This estimation work must be carried out in a fraction of the
time corresponding to the channel’s coherence time, TC; that is, the time period during which the
impulse response function is assumed to be time-translation invariant. This approach for channel
parameter estimation is done under a multiple-input multiple-output (MIMO) system assumption.
Thus, we consider M transmitter transducers and N receiver transducers in a MIMO system scenario.
It is possible in this scenario that a determined number of scatterers, L, may be present between
the transmit and receive transducers. We assume that some scatterers may be in motion, moving at
a constant speed. These movements introduce Doppler effects, which are manifested as frequency
shifts acting over each copy of the transmitted signals zm(t) associated with each scattering point Pl ,
l ∈ ZL, in motion.

An abstract depiction of the bistatic sonar nature of our proposed deep underwater multiple object
tracking scenario is given in Figure 1. Under the MIMO assumption, we can express each received
signal wn(t) as the sum of L copies of each transmitted signal zm(t), time delayed by ξl , shifted by its
respective Doppler frequency νl and scaled by an attenuation factor αl .

Figure 1. Deep underwater multiple object tracking scenario.

We define the following expression:

σl,m,n(t) = αl,m,nzm(t− ξl,m,n)e+j2πtνl,m,n . (1)

Thus, we obtain the following result for each received signal:

wn(t) = ∑
m∈ZM

∑
l∈ZL

σl,m,n(t) + η(t), n ∈ ZN , (2)

where t ∈ R and w, z ∈ L2(R). Here, αl,m,n ∈ C is the attenuation factor αl associated with each input
signal zm(t) and received signal wn(t). The parameters ξl,m,n, νl,m,n ∈ R are the time delay and Doppler
shift associated with each scatterer l ∈ ZL, transmitter m ∈ ZM and receiver n ∈ ZN . The parameters
ξ0,m,n and ν0,m,n are set to zero, for line of sight (L.o.S.) consideration.

The signal η(t) is a real-valued, independent, wide-sense, stationary, Gaussian stochastic process
that represents the channel noise. This approach captures the more important aspects of a physical
realization of a deep underwater ALS MIMO channel. Under the MIMO assumption, we can obtain
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the impulse response function of the deep underwater ALS channel by substituting each input signal
zm(t) with the impulse function δm(t) in Equation (2). We proceed to define the following expression:

ψl,m,n(t) = αl,m,nδm(t− ξl,m,n)e+j2πtνl,m,n . (3)

Thus, we obtain:
hn,m(t, ξ) = ∑

m∈ZM

∑
l∈ZL

ψl,m,n + η(t), n ∈ ZN , (4)

where t ∈ R and w, z ∈ L2(R). Here, hn,m(t, ξ) (kernel function) is the time-variant impulse response
between the transmitter m ∈ ZM and the receiver n ∈ ZN .

As previously stated, the MIMO channel model formulated in this work has M transmitter
transducers and N receiver transducers. Equation (5) presents the input-output relation of our MIMO
channel model.

From Figure 2, we may obtain, after a series of algebraic manipulations, using concepts from our
proposed computational framework, the following channel input/output relationship:

w =

 ⊔
i∈ZM

 ⊕
j∈ZN

C{zi}

 ∨
i∈ZN

 ∨
j∈ZM

hi,j

 =

 ⊔
i∈ZM

(IN ⊗ C{zi})

 ∨
i∈ZN

 ∨
j∈ZM

hi,j

 = Zh, (5)

where zi ∈ l2(ZK), i ∈ ZM is the i-th transmitted signal, hi,j ∈ l2(ZK), i ∈ ZN , j ∈ ZM is the ij-th
impulse response, wi ∈ l2(ZK), i ∈ ZN is the i-th received signal, ⊗ is the Kronecker products operator,∨

is the vertical matrix concatenation operator,
⊔

is the horizontal matrix concatenation operator,
Z ∈ l2(ZKN × ZKMN) is the input matrix, h ∈ l2(ZKMN) is the impulse response channel vector,
w ∈ l2(ZKN) is the output vector and C is the circulant operator. We have taken advantage of the
coherent condition of the channel and have invoked the properties of the convolution operation.
This MIMO system model formulation allows the study of filter bank multi-carrier communication,
partial FFT demodulation and waveform diversity design [20–23]. While in the channel sounding
mode, a series of predefined pulses zi, i ∈ ZM is transmitted [24]. These pulses are compared with the
received signals wj, j ∈ ZN for characterizing the MIMO channel using the inverse relation shown in
Equation (6).

h = Z†w, (6)

where Z ∈ l2(ZKN ×ZKMN) is the signal input matrix, h ∈ l2(ZKMN) is the channel impulse response
vector and w ∈ l2(ZKN) is the signal output vector [25]. It is important to point out that to arrive at
the mathematical formulation for the MIMO channel input/output system configuration, although not
quite difficult, is an intricate and laborious procedure.

We illustrate this procedure by describing in some detail the mathematical formulations for the
SISO, MISO and SIMO channel input/output configurations that we first derived in order to arrive at
our proposed MIMO channel model system configuration [26].
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Figure 2. Deep underwater time-frequency dispersive channel model.

2.1. SISO, MISO and SIMO Channel Configurations

To arrive at our MIMO channel model system configuration, we start by presenting the SISO,
MISO and SIMO configurations. The idea behind this approach is to visualize the algebraic structures
in each case. Each configuration has a particular matrix-vector formulation. These formulations
allow us to develop data structures and procedures appropriate to address the efficient channel
estimation problem. Another important objective in this section is to demonstrate the importance
of Kronecker products signal algebra in matrix structure manipulation. Regularities in the matrix
structures can be exploited for improving channel estimation algorithms. This work exploits the
matrix-vector formulations and sparsity properties; however, many other regularities and symmetries
can be identified and reviewed to develop new algorithms.

2.1.1. SISO Configuration

The SISO configuration has just one transmitter transducer and one receiver transducer.
Equation (7) shows its input-output relationship.

w = z ~K h = C{z}h = Zh, Z ∈ l2(ZK ×ZK), (7)

where z ∈ l2(ZK) is the transmitted signal, h ∈ l2(ZK) is the impulse response function of the channel,
w ∈ l2(ZK) is the received signal, ~K is the cyclic convolution operator of order K and C is the circulant
operator. Equation (7) shows a typical input-output relationship for a linear and time-invariant system,
also known as a discrete-time filter.

Figure 3 illustrates an SISO channel model system. The matrix-vector representation of the
configuration is presented in Equation (8), which shows the first relevant matrix structure of our
MIMO channel model configuration, known as a circulant matrix:

w[0]
w[1]

...
w[K− 2]
w[K− 1]

 =


z[0] z[K− 1] . . . z[1]
z[1] z[0] . . . z[2]

...
...

. . .
...

z[K− 2] z[K− 3] . . . z[K− 1]
z[K− 1] z[K− 2] . . . z[0]




h[0]
h[1]

...
h[K− 2]
h[K− 1]

 . (8)
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Figure 3. SISO input/output channel configuration.

The computational complexity, under the direct computation approach, associated with this
configuration is O(K2), and it is given by the complexity of the inverse operator acting over the matrix
Z of dimension K × K and the complexity of the matrix-vector product of the vector w, of length
K. Therefore, the dominant complexity is O(K2), where K is the number of samples in the impulse
response h[k], k ∈ ZK.

2.1.2. MISO Configuration

The MISO configuration has M transmitter transducers and just one receiver transducer.
Equation (9) shows its input-output relationship.

w = ∑
i∈ZM

zi ~K hi =

 ⊔
i∈ZM

C{zi}

 ∨
i∈ZM

hi

 = Zh, (9)

where zi ∈ l2(ZK) is the i-th transmitted signal, hi ∈ l2(ZK) is the i-th impulse response, w ∈ l2(ZK)

is the received signal, ~K is the cyclic convolution operator of order K,
⊔

is the horizontal matrix
concatenation operator,

∨
is the vertical matrix concatenation operator, Z ∈ l2(ZK ×ZKM) is the input

channel matrix, h ∈ l2(ZKM) is the impulse response channel vector and C is the circulant operator.
Figure 4 illustrates the MISO channel model system. A matrix-vector representation for this model is
shown in Equation (10).

Figure 4. MISO input/output channel configuration.



J. Sens. Actuator Netw. 2017, 6, 2 8 of 25


w[0]

w[1]

...
w[K−2]

w[K−1]

 =


z0 [0] ... z0 [1] ... zM−1 [0] ... zM−1 [1]

z0 [1] ... z0 [2] ... zM−1 [1] ... zM−1 [2]

...
...

... ...
...

...
...

z0 [K−2] ... z0 [K−1] ... zM−1 [K−2] ... zM−1 [K−1]

z0 [K−1] ... z0 [0] ... zM−1 [K−1] ... zM−1 [0]





h0 [0]

...
h0 [K−1]

...
hM−1 [0]

...
hM−1 [K−1]


. (10)

The computational complexity, under direct computation approach, associated with the MISO
channel estimation problem is O((KM)3 + 2K3M2)) = O((KM)3), and it is given by the complexity
of the pseudo-inverse operator acting over the matrix Z of dimension K × KM and the complexity
of the matrix-vector product of the vector h, of length KM. Therefore, the dominant complexity is
O((KM)3), where K is the number of samples in the impulse response h[k], k ∈ ZK, and M is the
number of transmitter transducers.

2.1.3. SIMO Configuration

The SIMO configuration has just one transmitter transducer and N receiver transducers.
Equation (11) shows its input-output relationship.

w =
∨

i∈ZN

z ~K hi =

 ⊕
i∈ZN

C{z}

 ∨
i∈ZN

hi

 = (IN ⊗ C{z})

 ∨
i∈ZN

hi

 = Zh, (11)

where z ∈ l2(ZK) is the transmitted signal, hi ∈ l2(ZK), i ∈ ZN , is the i-th impulse response,
wi ∈ l2(ZK), i ∈ ZN , is the i-th received signal, ~K is the cyclic convolution operator of order K,∨

is the vertical matrix concatenation operator, Z ∈ l2(ZKN × ZKN) is the input channel matrix,
h ∈ l2(ZKN) is the impulse response channel vector, w ∈ l2(ZKN) is the output vector and C is the
circulant operator. Figure 5 illustrates the SIMO model system. A matrix-vector representation is
shown in Equation (12).

w0 [0]

w0 [1]

...
w0 [K−2]

w0 [K−1]

...
wN−1 [0]

wN−1 [1]

...
wN−1 [K−2]

wN−1 [K−1]



=



z[0] z[K−1] ... z[1] ... 0 0 ... 0

z[1] z[0] ... z[2] ... 0 0 ... 0

...
...

...
... ...

...
...

...
...

z[K−2] z[K−3] ... z[K−1] ... 0 0 ... 0

z[K−1] z[K−2] ... z[0] ... 0 0 ... 0

...
...

...
...

...
...

...
...

...
0 0 ... 0 ... z[0] z[K−1] ... z[1]

0 0 ... 0 ... z[1] z[0] ... z[2]

...
...

...
... ...

...
...

...
...

0 0 ... 0 ... z[K−2] z[K−3] ... z[K−1]

0 0 ... 0 ... z[K−1] z[K−2] ... z[0]





h0 [0]

h0 [1]

...
h0 [K−2]

h0 [K−1]

...
hN−1 [0]

hN−1 [1]

...
hN−1 [K−2]

hN−1 [K−1]



. (12)
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Figure 5. SIMO input/output channel configuration.

The computational complexity, under the direct computation approach, associated with the SIMO
problem, is bounded by O((KN)3 + 2(KN)3) = O((KN)3 + 2(KN)3), and it is given by the complexity
of the pseudo-inverse operator acting over the matrix Z, of order KN × KN, and the complexity of the
matrix-vector product of the vector h, of length KN. Therefore, the dominant complexity is O((KN)3),
where K is the number of samples in the impulse response function h[k], k ∈ ZK, and N is the number
of receiver transducers.

Three matching pursuit algorithm variants were implemented in this work: basic, orthogonal
and order-recursive least-square matching pursuit. Basic matching pursuit (BMP) is the most simple
implementation of these algorithms. BMP chooses the maximum projection (inner product) of the
column set of Z on the output vector w and extracts the corresponding contribution of each maximum
on w. The orthogonal matching pursuit variant adds a new stage to the estimation process. After each
iteration, it recalculates all of the λi coefficients associated with each chosen ci column. This is to force
the orthogonal condition on the w residual vector on the subspace spanned by ci selected columns.

The process of selecting the columns is similar to the process used in the basic matching pursuit
variant. In the order-recursive least-square matching pursuit algorithm variant, the method of selecting
the columns is improved in the following manner. Each column is chosen such that it minimizes the
residual value of the w vector. Therefore, each column is chosen considering the previous set of chosen
columns for minimizing the w residual vector, in order to calculate the λi coefficients, so that it is
similar to the former algorithm variant. These coefficients provide a guide for the stopping criteria,
as pertaining to residual errors, the channel impulse response formulation and the overall performance
of the algorithms.

3. Kuck’s Paradigm of Computation

David Kuck presented an abstract manner to represent parallel computational structures [27].
This methodology of representation may be related to the parallel random machine model (PRAM)
used to describe an abstract parallel machine, even though our formulation is a more sophisticated
model. The goal of a parallelization effort is to reduce the overall computation time by distributing
a computational task among available processors.

As its name indicates, the PRAM was intended as the parallel-computing analogy to the
random-access machine (RAM). Like random access machine (RAM) models that are used by sequential
algorithm designers to model algorithmic performance, the PRAM is used by parallel algorithm
designers to model parallel algorithmic performance (such as time complexity, where the number of
processors is a parameter). PRAM used the concept of shared memory to avoid the communication
problem in message passing interface (MPI) models. The complexity is expressed as a function of the
dimension of input set N and the number of processors Ncpus.

Kuck’s approach creates a hierarchical structure to represent in a parallel manner the execution
of an algorithm. This hierarchical structure reflects the connection between the computing units and
shared memory stages. Each level is tagged with a specific label, like “1.5”. This representation
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approach is sufficiently abstract to allow implementations in a wide spectrum of modern architectures.
Figure 6 illustrates Kuck’s diagram representation of the parallel MIMO ALS estimation problem [27].
In this figure, Level 0 represents independent memory units, M0 and uniprocessors P0, which contain
registers and caches for fast access to frequently-used data. At level 0.5, these units are interconnected
with a network N0.5, generally a bus, mesh, hypercube, shuffle or other mechanism of data interchange.
This network provides communication between processors, but does not provide shared memory.
Therefore, a protocol for message passing is necessary. The first level of shared-address memory space
is SM1. The communication between the processors in Level 0 and SM1 is managed by SMN1. There
exists a great difference between direct access to memory via SMN1 and indirect access to memory via
N0.5. The difference is appreciated in the poor performance produced by the indirect access to memory.
Now, we can apply a recursive principle to generate new levels.

The algorithmic formulations for solving the SDET problem were implemented in the pMatlab
and Parallel Computing Toolbox (PCT) programming environments for MATLAB. These MATLAB
parallel programming environments allowed us to conduct detailed computational complexity analysis
on the mapping of Kronecker product-based algorithmic formulations to modeled distributed and
shared memory structures (see Algorithm 1 and Table 2).

Figure 6. Kuck’s diagram for the parallel MIMO acoustic, linear, stochastic (ALS) estimation problem.
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Algorithm 1: Matching pursuit algorithmic core. Distributed max projection.
1: mapP = map([Ncpus 1],{},

[0:Ncpus-1]);
% mapping design→ CV×P(D×L)

2: proj=zeros(rows,1,mapP);
% proj : CV×P(D×L)

3: p = local(proj)
% p← proj.loc

4: r = local(R);
% r ← R.loc (Scattering Operation)

5: p = ((r´ * g).ˆ2) ./ diag(r´ * r);
% local computation

6: proj = put_local(p);
% proj.loc← p

7: proj = agg(proj);
% gathering

8: [Max,column] = max(proj);
% getting result

Table 2. Complexity of matching pursuit (MP) algorithm variants. K = window length, D = number of
delays, L = the Doppler shifts, M = number of transmitters, N = number of receivers and I = algorithm
iterations.

MP Variant Alg.Type Computational Complexity

Basic MP Greedy O(MNDLI2)
Orthogonal MP Greedy O((MNDL)2+MNDLI2)

Order Recur-sive LS-MP Greedy O((MNDL)2+MNDLI2)
Direct Computation Pseudo Inverse O((KMNDL)3)

4. Simplified SDET Implementation Results

The MIMO channel configuration used in our testbed experiments is presented in Figure 7. Our
experimental results show that the order recursive least square matching pursuit (ORLSMP or OLS,
for short) algorithm performs best for MIMO channel estimation. Figures 8 and 9 depict the result
of MIMO channel estimation simulations using the three matching pursuit algorithms previously
discussed. In each figure, the first graph, from top to bottom, is the given delay-Doppler spread
function U(ξ, ν) for each MIMO channel link to be estimated. The next graph shows the result of the
MIMO channel link estimation using the ORLSMP algorithm, demonstrating its best performance by
identifying all tracking objects. The graph that follows shows the results of the orthogonal matching
pursuit (OMP) algorithm, which is unable to track all moving objects. Finally, the last graph in each
figure shows the results of the basic matching pursuit (BMP) algorithm, which runs very quickly;
however, it exhibits a very poor moving object tracking performance.

Table 3 presents the time performance of the matching pursuit algorithms during some of the
MIMO ALS channel model parameter estimation simulations using the pMatlab parallel programming
environment. The simulation efforts were conducted for 2× 2 MIMO channel structures. The first
column of the table provides information about the number of samples utilized in the transmit and
receive complex numeric sequences, after applying a zero-padding operation. The column also
provides information about the number of processing units and during each simulation. The term
“SERIAL” in this first column implies that the entire MIMO system parameter estimation was conducted
on a single processing unit. The term “2-RANK” implies that two processing units were used to conduct
the parameter estimation simulations. In the latter case, two MIMO channel links were simulated
in each processing unit. It is important to point out that no significant improvement was obtained
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when conducting the simulation on four or more processing units. We attribute this experimental
observation to the following facts: (i) each MIMO channel link is difficult to parallelize by itself; and
(ii) the communication time between processing units increases significantly beyond two units in
a pMatlab parallel programming environment.

Transmitter Receiver

Tx Rx

Figure 7. MIMO channel estimation testbed structure.

Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler
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Doppler

Delay-Doppler Spread Function Given between transmitter 0 and receiver 1

Figure 8. MIMO (2× 2). Delay-Doppler spread function U1,0.
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Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler

Doppler

Doppler

Delay-Doppler Spread Function Given between transmitter 1 and receiver 1

Figure 9. MIMO (2× 2). Delay-Doppler spread function U1,1.
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Table 3. Time performance of MIMO matching pursuit algorithms. BMP, basic matching pursuit.

512 OLS0 OLS1 pOLS OMP0 OMP1 pOMP BMP0 BMP1 pBMP
SERIAL 2.0459 2.0459 0.1913 0.1913 0.0585 0.0585
2-RANK 0.9854 1.1937 1.0895 0.0842 0.1456 0.1149 0.0250 0.0324 0.0287

1024
SERIAL 3.1667 3.1667 0.3677 0.3677 0.2100 0.2100
2-RANK 1.6191 1.7272 1.6732 0.1877 0.2472 0.2175 0.1027 0.1172 0.1100

2048
SERIAL 5.8147 5.8147 0.7511 0.7511 0.5094 0.5094
2-RANK 2.9301 3.2614 3.0957 0.3816 0.4490 0.4153 0.3071 0.2832 0.2951

4096
SERIAL 11.1109 11.1109 1.6114 1.6114 1.1871 1.1871
2-RANK 5.4598 4.7954 5.1276 0.8156 0.8180 0.8168 0.6734 0.4850 0.5792

8192
SERIAL 26.6413 26.6413 2.9315 2.9315 2.0470 2.0470
2-RANK 18.4396 14.4820 16.4608 1.8021 1.5759 1.6890 1.2033 1.0748 1.1390

4.1. Deep Underwater Two-Object Tracking Example

The scattering interaction among the designed waveforms utilized at the transmitters was
addressed using multidimensional, multi-component, polynomial phase (MMPP) signals and the
processing of these signals using discrete Cohen distributions (DCDs) under a bidimensional harmonic
analysis setting. In particular, the efficient computation of cross-ambiguity function operations was
instrumental in solving the multiple objects scattering problem. Figures 10–23 show the result of our
bidimensional harmonic analysis algorithm applied to two nearby scatterers when these scatterers get
closer. The bidimensional harmonic analysis was conducted using a diverse set of designed waveforms,
including, sinusoidal, square and linear modulation or “chirp” pulses. The results showed, as expected,
that the bidimensional harmonic analysis using chirp waveforms outperforms the analysis conducted
using square waveform pulses.

Doppler Delay

Time Delay

Figure 10. Two nearby scatterers using square pulses, with no noise.
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Figure 11. Two nearby scatterers using square pulses: 2D, with no noise.
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Figure 12. Two nearby scatterers using square pulses, at −5 dB SNR.
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Figure 13. Two nearby scatterers using square pulses, at −5 dB SNR.



J. Sens. Actuator Netw. 2017, 6, 2 16 of 25

Doppler Delay
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Figure 14. Two closer scatterers using square pulses, with no noise.
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Figure 15. Two closer scatterers using square pulses: 2D, with no noise.
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Figure 16. Two nearby scatterers using chirp pulses (multidimensional, multi-component, polynomial
phase (MMPP)) with no noise.
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Figure 17. Two nearby scatterers using chirp pulses (MMPP): -2D, with no noise.
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Figure 18. Two nearby scatterers using chirp pulses (MMPP), at −5 dB SNR.
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Figure 19. Two nearby scatterers using chirp pulses (MMPP): 2D, at −5 dB SNR.
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Figure 20. Two closer scatterers using chirp pulses (MMPP), with no noise.
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Figure 21. Two closer scatterers using chirp pulses (MMPP): 2D, with no noise.
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Figure 22. Two closer scatterers using chirp pulses (MMPP), at −5 dB SNR.
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Figure 23. Two closer scatterers using chirp pulses (MMPP): 2D, at −5 dB SNR.

The point target location accuracy of the SDET computational framework environment is
addressed in this work on two fronts, i.e., the accuracy of the cross-ambiguity function of the
transmitted and received pulses based on the design of the transmitted waveform and the accuracy
of the relative position between the transmitter and receiver transducers in a MIMO configuration
topology. To address the resolution issue through transmitter waveform generation for the cross
ambiguity product, we followed the work of C. Y. Chen and P. P. Vaidyanathan on linear frequency
modulation (LFM) chirp pulse time-bandwidth product design [28], as well as Brookner, E. work
on MIMO array configuration design [29]. The relative position between transmitter and receiver
transducers must be known to a sub-wavelength precision in order to improve a given point target
location accuracy, and we followed the work of Pailhas, Y. and Petillot, Y. to accomplish this task [30].

4.2. Deep Underwater Multiple Object Tracking Example

In this section, we describe a generalized testbed algorithm framework for simulating the tracking
of multiple objects moving at a constant speed in a deep underwater environment. Figure 24 presents a
tracking allocation chart when the number of tracked objects is equal to ten (10). However, the testbed
algorithm framework was tested under multiple object tracking scenarios, each tracking scenario
producing a different tracking allocation chart. Figures 25–34 show the performance of the ten-object
tracking simulation example. For simplicity, the chirp pulse waveforms were normalized in the
amplitude and were also time normalized by setting the sampling time equal to unity.
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Figure 24. Multiple object tracking (MOT) allocation chart with scattering points Pl , l ∈ ZL.
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Figure 25. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 1, with no noise.
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Figure 26. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 1, with −5 dB SNR.
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Figure 27. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 2, with no noise.
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Figure 28. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 2, with −5 dB SNR.
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Figure 29. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 3, with no noise.
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Figure 30. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 3, with −5 dB SNR.
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Figure 31. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 4, with no noise.
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Figure 32. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 4, with −5 dB SNR.
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Figure 33. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 5, with no noise.
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Figure 34. Multiple object tracking using MMPP “chirp pulses”, at Tracking Time 5, with −5 dB SNR.

5. Conclusions

This paper presented a computational framework for the analysis and design of signal processing
algorithms utilized in the estimation of acoustic, doubly-dispersive, randomly time-variant, deep
underwater communication channels. It introduced innovation along three main venues, i.e., using
a mathematical language formulation to describe channel estimation processes, developing unique
cyclic discrete time-frequency distributions for range Doppler estimation and exploiting the algebraic
properties of block circulant structures to reduce the overall computational complexity. The results
presented here are based on the work of Li, W. and Preisig, J.C. on the estimation of rapidly time-varying
sparse channels, the work of Carrascosa, P.C. and Stojanovic, M. on underwater acoustic channel
estimation using spatial multiplexing and the work of Yatawatta, S. and Petropulu, A. on blind channel
estimation. Multiple object tracking operations were successfully accomplished using a 2× 2 MIMO
channel estimation testbed structure.

The work presented in this paper demonstrated that the language of Kronecker products
remains, after more than twenty (20) years, an invaluable tool for the formulation of signal processing
algorithms. Kronecker products signal algebra, a branch of finite dimensional multilinear algebra,
continues to produce fruitful results when dealing with the treatment of high dimensional signals.
For example, we took advantage of the fact that the discrete Fourier transform (DFT) matrix may
be represented as a product of sparse matrices, both using decimation in time (DIT) and decimation
in frequency (DIF) to formulate cyclic filtering operations, using the property of the DFT matrix
for the diagonalization of circulant matrices. This procedure allowed us to use the commutation
theorem of Kronecker products in order to reduce the communication time between processors when
dealing with large-scale block circulants. To the best of our knowledge, the parallel formulations of the
matching pursuit algorithms presented in Kronecker products signal algebra language in this paper
are new. These algorithm formulations were readily implemented using the pMatlab and PCT parallel
programming environments. Through this parallel algorithm implementations, we demonstrated that
the ORLSMP formulation was the most accurate; however, it was also the slowest.
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