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Abstract: In the coming decades, as we experience global population growth and global aging issues,
there will be corresponding concerns about the quality of the air we experience inside and outside
buildings. Because we can anticipate that there will be behavioral changes that accompany population
growth and aging, we examine the relationship between home occupant behavior and indoor air
quality. To do this, we collect both sensor-based behavior data and chemical indoor air quality
measurements in smart home environments. We introduce a novel machine learning-based approach
to quantify the correlation between smart home features and chemical measurements of air quality,
and evaluate the approach using two smart homes. The findings may help us understand the types
of behavior that measurably impact indoor air quality. This information could help us plan for the
future by developing an automated building system that would be used as part of a smart city.
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1. Introduction

With global population growth and global aging issues, there will be a corresponding concern
about living environment changes that impact human health both inside and outside buildings.
In this paper, we focus on indoor air quality (IAQ) and its relationship to human behavior. The
National Human Activity Pattern Survey [1] reports that individuals spent an average of 87% of their
time indoors, so understanding IAQ and its impacts are of critical importance. Indoor air quality
tremendously affects human health, and is considered one of the top five environmental risks to public
health [2]. According to the United States Environmental Protection Agency (EPA), indoor pollutant
levels may be two to five times, and occasionally 100 times, higher than outdoor pollutant levels [2].

According to a report by the Institute of Medicine [3], three major factors are affecting indoor air
pollution: the properties of pollutants, building characteristics, and human behavior. The behaviors of
occupants in buildings, as one of the three top components, impact IAQ by affecting the production and
persistence of pollutants [4]. Behaviors include routine activities such as cooking, which increase the
levels of nitrogen dioxide and carbon monoxide and might lead to hazardous levels of these chemical
components. Behaviors also include interactions with the physical environment such as opening or
closing windows or doors, which impacts the air exchange rate, thus increasing or decreasing indoor
pollution levels.
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Many studies have investigated sources of IAQ and their effects on human health [5–7].
Researchers recently have started analyzing the relationship between IAQ components and specific
IAQ-related human behaviors, such as opening windows [8]. Studies have shown that some human
behaviors, such as tending the fire and cooking, increase the total suspended particulates and carbon
monoxide (CO) emissions [9]. Based on self-reports, additional domestic behaviors have been included
in the analysis, such as sleeping and taking showers. These have been related to CO, particulate matter
10 (PM10) and carbon dioxide (CO2) [10]. Still, other researchers have investigated factors that drive
residents to open windows and doors, thus influencing air exchange rates as well as air quality [11].
So far, the relationship of human behavior patterns and IAQ has been studied via questionnaire
surveys for activities of daily living (ADLs). However, human behaviors might change daily due to
flexible schedules and external factors including weekdays/weekends, holidays, and weather events.
Self-report information is notoriously susceptible to error and bias [12], which introduces potential
inaccuracies for IAQ studies.

With the rapid advancement of technology to monitor activities in sensor-filled spaces, algorithms
have recently been introduced and enhanced to automatically recognize these activities using machine
learning techniques [13–16]. In our study, we combine smart home (SH) technologies with machine
learning algorithms to achieve real-time tagging of sensor data with ADL activity labels. An earlier
study that used smart environments to relate indoor behavior to IAQ changes had a similar goal [17].
However, the previous study only considered a single behavior parameter (total sensed movement in
the environment) and a single IAQ parameter (carbon dioxide level). We expand on the earlier study
to consider actual classes of activities that residents perform in the home, rather than just movement
level. We also consider a large set of IAQ chemical variables based on the list of criteria air pollutants
provided by EPA.

Since human behavior is one of the three major factors that have an influence on IAQ, which in
turn has a dramatic impact on human health, it will be beneficial to automatically recognize ADLs
using machine learning techniques by monitoring activities in sensor-filled spaces. We hypothesize
that machine learning techniques can help us understand the relationship between in-home behavior
and IAQ. The findings will help us recognize the types of behavior that significantly impact IAQ, and
use this information to develop an automated system to anticipate, prevent and prepare for indoor
pollution levels. Such a system could maintain healthier environments, and thus play a central role in
the development of smart cities.

To investigate our hypothesis, we collected both sensor-based behavior data and chemical
indoor air quality measurements in smart home environments for two houses. We accomplished the
investigation by conducting two machine learning-driven analyses. First, we used machine learning
algorithms to determine which IAQ variables were measurably impacted by SH features. Second, we
identified the particular smart home-based attributes that had the greatest impact on the IAQ variables.

2. Indoor Air Quality

The quality of air indoors is affected by chemical pollutants from diverse sources. The most
common indoor air pollutants are from three sources: outdoor pollutants’ sources, indoor combustion/
cooking sources, and indoor material and chemical sources.

First, there are two primarily outdoor pollutants’ sources that get into the home: ozone (O3)
and particulate matter (PM). The pollutant O3 is photochemically produced by chemical reactions
between sunlight, and nitrogen oxides (NOx), and volatile organic compounds (VOCs). Many studies
have been evaluating the amounts of O3 that have adverse effects on human health, such as airway
hyperreactivity and lung inflammation [18]. In the case of inhalable PM, this category of pollutants
includes solid particles and liquid droplets suspended in air, and may cause lung cancer, emphysema,
and respiratory infections [19]. For example, in our data collection periods, the experiments were
conducted during periods with destructive wildfires that caused heavy smoke and very high levels of
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PM. The high level of PM would have a great impact on the indoor air quality, the residents’ behaviors,
and their health. In our study, we concentrated on the outdoor PM less than 2.5 micrometers (PM2.5).

Next, we considered pollutants from indoor combustion/cooking, and the corresponding effects.
Combustion is the main cause of indoor PM, CO, NOx and VOCs [20,21]. These pollutants have
tremendous health impacts on the residents, such as respiratory infections in young children, chronic
lung diseases, and associated heart disease in adults [22]. To monitor indoor PM in our study,
we measured the mass concentration of PM less than 2.5 micrometers, as well as the number of small
particles (≥1 mm) and large particles (≥5 mm) [23]. VOCs refer to a group of organic chemicals, and
each one has its own possible reason for causing distinct health problems. After hours or days of
exposure to the high levels of VOCs from cooking/combustion, a resident may experience eye, nose,
throat irritation, and worsening asthma symptoms [24]. Selected VOCs, including formaldehyde,
acetaldehyde, acetonitrile, methanol, ethanol, acetone, benzene, toluene, xylenes, styrene, and
monoterpenes, were measured continuously with a proton transfer reaction mass spectrometer
(PTR-MS, Dylos Corporation, Riverside, CA, USA.) [25]. The PTR-MS drift tube was operated at 120 Td.
The response of the instrument to different VOCs was calibrated using an external multicomponent
compressed gas standard [26]. Due to sensor limitations, our instruments failed to record the values of
CO and NOx during the experiment periods, so we limit our analysis to indoor PM and VOCs.

With regard to indoor material and chemical sources, we considered VOCs from carpet, furniture,
building materials, solvents, cleaning supplies, and personal hygiene products [24]. The common
VOCs from those sources will have adverse health impacts on residents, such as damage to the
respiratory system, headaches, and skin irritations [27,28]. In our collection and analysis, we included
all the above chemical variables in both indoor and outdoor environments, as well as data reported by
a weather station.

Our testbeds consisted of two houses outfitted with sensors to transform them into smart homes.
Data were collected in the first smart home, referred to as IAQ1, for 27 days (620 h); the residents were
a couple in their sixties. We also collected data in a second smart home, referred to as IAQ2, for six days
(187 h); the residents were a family that includes a couple in their fifties and two children, one in
their teens, and one in their twenties. This study was approved by the Washington State University
Institutional Review Board. In each home, we monitored the chemical components of indoor air
quality described in this section, using the instruments summarized in Table 1. The instruments were
contained in two separate racks. An indoor rack was placed in the living room to measure selected
pollutants, as shown in the Table 1. A larger rack, the master rack, was placed in the garage. The
master rack instruments sampled both indoor and outdoor air, alternating sampling between indoors
and outdoors every 30 minutes using a three-way valve. The master rack was placed in the garage
and Teflon tubing ran from the rack to the top of the roof for outdoor air sampling. For IAQ1, indoor
air was sampled from the return ducting of the furnace; the furnace fan was always on to ensure
circulation through the ducts. For IAQ2, indoor air was sampled using a Teflon tube that ran from the
rack through the house to a main hallway, as illustrated in Figure 1. A weather station was placed
on the roof. A more detailed diagram for the locations of the indoor and master racks are illustrated
in Figure 2.

We examined smart home-based behavior data and chemical variables at the time scale of a single
hour. Because the chemical sensors collect higher frequency data, we computed and stored the median
values of the indoor and outdoor chemical variables for the corresponding hour of data collection.
Similarly, we captured and integrated weather station data for the corresponding hour. Furthermore,
the indoor air quality data was collected from a single point within the home, rather than individual
rooms in the home. The positioning of the chemical sensors with respect to individual rooms in the
house may have had an impact on our results, which we will discuss separately.
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Table 1. Instruments for indoor air quality (IAQ) chemical data collection.

Analyte Instrument(s) Precision Accuracy

Indoor Rack Instruments

CO2
LGR Model 915-0011 100 ppbv 1%

LiCOR 840A <1 ppmv 1%

H2O LGR Model 915-0011 35 ppmv 1%
LiCOR 840A <0.01‰ 1.5%

CH4 LGR Model 915-0011 0.6 ppbv 1%
O3 2B Technology Model 205 1 ppbv 2%

PM
TSI 8530 DustTrak for PM2.5 mass concentration 0.01% 10%

Dylos Corp DC1100 for PM number density

Master Rack Instruments

O3 TECO 49 O3 2 ppbv 2%
PM TSI 8530 DustTrak 0.01% 10%
CO2 LiCOR 840A <1 ppmv 1%
H2O LiCOR 840A <0.01‰ 1.5%

VOCs Ionicon Analytik PTR-MS 3–30% 7%
CO Teledyne 300U 0.5% 1%

NOX Teledyne 200U 0.2 ppbv 1%

Weather Station

Wind speed AIRMAR WX200 0.1 m/s 5%
Wind direction AIRMAR WX200 0.1 deg 5 deg

Temp AIRMAR WX200 0.1 ◦C 1.1 ◦C
Pressure AIRMAR WX200 0.1 mbar 1 mbar
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each of which was a multiple-resident home. The physical layout and sensor placement for these 
two environments are shown in Figure 1. As shown in the figure, each smart house contained 
multiple bedrooms, bathrooms, offices and living areas. For convenience and consistency across all 
houses, we separated each type of room into two units: the main area of a particular category, and all 
secondary rooms of the same category aggregated together. For example, in the bedroom category, 
we collected features for the master bedroom and also collected features for the other bedrooms, 
which represented information aggregated from all of the other bedrooms in each house. Each of our 
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3. Smart Home Houses

Our smart home testbeds for this study were located in the inland Pacific Northwest, and are
maintained as part of the Center for Advanced Studies in Adaptive Systems (CASAS) smart home
project. We performed our testing in two separate homes without automatic air exchange systems,
each of which was a multiple-resident home. The physical layout and sensor placement for these two
environments are shown in Figure 1. As shown in the figure, each smart house contained multiple
bedrooms, bathrooms, offices and living areas. For convenience and consistency across all houses, we
separated each type of room into two units: the main area of a particular category, and all secondary
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rooms of the same category aggregated together. For example, in the bedroom category, we collected
features for the master bedroom and also collected features for the other bedrooms, which represented
information aggregated from all of the other bedrooms in each house. Each of our smart homes had at
least two bedrooms and bathrooms, so this approach provides fine-granularity feature specification,
while also allowing generalization over multiple homes.

Each house was equipped with combination infrared motion/ambient light sensors and
combination closure/temperature sensors that provided readings for the opening or closing of
windows or doors, as well as the use of temperature-changing items such as showers and stoves.
Based on conversations with IAQ experts and our previous studies [29], we identified four types of
smart home features that are used to extract and correlate with chemical variables. These consist of
the overall activity level (based on sensed movement), the duration of each automatically labeled
activity, temperature, and the total area of the open doors and windows. Activity level is calculated as
the number of motion sensor “ON” events in each room of the house. As with the chemical sensors,
we captured this data for each hour during the continuous data collection period.

Because of the availability of activity recognition software, we could monitor activities that are
performed in the home and capture the duration of each activity over the corresponding hour of
data collection. We used machine learning techniques to tag the collected smart home sensor data
(motion, door, light, temperature) with corresponding activity labels. Activity duration was then
calculated as the time span of sensors’ events during the hour labeled with the activity. Our machine
learning techniques achieved an average of 95% accuracy for activity labeling based on threefold
cross-validation [30]. The set of activities that we monitored for this study includes sleep, bed to toilet
transition, relax, leave home, cook, eat, personal hygiene, bathe, enter the home, take medicine, wash
dishes, and work.

To determine the area of open windows and doors throughout the house, we noted the size of
each door or window and computed the product of the window/door size and the amount of time it
was open during the hour. Finally, we computed the mean ambient temperature value sensed over
one hour for each temperature sensor location in the home.

In this paper, we perform and investigate the experiments in the context of the CASAS smart
home project. There are numerous challenges associated with creating a fully operational smart
environment infrastructure, which have limited the number of available smart home houses. To assist
with the process of making smart home technologies available in a variety of settings, CASAS initiated
the “smart home in a box” (SHiB) project (shown in Figure 3) [31]. The SHiB architecture has three
components: physical components, the middleware, and the software applications. The physical
components include sensors and actuators that use a Zigbee “bridge” to communicate with the
middleware, which is controlled by a publish/subscribe manager. The middleware is a process
that adds the timestamp to sensor events and maintains sensor states. The middleware also uses
a scribe bridge to store messages in a lasting archive, and an application bridge to share/exchange
information with the applications. The SHiB architecture is easily maintained and expanded because
of its lightweight bridge design (via application programming interfaces).

The SHiB sensor package includes infrared motion/ambient light sensors, magnetic doors/
windows, and temperature sensors. They are attached using removable adhesive. All of these are
ambient sensors that are only updated if there is a significant change in a state, for example, a door
opening or closing. Narrow-area motion sensors are placed on the ceilings above some specific items
in the house, including above the stove, entryway, and dining chairs. This is because narrow-area
motion sensors can perceive motions that occur in a one-meter diameter area. As a complement of the
narrow-area motion sensors, wide-area motion sensors are installed on the ceiling in large rooms such
as the kitchen, living rooms, and bedrooms, and have a much wider coverage so as to recognize motions
happening anywhere in the room. CardAccess magnetic contact sensors are used for external windows
and doors, as well as for internal cabinets and doors in bathrooms and living rooms. CardAccess
temperature sensors are placed in most of the rooms, including bathrooms and the kitchen, to both
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perceive key activities such as bathing and cooking, and to sense significant temperature changes at
those points in each room.
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4. Activity Recognition

Activity recognition (AR) refers to mapping a sequence of perceived events onto an element from
a group of predefined activity labels. Activity recognition is a well-researched area, and there is a large
amount of prior work that introduces machine learning approaches to model the activities using
techniques such as hidden Markov models (HMMs) [32] and segmented hierarchical infinite hidden
Markov models (siHMMs) [33]. Methods are chosen according to the realism of the smart environment
and the sensor technologies that are used for collecting the data. Our CASAS activity recognition
algorithm is based on a sliding window method to perceive activities in a streaming fashion. The
sensors that we use are ambient sensors triggered by a significant change in a state [30].

The necessary recognition steps in CASAS are gathering and performing preliminary processing
on sensor data to handle missing or noisy data, separating it into feasibly sized subsequences by
either supervised event segmentation or supervised window sliding approaches, and then pulling out
subsequence features. As an alternative to traditional supervised learning-based segmentation, we
employed an unsupervised change point detection and piecewise representation of the segments as
separate activities. External annotators provide ground truth for training data. They look at a floor
plan and the sensor data to provide an estimate of the corresponding activities, which is then used to
learn a mapping from the extracted features to activity labels.

The experiments in this paper used the CASAS activity recognition algorithm to tag real-time
activities on streaming data, as described in the last paragraph. The CASAS recognition algorithm
is a generalization of activity models over several smart homes with no constrained circumstances
related to pre-segmented data, single residents, or uninterrupted activities. To do this, we mapped
a succession of the n latest sensor events to a label that indicated the activity. For example, this
sequence of sensor events was mapped to a Sleep activity label:

2016-03-10 06:48:24.855293 BedroomABed ON Sleep
2016-03-10 06:48:29.727262 BedroomABed OFF Sleep
2016-03-10 06:48:30.479044 BedroomABed ON Sleep
2016-03-10 06:48:33.102565 BedroomABed OFF Sleep

5. Data Analysis

5.1. Experimental Setup

Global population growth and global aging issues will have a corresponding effect on behavioral
changes and the quality of the air we experience inside and outside buildings. Here, we examine the
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relationship between occupant behavior and indoor air quality using machine learning techniques
via monitoring human activities in sensor-filled spaces. We conducted two types of analyses on this
data. In the first analysis, we performed three experiments to determine which IAQ variables were
measurably impacted by SH features. To accomplish this goal, we used machine learning techniques to
predict the value of each IAQ variable from the complete set of SH features (we refer to this experiment
as AllSH_OneIAQ). We also highlighted the IAQ features that are most significantly impacted by smart
home behavior, as indicated by the ability to predict the values using smart home sensor features.

In the second analysis, we determined the specific SH features that had the greatest influence
on the IAQ variables. We accomplished this analysis by performing experiments to select a set
of SH attributes that had the most significant impact (GroupSH_InIAQ). We then performed
another experiment to select the individual SH features that measurably affect each IAQ variable
(IndivSH_InIAQ). The findings will help us understand the types of behavior that have tremendous
impacts on indoor air quality, and we can use this information to make suggestions to homeowners
based on maximizing air quality, or automate the control of buildings.

5.2. Analysis 1: AllSH_OneIAQ

Our first analysis determined the IAQ variables that were measurably impacted by captured
smart home-based behavior features (AllSH_OneIAQ). To validate the overall performance of SH
features and IAQ variables, we used regression to estimate the value of each dependent variable (each
IAQ variable), given the independent variables (SH features). There are many techniques that have
been developed for regression analysis. In our project, we performed experiments based on three
algorithms: random forest (RF), linear regression (LR) and support vector regression (SVR).

Decision tree learning is one of the most popular regression learning techniques. It can naturally
handle data of mixed types and missing values, which occur in all of our datasets. We choose one of
the best-known learning methods: random forest learning algorithm. Using random forest, a large set
of decision trees are created, each using a different set of randomly selected feature inputs. Compared
with other tree learning algorithms, RF improves the prediction accuracy and the stability when the
data is changed a little. However, decision trees only map the feature vector to discrete target variables,
so we also considered methods that are designed to handle numeric class values.

One model that deals with numeric variables is linear regression, where a single linear formula
represents the mapping from input to class values. We used the linear regression learning algorithm
as our second learning method. Since our data has a large number of features, we also used a third
method, the support vector regression. It is a nonlinear regression technique, which complements the
linear regression method.

We evaluated the performance of all three of the above algorithms by reporting the corresponding
correlation coefficients (r). In our study, we did not consider the sign of the correlation coefficient,
just the absolute value. This is because we wanted to determine whether a relationship exists
between the smart home features and the chemical variable features, rather than analyze the
type of direction of a relationship between these two complex models. We reported correlation
coefficients that are moderate or large (r ≥ 0.3). In addition, we evaluated the accuracy of our models
based on 10-fold cross-validation by reporting the normalized root mean square error (NRMSE) as
a performance measure.

In our project, we also report the statistical significance of the observed results. We set the null
hypothesis as: there is no correlation between each dependent variable and the independent variables.
The corresponding alternative hypothesis is set as: there is a correlation between each dependent
variable and independent variables. We then choose the value of the first type error (probability of
false rejection of a true null hypothesis) as 0.05, and the value of power (the probability of correctly
rejecting a false null hypothesis) as 0.9. For these parameters, the sample size should be 113. Our
sample sizes for IAQ1 and IAQ2 are 620 h and 187 h respectively, which are large enough to represent
subjects where the probability of correctly rejecting a false null hypothesis is greater than 0.9.
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To validate the hypothesis, we computed the correlations and NRMSE between the complete set
of SH features and each predicted IAQ variable by performing the three regression learning algorithms
(RF, LR, and SVR) on each house (IAQ1 and IAQ2), as well as on the aggregated dataset for both houses
(denoted as IAQ1_2). The results are summarized in Tables 2–4. The full set of results is provided
online (http://eecs.wsu.edu/~blin).

Table 2. Overall smart home (SH) features used to predict the variables of the first smart home (IAQ1).
We report the classifier that was used, and the number of IAQ variables that are predicted with at least
a moderate effect (r ≥ 0.3).

Method Number of r ≥ 0.3 Total Number Percentage NRSME

Random Forest 48 51 94% 0.0961
Linear Regression 41 51 80% 0.2241

Support Vector Regression 42 51 82% 0.1415

Table 3. Overall SH features used to predict the variables of the second smart home (IAQ2).

Method Number of r ≥ 0.3 Total Number Percentage NRSME

Random Forest 50 51 98% 0.1118
Linear Regression 39 51 76% 0.1314

Support Vector Regression 30 51 59% 0.1816

Table 4. Overall SH features predicted for the aggregated dataset of variables for both houses (IAQ1_2).

Method Number of r ≥ 0.3 Total Number Percentage NRSME

Random Forest 50 51 98% 0.0798
Linear Regression 31 51 60% 0.2559

Support Vector Regression 27 51 53% 0.2591

As shown in Tables 2 and 3, the majority of the IAQ variables from both IAQ1 and IAQ2 exhibit
a relationship with the SH features, because there are over 90% IAQ variables that are highly correlated
with SH features, which results in an NRSME lower than 0.12 (using random forest). Further, based
on the results shown in Table 4, we observed that the majority of IAQ variables from the aggregated
dataset for both houses (IAQ1_2) are also highly predictable from SH features (98% of the IAQ variables
are highly correlated with SH features, and result in an NRSME of 0.0798 using random forest).
According to this, we conclude that there is a generalized relationship between IAQ variables and
SH features. Additionally, we list the correlation coefficients for IAQ variables from the aggregated
dataset (IAQ1_2) in Table 5.

In Table 5, we observe that there exists a relationship between human behavior and air quality
inside and outside the homes. There are 16 indoor chemical variables (16 out of total 24 indoor chemical
variables) that have higher correlation coefficients than those outside the house. Furthermore, there are
five outdoor chemical variables (five out of 25 outdoor chemical variables) that have higher correlation
coefficients than those inside the house. Thus, human behaviors have a greater impact on chemical
variables measured indoors than those variables measured outdoors.

We are going to use three representative pollutants from both the indoor and outdoor categories
to further interpret the results from Table 5. We chose PM2.5, formaldehyde, and methanol as the
representatives for outdoor pollutants, VOCs released from indoor materials, and VOCs released from
occupant activities.

For PM2.5, we observe that the correlation coefficient for the outdoor PM2.5 is 0.5121. This indicates
that there is a correlation between outdoor PM2.5 and in-home human behaviors. Due to the wildfires,
which caused heavy smoke with a large amount of outdoor PM2.5 during the experimental period,

http://eecs.wsu.edu/~blin
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residents closed windows and doors more often than usual, and stayed at home longer than usual.
In the case of the indoor PM2.5, the correlation coefficient is 0.4808, which shows that there exists
a measurable relationship with human behavior, such as cooking and cleaning, and indoor PM2.5.

Table 5. Each IAQ variable predicted by random forest (RF) in the aggregated dataset IAQ1_2.

Higher Correlation Inside than Outside Higher Correlation Outside than Inside

Variable
Correlation Correlation

Variable
Correlation Correlation

Inside Outside Inside Outside

C3-benzenes 0.9554 0.3462 α-pinene fragment 0.6723 0.7495
C2-benzenes 0.9537 0.5457 C4-benzenes 0.5020 0.5299
temperature 0.9462 0.8830 particulate matter 0.4808 0.5121

methane 0.9334 NA acetaldehyde 0.4313 0.5536
methanol 0.9265 0.5550 α-pinene 0.3225 0.6151

formaldehyde 0.9061 0.5407 wind speed NA 0.7596
methyl ethyl ketone 0.8995 0.6076 wind direction NA 0.7577
methyl vinyl ketone 0.8985 0.5954 pressure NA 0.7330

styrene 0.8950 0.6155 relative humidity NA 0.8420
toluene 0.8894 0.2180
acetone 0.8779 0.5295
benzene 0.8608 0.5598

carbon dioxide 0.8465 0.8386
isoprene 0.8338 0.5748

water vapor 0.8276 0.6539
ozone 0.8178 0.7971

acetonitrile 0.7706 0.5988
small particle count 0.4471 NA
large particle count 0.4253 NA

In Table 5, we observe that the correlation coefficient for the indoor formaldehyde is 0.9060.
This large value indicates that there is a strong relationship between indoor formaldehyde and
human behaviors. This is because indoor formaldehyde is mainly from indoor carpet, pressed
wood products, and furniture. Indoor formaldehyde is also positively correlated with both indoor
temperature and indoor humidity [27]. Human behaviors, such as cooking, bathing, washing dishes,
and opening/closing windows or doors, make a significant contribution to the temperature and
humidity changes inside the house. Thus, the relationship between human behaviors and humidity
generate a positive correlation with indoor formaldehyde as well. In addition, the correlation coefficient
for the outdoor formaldehyde is 0.5407. Outdoor formaldehyde is mainly produced from industrial
wood manufacturing [28]. Hence, it is reasonable that the correlation coefficient is 36% lower than that
for the indoor formaldehyde.

With regards to methanol, this chemical occurs either naturally in humans, animals, food, and
plants, or industrially based on its use as a solvent, pesticide, and alternative fuel source [27]. The
correlation coefficient for the indoor methanol is 0.9265, which is 37% higher than that for the outdoor
methanol. This makes sense, because the indoor human behaviors, such as eating, drinking, breath,
and solvent, would highly impact the indoor methanol.

5.3. Analysis 2: GroupSH_InIAQ and IndivSH_InIAQ

The above regression analysis quantifies the generalized relationship between IAQ variables
and SH features. After regression analysis, we performed a second analysis to determine the specific
SH features that have the greatest influence both as a group and individually on the IAQ variables
selected from the first analysis. Although in earlier regression analysis we validated that a generalized
relationship exists between smart home features and indoor air quality chemical variables based on the
aggregated dataset from the two houses, there is a tremendous diversity of specific human behaviors
in each house that will affect individual IAQ variables. Thus, in this analysis, we only consider each
house and do not include the aggregated dataset. Specifically, we utilize learning algorithms for
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three experiments (shown in Table 6) to perform the automated selections of SH features for IAQ
variables based on their ability to predict IAQ values. These three algorithms employ machine learning
algorithms that only handle nominal class values. Because our data is numeric, we employ equal
frequency binning to discretize the target variables by dividing the numeric range into a predetermined
number (here, n = 4) of bins.

Table 6. Three classification algorithms for the second type of analysis.

Experiment Number Attribute Evaluator Classifier Search Method Lookup Cache Size

Experiment 1 WrapperSubsetEval Random Forest Best First 3
Experiment 2 WrapperSubsetEval J48 Best First 3
Experiment 3 InfoGainAttributeEval Ranking

We note that the learning algorithms used for this analysis are different from those used
for the first analysis and its corresponding experiments. The classifiers in the first analysis were
regression algorithms. In contrast, we now need to employ classifiers that map the feature vector
to discrete-valued class labels. We utilize algorithms that are popular for feature selection, namely
RF, J48 (a decision tree learner) and information gain (InfoGain). Even though decision trees are
typically used for classification (as done in Analysis 1 in Section 5.2), we also use them for feature
selection in the current analysis, so as to determine which of the behavior-based attributes are most
indicative of indoor air quality, and therefore exhibit the strongest relationship with indoor air quality
parameters. InfoGain is used as a measure of information gain on the class that the attribute gives, so as
to determine the relevance of that attribute and hence allow the elimination of attributes that are less
relevant. The relevance of each attribute is evaluated by assigning a score, which is calculated as the
difference in entropy with and without that attribute; afterwards, feature selection can be performed
based on the scores. Entropy here measures the impurity of the sample that tells us the average number
of bits needed to encode the information in the sample. Further, for classifiers RF and J48, we employ
WrapperSubsetEval as an attribute evaluator, which uses a classifier to evaluate alternative attribute
sets. The accuracy of the classifier for each attribute set is estimated by cross-validation.

We first perform two experiments to identify subset groups of SH features that together have
the most noticeable impact on each chemical variable, and narrow down the size of the subset group
to at most 15. To extend the second analysis further, we then perform a similar experiment to select
individual SH features.

To be consistent with the first analysis (Section 5.2 Analysis 1: AllSH_OneIAQ), we summarize the
behavior features that show the greatest impact on the same three representative chemical variables for
each house (outdoor PM2.5, indoor formaldehyde, and indoor methanol). The feature selection summary
is given in Tables 7–12, which are separated by the particular chemical variable we are analyzing.
Explanations for the feature names are provided in Table 13. The full set of results is provided online.

Table 7. Selected SH attributes that as a group predict outdoor PM2.5 in IAQ1.

RF J48

HLabelBed_Toilet_Transition HLabelPersonalHygiene
HTMasterBathroom HTMasterBathroom

HTMasterBathroomWindowA HTDoorMasterLivingRoom
HTDoorFirstFloorToUpstair HTKitchen

HTKitchen HTMasterOfficeWindowA
HTKitchenWindowA WDMasterBedroomWindowA
HTMasterDingRoom WDDoorMasterLivingRoom

HTMasterLivingRoom
WDMasterBedroomWindowA

WDDoorUtility
WDDoor1stFloor
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Table 8. Selected SH attributes that as a group predict outdoor PM2.5 in IAQ2.

RF J48

ALevelMasterBathroom ALevelMasterLivingRoom
HLabelEat HTKitchen
HTKitchen HTMainEntry

HTMainEntry HTMasterBedroom
HTMasterBathroom HTMasterLivingRoom
HTMasterBedroom

HTMasterLivingRoom
HTMasterOffice

HTUtility

Table 9. Selected SH attributes that as a group predict indoor formaldehyde in IAQ1.

RF J48

ALevelLivingroom ALevelDiningroom
ALevelOtherOffice ALevelKitchen

HLabelBed_Toilet_Transition ALevelMasterBedroom
HTBedroomAWindowB ALevelMasterOffice
HTToTheFirstFloorDoor HTToTheFirstFloorDoor

HTKitchen HTKitchenA
HTKitchenAWindowA

WDMasterBedroomDoor

Table 10. Selected SH attributes that as a group predict indoor formaldehyde in IAQ2.

RF J48

HLabelWashDishes HTMainEntry
HTKitchen WDMainDoor

HTMainEntry
HTMasterBathroom
HTMasterBedroom

HTOtherLivingRoom
WDMasterBedroomWindowB
WDOtherBedroomWindowA

WDDoorUtility

Table 11. Selected SH attributes that as a group predict indoor methanol in IAQ1.

RF J48

ALevelLivingroom HTMasterBathroom
HTMasterBathroom HTUtilityDoor

HTKitchen HTKitchen
HTKitchenAWindowA HTMasterLiving

Table 12. Selected SH attributes that as a group predict indoor methanol in IAQ2.

RF J48

HTKitchen ALevelDiningRoom
HTMasterBathroom HLabelCook

HTMasterLivingRoom HLabelSleep
HTMasterOffice HTKitchen

HTOtherLivingRoom HTMasterBathroom
WDMasterBedroomWindowA HTOtherLivingRoom
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Table 13. Summary of SH feature name explanation, organized by prefix.

SH Features with Prefix Feature Names

H Hourly Data
T Temperature features

ALevel Activity Level features
Label Labeled Activity Durations
WD Open/Closed area of window/door

In Table 7, we observe that for the outdoor PM2.5 in IAQ1, features such as temperature in the
bathroom, dining room, and kitchen are highly related with outdoor PM2.5 values. We also observe
that the duration of both personal hygiene and bed-to-toilet transition are selected. This makes sense
because the high-level outdoor PM2.5 during the wildfires caused residents to stay at home longer
than usual, and therefore more activities to be detected in the house than usual, especially in the
bathroom, dining room, and kitchen. Similar results are found for the selected features in IAQ2 (based
on Table 8) for the same reasons. For IAQ2, the selected features are the temperatures in the main
entryway, kitchen, master bedroom, master living room, and master office.

In Table 9, we observe that for indoor formaldehyde in IAQ1, the selected features are the
temperatures in the master bedroom, kitchen, and stairs to the first floor, as well as the overall activity
levels in the master bedroom, the secondary office, and the area of an open door in the master bedroom.
This makes sense, because we know that carpet is the main source of indoor formaldehyde, and the
places with carpets in IAQ1 are the bedrooms and the secondary office, which is also located inside the
master bedroom. Further, temperature and humidity in rooms with carpets have positive impacts on
indoor formaldehyde levels.

In Table 10, we notice that for indoor formaldehyde in IAQ2, the selected features are temperatures
in the master bathroom, kitchen, and main entry, and the duration of washing dishes. The temperature
in the master bathroom could be an indication of taking a shower or running hot/cold water. Those
activities in the bathroom and the duration of washing dishes may have a great contribution to the
indoor humidity. In addition, the temperature feature for the main entry door is selected in IAQ2, but
not in IAQ1. This might be because of the humidity difference during the experimental periods for the
two testbeds. According to the weather station reports, for IAQ2, the average outdoor water vapor
was 10,443 parts per million (ppm) compared to 9827 ppm for IAQ1. That is, the average humidity
during the IAQ2 experimental period was 616 ppm higher than that during the IAQ1 period. Then,
for IAQ2, opening/closing the main entry door might allow the outdoor humidity to influence the
indoor humidity.

In Table 11, we notice that in IAQ1, the SH features that impact indoor methanol are temperatures
in the master bathroom, kitchen, living room, and utility room, and the overall activity level in the
living room. This makes sense, because in the kitchen or living room, there are food, fruits, vegetables,
and other foods that contain methanol [27]. Temperatures in these rooms and the overall activity
levels in the living room may indicate food processing, eating, or drinking, especially with the overly
ripe or near rotting fruits or vegetables, smoked food, diet foods, or drinks with aspartame. The
temperature in the utility room may indicate that the resident had been doing laundry. The liquid
laundry detergents used in this process contain methanol [28]. This also partly explains the selected
SH features for indoor methanol in IAQ2, based on Table 12.

In Table 12, the selected features include temperatures in the kitchen, master bathroom, and
secondary living room, the overall activity levels in the dining room, and the duration of cooking and
sleeping. The duration of sleeping is selected in IAQ2 because human breath also makes a contribution
to the indoor methanol. In IAQ2, there are two adults and one child, whereas in IAQ1 there are only
two adults. The living habits of residents in these two testbeds are also different. This may be a reason
that the duration of sleeping is selected in IAQ2 instead of in IAQ1.
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After selecting subsets of SH features for each IAQ variable by RF and J48 experiments, we
conducted the third experiment to find the individual SH feature that had the greatest influence on
each IAQ variable. That was accomplished through utilizing attribute selection by ranking the SH
attributes using their individual scores. Sample results of this analysis for the same three chemical
variables are shown in Tables 14–19. The full set of results is provided online.

Table 14. InfoGain method predictions for outdoor PM2.5 in IAQ1.

Information Gain Value SH Features Information Gain Value SH Features

0.3860 HTMasterBathroom 0.2690 HTMasterBathroomWind
0.3675 HTDoor1stFloor 0.2568 HTMasterBedroomWind
0.3624 HTDiningroom 0.2024 HTMasterOfficeWindowA
0.3461 HTKitchenA 0.2008 HTKitchenWindowA
0.3433 HTMasterBedroom 0.1694 HTOtherBathroom
0.3394 HTOtherBedroom 0.1636 HTDoorMasterBedroomToBalcony
0.3330 HTDoorDiningRoom 0.1239 HTMasterBedroomWind
0.3202 HTDoorUtility 0.1145 ALevelMasterBedroom
0.2993 HTMasterLivingroom 0.0945 ALevelLivingroom
0.2990 HTDoorMasterLivingroom 0.0813 ALevelMainEntry
0.2922 HTMainDoor

Table 15. InfoGain method predictions for outdoor PM2.5 in IAQ2.

Information Gain Value SH Features

0.4677 HTMainEntry
0.2438 HTKitchen
0.1699 HTMasterBedroom
0.1501 HTMasterBathroom
0.1188 HTMasterOffice
0.0972 HTUtility

Table 16. InfoGain method predictions for indoor formaldehyde in IAQ1.

Information Gain Value SH Features Information Gain Value SH Features

1.1547 HTKitchen 0.4995 HTKitchenAWindowA
0.6945 HTMainDoor 0.8700 HTMasterBedroom
1.1039 HTToTheFirstFloorDoor 0.4781 HTMasterBathroomWindow
0.6512 HTMasterLivingroomDoor 0.8386 HTDiningRoomDoor
1.0974 HTDiningRoom 0.4412 HTMasterBedroomWindowA
0.5538 HTMasterLiving 0.8334 HTUtilityDoor
1.0541 HTMasterBathroom 0.2731 HTOfficeAWindowA
0.5153 HTMasterBedroomDoor 0.7271 HTOtherBathroom
0.8964 HTOtherBedroom 0.2541 HTMasterBedroomWindowB

Table 17. InfoGain method predictions for indoor formaldehyde in IAQ2.

Information Gain Value SH Features

0.2950 HTMasterBathroom
0.1850 HTKitchen
0.1830 HTMainEntry
0.1640 HTOtherLivingRoom
0.1470 HTUtility
0.1300 HTMasterBedroom
0.1100 HTMasterOffice
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Table 18. InfoGain method predictions for indoor methanol in IAQ1.

Information Gain Value SH Features Information Gain Value SH Features

1.1617 HTUtilityDoor 0.8965 HTOtherBedroom
1.1503 HTMasterBathroom 0.8561 HTMasterBathroomWindow
1.1308 HTMasterBedroom 0.8515 HTMainDoor
1.0434 HTDiningRoomDoor 0.7545 HTKitchenWindowA
1.0160 HTDiningRoom 0.7399 HTMasterBedroomWindowA
0.9976 HTOtherBathroom 0.7340 HTMasterBedroomDoor
0.9832 HTKitchenA 0.7064 HTMasterLiving
0.9663 HTToTheFirstFloorDoor 0.5024 HTOfficeAWindowA
0.9361 HTMasterLivingroomDoor 0.4523 HTMasterBedroomWindowB

Table 19. InfoGain method predictions for indoor methanol in IAQ2.

Information Gain Value SH Features

0.2460 HTOtherLivingRoom
0.2010 HTMasterBathroom
0.1810 HTMainEntry
0.1520 HTMasterOffice
0.1060 HTKitchen

In Table 14, we notice that the majority of selected features that are strongly related with outdoor
PM2.5 are temperature variables; the top features are temperatures in the master bathroom, dining
room, and kitchen. This is consistent with the results from Analysis 1, as shown in Table 7. In addition,
this experiment allows us to observe that for IAQ1, the temperature in the master bathroom had
the highest correlation with outdoor PM2.5. This makes sense, because heavy smoke from wildfires
contains elevated levels of PM2.5. Thus, residents spend more time at home for less exposure to the
outside environment.

In IAQ2, based on Table 15, we notice that the SH features that have the greatest impact are
temperatures in the main entry, kitchen, master bedroom, and master bathroom. Moreover, the
temperature in the main entry has the highest correlation with outdoor PM2.5. This makes sense,
because the temperature in the main entry might indicate opening/closing of the main door. Due to
the heavy outdoor smoke, residents might open/close the main door more quickly than usual to
prevent the outdoor smoke from coming into the house.

In the case of indoor formaldehyde in IAQ1, based on Table 16, we observe that temperature in
the kitchen has the highest correlation with formaldehyde. This is because the temperature in the
kitchen was very similar to temperatures throughout the whole house (in general, the difference is
less than 1 Celsius, except during the cooking time), and formaldehyde is positively related to the
temperature. For IAQ2, based on Table 17, the temperature in the master bathroom had the highest
correlation with indoor formaldehyde due to the positive correlation with humidity.

Considering indoor methanol in IAQ1, based on Table 18, we notice that the temperature in the
utility room has the highest correlation with methanol. This is because methanol is a component of
the liquid laundry detergents and temperature in the utility room may indicate the residents had
been doing laundry. But for IAQ2, from Table 19, we notice that the temperature in the secondary
living room had the highest correlation with indoor methanol. That is because food and drink in the
secondary living room contained methanol. Additionally, residents whose breaths have a contribution
to the methanol level may spend a great deal of time in the secondary living room. Those results in the
third experiment are consistent with the results from the first two experiments.

6. Discussion

In this study, we noticed that the temperature features are more frequently selected than other
specific activities. This might be because temperature is impacted by multiple activities, such as
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cooking and running hot water, rather than selecting one specific activity that would exclude other
activities. In addition, the change in temperature caused by an activity may last longer than the activity
itself, and so affect the IAQ even after the activity has ended. The fact that these results are consistent
with previous studies helps to validate the methodology as a whole.

In the analyses, we assume that some human activities occur based on the top selected temperature
features. Future studies of this type should include information from occupant interviews to help
explain the observations and to validate the occurrence of these activities.

Further, the study is based on homes equipped with both multiple SH sensors in each room and
air quality measurements in one location inside and outside the house. The use of a single location in
each home to measure indoor air quality and represent the air quality throughout the entire house
may have impacted our results. Thus, future studies can be improved by using IAQ measurements
placed in each room to capture the air quality. In addition, although the locations of indoor air quality
measurements in each home is based on the house architecture, the inconsistence with the locations of
IAQ measurements (either in living room or dining room) could also have an impact on the results.

7. Conclusions

Our goal was to examine the relationship between in-home behavior and indoor air quality based
on collected data from smart home sensors and chemical indoor air quality measurements. We fulfilled
this goal by collecting data in two smart home testbeds. We analyzed both the impact of overall smart
home behavior on indoor air quality, and the relationship between individual groups of smart home
features and indoor air quality variables. We identified and adapted machine-learning classifiers that
are appropriate for each analysis.

The results of our first analysis indicated that there is a strong relationship between in-home
human behavior and air quality. By examining an aggregated dataset, we also observed that this
predictive relationship could be generalized across multiple smart homes. In our second analysis,
the specific SH attributes that are most indicative of indoor air quality were found for each testbed.
Based on the findings, it would be a reasonable suggestion for the resident to consider airing the
rooms frequently.

In future work, we will design methods of automating ventilation control to improve indoor air
quality based on sensed activities and other smart home features. For example, we will provide viable
suggestions as to how to improve indoor air quality (e.g., turning on ventilation systems only at certain
times of the day). These types of analyses can help us recognize the types of behavior that significantly
impact IAQ and use this information to anticipate, prevent and prepare for indoor pollution, maintain
better healthy environments, and plan for our changing future by developing an automated system for
maintaining good indoor air quality.

Supplementary Materials: The dataset is available online at www.mdpi.com/2224-2708/6/3/13/s1.
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