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Abstract: We are witnessing the emergence of new big data processing architectures due to the
convergence of the Internet of Things (IoTs), edge computing and cloud computing. Existing big
data processing architectures are underpinned by the transfer of raw data streams to the cloud
computing environment for processing and analysis. This operation is expensive and fails to meet the
real-time processing needs of IoT applications. In this article, we present and evaluate a novel big data
processing architecture named RedEdge (i.e., data reduction on the edge) that incorporates mechanism
to facilitate the processing of big data streams near the source of the data. The RedEdge model
leverages mobile IoT-termed mobile edge devices as primary data processing platforms. However,
in the case of the unavailability of computational and battery power resources, it offloads data streams
in nearer mobile edge devices or to the cloud. We evaluate the RedEdge architecture and the related
mechanism within a real-world experiment setting involving 12 mobile users. The experimental
evaluation reveals that the RedEdge model has the capability to reduce big data stream by up to
92.86% without compromising energy and memory consumption on mobile edge devices.

Keywords: fog computing; mobile edge computing; cloud computing; mobile computing;
big data reduction

1. Introduction

Cloud computing systems provide highly virtualized computing, networking, and storage
services on top of massively parallel distributed systems [1–3]. However, clouds were initially
introduced as utility computing models to fulfill the processing requirements of enterprise
applications [1]. The voluminous and high speed data streams in IoT-based big data systems increase
the network traffic of the cloud, which challenges the big data management capabilities [4]. Recent
literature provides some evidence whereby different data reduction methods enable big reduction in
clouds [5]. These data reduction methods are mainly based on: (1) network theory-based methods,
whereby graph mapping and optimization algorithms reduce high dimensional big data streams into
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low dimensional datasets [6,7]; (2) compression algorithms are applied in order to reduce the volume of
network traffic [8,9]; (3) data deduplication methods eliminate redundant and duplicated data [10,11];
(4) feature extraction and data filtration methods are applied in order to reduce the data streams at
early stages [12,13]; and (5) data mining and machine learning techniques help with data reduction at
early stages of big data through preprocessing [14,15] and prediction. Existing methods are applied for
big data reduction in the context of clouds. However, there exists an opportunity to reduce big data
streams even before entering the cloud.

Considering IoT-cloud communication models and the big data generated by mobile edge devices
and applications, the cloud-centric big data processing results in increased latency and incremental data
transfer cost. In addition, it increases the in-network data movement inside the cloud [16–18]. Recently,
mobile edge cloud computing (MECC) emerged as a solution to enable the extension of centralized
cloud services to the edge of the network through edge servers [19–23]. These edge servers reside at
one-hop communication distances from mobile edge devices (see Figure 1); hence, they can meet the
real-time needs of IoT applications. However, the decision of data processing in different layers across
MECC depends on many factors, such as the capability of devices in MECC, the availability of these
devices, the application profile (e.g., real time) and the data analytic tasks employed by the application.
Hence, moving data processing from the cloud to MECC is not a trivial task.

Infrastructure based 
Cloud

Edge 
Servers

Mobile Devices

Cloudlet Micro Cloud Smart Swtich Smart RouterApplication Server

Smartphone LaptopSmartwatch
Wireless Sensor Network

Tablet Smart Vehicles

Figure 1. The mobile edge cloud computing (MECC) architecture.

Based on the computational capabilities of mobile edge devices [24,25], we envision a novel data
processing architecture called RedEdge i.e., the term is derived from the process of data reduction on
the edge) [26]. The RedEdge model employs the mobile edge devices as a data reduction platform.
In the case of the unavailability of computational and battery power resources at one mobile edge
device, nearby mobile edge devices within the MECC environment are used to offload the data stream
and processing. The RedEdge transforms MECC into a mobile edge collaborative platform. In the
case of resource unavailability on mobile edge devices, the MECC system offloads data streams to
the cloud.

This article contributes a novel big data processing architecture for MECC systems. The RedEdge
architecture employs a novel big data reduction technique whereby the data stream-mining algorithm
processes and uncovers knowledge patterns and stores the resultant data using local storage in mobile
edge devices and synchronizing with cloud data stores. To this end, we propose a middle-ware



J. Sens. Actuator Netw. 2017, 6, 17 3 of 22

architecture that utilizes the computational power from MECC systems and embeds three layers
of data reduction in existing big data systems. The first layer reduces the data stream strictly in
the same mobile edge device whereby the data sources reside. The second layer reduces the data
stream by forming an ad hoc network of closer mobile edge devices and enabling collaborative data
processing among connected devices. The third layer harnesses the cloud resources in order to reduce
the data streams. To assess the performance of the RedEdge architecture, we conducted a real-world
experimental study by recruiting 12 graduate students from the University of Malaya, Malaysia, and
ran the experiments for 15 days. The experimental evaluation was performed in terms of memory
consumption, battery power utilization, latency and reduced bandwidth utilization.

The rest of the article is organized as follows. Related works are presented in Section 2, followed
by the problem statement in Section 3 and the RedEdge architecture in Section 4. Section 5 presents
the formal modelling and analysis of the RedEdge architecture. The experimental evaluation and a
discussion of the overall results are given in Section 6. Finally, the article concludes with Section 7.

2. Related Work

Traditionally, big data reduction is performed after storing data streams in large-scale clusters
and data centres or clouds. A variety of methods is applied for data reduction; however, this mainly
involves methodologies relevant to network theory, compression, data deduplication, dimension
reduction, data preprocessing and data mining and machine learning.

Network theory-based methods convert unstructured, high dimensional and complex data
streams into low dimensional structured data [6,7,27,28]. They extract topological structures from data
streams and map them on to graph data structures. These methods further perform graph processing
techniques to establish and optimize the relationships among mapped data. The optimized structures
are represented as free-scale networks, small-world networks and random networks. The network
theory-based methods are useful for data reduction; however, they require laborious efforts and high
computational resources in order to find highly optimized datasets.

The compression-based data reduction helps with reducing the overall volume of big data that
could be easily handled during in-network data movement in clusters and data centres [8,9,29,30].
However, these methods involve computational overhead of decompression. Despite preserving
the original datasets, the compression-based method could not improve the quality of big data
for data analytics. A few common compression-based big data reduction methods include gZip,
parallel compression, anamorphic stretch transform, sketching, compression sensing, spatio-temporal
compression and adaptive compression.

Big data storage in cloud data centres is performed in highly duplicated settings whereby multiple
copies of the same datasets are stored in different storage servers in the same rack of servers or different
servers across the clusters [10,11,31,32]. The data duplication is performed to meet the service level
agreements (SLAs) for high availability; however, this costs extra storage spaces and computational
power for data processing. Therefore, big data systems need to perform cluster level and node level
data deduplication in order to eliminate redundant datasets and improve the quality of data for big
data analytic algorithms.

Big data reduction during data preprocessing is the right method for early reduction [12,33–35].
The early data processing helps with reducing the data storage cost, as well as the computational cost
that may be incurred at later stages. Existing literature discusses a variety of big data preprocessing
methods, such as semantic analysis of big datasets using linked data structures and ontologies, data
filtration using URL filtration methods, low memory pre-filters for streaming data and 2D peak
detection methods. Although a few works adopted existing conventional methods, there exists a
research gap to find new data preprocessing methods for big data reduction.

High dimensionality in big datasets arises due to the emergence of thousands or millions of
attributes, and it is the norm rather than the exception in the case of big datasets. Researchers
adopted dimension reduction methods in order to deal with the curse of high dimensionality [36–41].
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The dimension reduction methods process the high dimensional unstructured big datasets and
convert them into low dimensional structured datasets. Researchers proposed a few dimension
reduction methods such as dynamic quantum clustering, BIGQuic, the map-reduce implementation
of k-means clustering algorithms, online feature selection, tensor networks and optimization, feature
hashing, critical feature dimension reduction approaches and incremental partial least square methods.
Although feasible for big data reduction, the dimension reduction methods require a massive amount
of computational resources.

Data mining and machine learning algorithms are another variant of big data reduction
methods [14,42,43]. These methods process the data streams by performing supervised, unsupervised,
semi-supervised and deep learning models. The data mining and machine learning methods are quite
useful due to early knowledge discovery from big data streams. The methods are useful for real-time
big data analytics where multiple learning models at different levels of big data systems filter the data
streams and uncover the knowledge patterns in parallel.

The literature review reveals that existing big data reduction methods work as cloud-centric
approaches [5]. However, our RedEdge architecture adopts the IoT device-centric approach for big
data reduction. The RedEdge provides support for the deployment of data mining and machine
learning-based big data reduction schemes. The architecture extends the capabilities of our previous
work presented in [26,44]. This article presents a detailed discussion on the big data reduction strategy.
In addition, the article presents formal verification and validation of the overall functionalities using
Petri nets. Moreover, a thorough experimental evaluation of RedEdge architecture is presented in
this article.

3. The Case for a Multi-Layer Far-Edge Computing Architecture for Big Data Reduction

Let us consider the five-layer IoT reference architecture of fog computing systems introduced by
Cisco (see Figure 2) [23,45]. The physical layer at the lowest level facilitates data acquisition from mobile
edge devices using onboard and offboard sensory and non-sensory data sources. The communication
layer at the second level enables connectivity and data transfer from mobile edge devices to fog
servers. The data aggregation layer provides functionality to aggregate data streams from connecting
devices and performs data filtration operations in order to transfer useful raw data streams in clouds.
The analytics layer ensures the availability of data analysis services through cloud service providers.
Finally, the application layer provides functionalities to interact with IoT applications.
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Figure 2. IoT reference architecture. RedEdge, data reduction on the edge.

Existing reference architectures have multiple issues at each layer [20,46]. The mobile edge
devices perform data collection operations and transfer raw data streams in edge servers. This data
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collection strategy increases the cost of data communication among mobile edge devices and fog
servers. Secondly, fog servers are bounded by physical locations; therefore, mobile edge devices
need to be in proximity to benefit from cloud services. Thirdly, big data processing and analytic
components are provided through centralized services, hence increasing the computational burden in
clouds. Fourthly, the IoT applications are built on top of clouds; therefore, fog computing architectures
involve high coupling among application components at different layers. In addition, this requires
persistent Internet connections to benefit from IoT applications.

Considering these limitation, we propose a new middleware architecture for IoT-based big data
applications. The architecture reduces big data streams by enabling maximum resource provisioning
near the data sources. The architecture is designed to perform early analytic operations over data
streams in order to aggregate knowledge patterns in place of raw data streams.

The RedEdge architecture embeds three layers of data analytics for big data reduction. At the first
layer, mobile edge devices perform data analytic operations for local data reduction using onboard
computational resources. However, in the case of resource scarcity, the nearby mobile edge devices
form an ad hoc network. The mobile edge devices other than source devices provide services for
collaborative data reduction and perform required analytic operations on offloaded data streams.
In this case, if there is no nearby mobile edge device or the required resources are not available at
connected mobile edge devices, the data streams are offloaded to clouds, which initiates the required
analytic services for remote data reduction. The reduced data streams are then shared with data
aggregation servers either in fog edge servers or in cloud data centres.

4. RedEdge: An Architecture for Big Data Processing in MECC Environments

In this section, we present RedEdge, a novel architecture for big data processing in MECC
environments. RedEdge enables big data reduction (see Figure 3) at three layers. These three layers are
called the local analytics layer (LA) for onboard data reduction employed by the mobile edge device,
the collaborative analytics layer (CA) for data reduction within the ad hoc network of mobile edge
devices and the cloud-enabled analytics layer (CLA) for data reduction in clouds.
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Figure 3. RedEdge architecture. LA, local analytics layer; CA, collaborative analytics layer; CLA,
cloud-enabled analytics layer.
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4.1. Components and Operations for LA

At the LA layer, the RedEdge provides five modules for: (1) data acquisition and data
adaptation; (2) knowledge discovery; (3) knowledge management; (4) visualization and actuation;
and (5) system management.

4.1.1. Data Acquisition and Data Adaptation

The RedEdge applications start execution and run as back-end services in mobile edge devices.
Primarily, these applications perform the intelligent data collection depending on the application
requirements. The data collection strategy also varies in different applications. For example, some of
the applications (like environmental monitoring apps) may collect continuous data streams, and
some of the applications may collect situation-based or periodic data collection. The data adaptation
strategies help control data rates in RedEdge applications.

4.1.2. Knowledge Discovery

The knowledge discovery module supports the execution of analytic components using onboard
computational resources in mobile edge devices. The module provides different algorithms for
data preprocessing operations such as noise reduction, outlier analysis, handling missing values
and anomaly detection, to name a few. In addition, the data fusion components provide functionalities
to fuse data streams from multiple homogeneous and heterogeneous data sources such as onboard
and offboard sensors, as well as Internet-enabled social media data streams as used in social IoTs.
Moreover, the module provides components for transient storage of fused data streams in mobile edge
devices. Furthermore, the module provides a library of different data stream analytic algorithms in
order to perform clustering, classification and association rule mining operations.

4.1.3. Knowledge Management

The knowledge patterns generated by the knowledge discovery module differ depending on the
data analytics operations of IoT applications. The knowledge management module enables one to
integrate the relevant knowledge patterns and to produce a summarized and globalized view of the
overall data. The knowledge integration is made in a way that all processed data could be effectively
represented, and the resultant data is stored in local data stores using light databases. However, the
challenge of tracking the processed and unprocessed data points introduces complexity in the overall
data management process. To address this issue, the RedEdge works with the principles of data
parallelism where each chunk of raw data is tracked starting from the acquisition until the integration
of knowledge patterns. The data parallelization ensures that each data chunk is processed at least one
time; however, this approach increases the overall computational complexity.

4.1.4. System Management

The onboard resource dynamics and fast mobility create the issues of tracking mobile edge device
locations and onboard available resources. The core functions of the system management module
are the adaptation engine, the context monitor and the resource monitor. These functions ensure the
robustness of the far-edge computing architecture in different scenarios. The adaptation engine ensures
the execution of RedEdge components and data reduction in all three layers. In addition, the resource
monitor and context manager periodically monitor available resources (memory, storage), locations
(frequently-visited locations) and device-usage behaviour (charging, idle).

4.1.5. Visualization and Actuation

The visualization module ensures the local knowledge availability by enabling on-screen
visualization. The studies show that local visualization is very useful for real-time applications.
However, due to resource constraints and limited screen size, local knowledge visualization does not



J. Sens. Actuator Netw. 2017, 6, 17 7 of 22

support a detailed knowledge view. The topic of visualization needs a detailed and thorough study;
therefore, it is not covered further in this article. The actuation component is designed to ensure the
interaction of mobile edge devices with external environments, which include remote cloud services
and nearby peer mobile edge devices. This module ensures the future extensibility of RedEdge to
other devices, systems and communication networks.

4.2. Components and Operations for CA

The discovery of other mobile edge devices and the available communication interfaces are key
requirements for the ad hoc network formation of nearby mobile edge devices. The execution of
knowledge discovery processes collaboratively and synchronizing resultant knowledge patterns are
also challenging during collaborative data processing. The CA layer of RedEdge handles these issues
to ensure seamless and collaborative data reduction.

4.2.1. Discovering Mobile Edge Devices and Communication Interfaces

The device discovery module handles two main issues. First, it discovers the mobile edge devices
that may provide data processing services to other mobile edge devices. The source device in the
network scans all connected communication interfaces and enlists all available mobile edge devices.
The adaptation engine in RedEdge maintains and periodically updates a list of mobile edge devices for
service utilization. The known devices are given priority over unknown devices. However, the list of
known devices is maintained and updated whenever a new device is connected. This approach helps
to seamlessly adapt to new and unknown environments for collaborative data reduction. The second
main issue handled by RedEdge at this stage is to adapt and switch between different communication
interfaces. It ensures seamlessly switching between different communications interfaces while
maintaining the proximity of devices. This strategy helps to ensure maximum collaboration considering
co-movement between different communication areas (such as Wi-Fi networks, public Internet facilities
and home-networks).

4.2.2. Peer to Peer Network Formation

Once the mobile edge devices are found and the information about their communication interfaces
is collected, the RedEdge initiates the P2P network formation process. The source device broadcasts
the peer request to all proximal mobile edge devices, which collect the information about available
onboard computational resources and send this back to the source device. The source device then
performs the cost-benefit analysis in order to decide the favourability of data offloading. In the case of
favourable data offloading, mobile edge devices offload the data stream to nearby mobile edge devices.

4.2.3. Data Offloading in Mobile Edge Devices

The decision about the favourability of data offloading is quite challenging due to resource
dynamics in mobile edge devices and the availability of communication interfaces. Depending on the
multi-objective approach of data offloading, the minimal energy consumption, reduced bandwidth
utilization cost, performance enhancement and maximum data reduction are considered as the
main objectives.

Existing studies show that energy consumption differs between different communication
interfaces and the distance among different devices; therefore, the optimal choice of communication
interfaces is a key element to decide about the favourability. Keeping in view the recommendations
given in [47], RedEdge creates the priority list of communication interfaces and switches accordingly.
This approach helps with the maximum energy gain while communicating with proximal devices.
The optimal bandwidth utilization is achieved by RedEdge by distributing data streams into small and
manageable chunks. In this case, the data chunk size is carefully determined by calculating the energy
cost of local computations and communication over proximal networks. The data chunk size is kept as
big such that proximal communication becomes favourable when compared with local computations.



J. Sens. Actuator Netw. 2017, 6, 17 8 of 22

However, the size must be kept moderate such that the performance of serving mobile edge devices
will not be compromised. In addition, the offloading decision depends on the amount of data that
needs to be processed in mobile edge devices. In the case of an insufficient amount of data, the data
offloading becomes unfavourable and consumes more energy and computational resources when
compared with the amount of data reduced using onboard computational resources in mobile edge
devices. Considering these objectives and constraints, the RedEdge devises the optimal offloading
strategy for collaborative and remote data reduction in MECC systems. Further details about the
offloading scheme are presented in [44] for interested readers.

4.2.4. Knowledge Discovery and Pattern Synchronization

Once the offloading is completed, the mobile edge devices execute the components from their
knowledge discovery modules. However, this depends on the application design, whether the whole
knowledge discovery process is executed at the mobile edge device or partial task execution is
performed. In the case of complete execution, the source device offloads raw data streams, and the
mobile edge device executes the complete knowledge discovery process from preprocessing to data
mining and summarization of patterns. In the case of partial execution, the source device offloads only
preprocessed data in order to lower the overall bandwidth utilization in the ad hoc network. However,
the mobile edge device executes the rest of the knowledge discovery process, and the resultant patterns
are synchronized with the source device. In this case, the source device could not receive the results
from the mobile edge device for a specified time period, and the data streams are offloaded to any
other available nearer mobile edge device. To lessen the transient storage burden and to reserve the
maximum computational power, the garbage collection process is executed by RedEdge, and mobile
edge devices delete all processed raw data streams periodically from the Random Access Memory
(RAM) and the device’s local storage. Similarly, the source device deletes all processed data streams
after receiving the corresponding knowledge patterns.

4.3. Components and Operations for CLA

RedEdge maintains a service repository of available cloud services. The requirements of cloud
services vary; therefore, the service repository contains various services for remote data reduction in
clouds. The choice of service is solely dependent on the needs of big data systems; however, RedEdge
provides an interface to access all available services in the repository. The mobile application offloads
the data in the cloud environment with the request for the required cloud services where the cloud
service manager automatically runs the requested services and completes the task execution.

RedEdge provides seven types of services, which are designed for data uploading,
data preprocessing, data fusion, data mining, pattern summarization, knowledge management
and pattern synchronization. The data uploading services help with handling offloaded data streams.
The raw data streams are uploaded in transient data stores in clouds. The data preprocessing,
data fusion and data mining services are executed in order to process raw data streams and uncover
new knowledge patterns. The pattern summarization and knowledge management services are used
to integrate and summarize knowledge patterns both uploaded by mobile edge devices and produced
by cloud services. The summarized knowledge patterns are stored in permanent data stores inside
clouds. The pattern synchronization services transfer the knowledge patterns for data aggregation in
big data systems.

5. Formal Modelling, Analysis and Verification

Considering the complexity of operations in the RedEdge architecture, we formally model the
propose architecture in order to analyse and verify its operations using high level Petri nets (HLPN) [48],
the satisfiability modulo theories library (SMT-Lib) [49] and the Z3solver [50]. The basic introduction to
HLPN, SMT-Lib and the Z3 solver is provided by [51,52] to aid the readers’ understanding; therefore,
further discussion on the topic is not made in this article.
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The massive heterogeneity at all three layers of RedEdge introduces an unlimited amount of use
cases and applications that are practically difficult to analyse and generalize in this research work.
Therefore, considering the heterogeneity and complexity of operations in the RedEdge architecture,
we formally model the propose architecture in order to analyse and verify its operations using high
level Petri nets (HLPN) [48], the satisfiability modulo theories library (SMT-Lib) [49] and the Z3
solver [50]. The HLPN modelling approach is used in order to analyse the overall feasibility of
RedEdge as a data reduction architecture. This approach has benefits over traditional Petri net models,
which are more effective in specific use cases. However, the HLPN modelling approach has benefits in
generalizing the data processing operations at each layer. The basic introduction to HLPN, SMT-Lib
and the Z3 solver is provided by [51,52] to aid the readers’ understanding; therefore, further discussion
on the topic is not made in this article.

Petri nets are used for graphical and mathematical modelling of a system and are applied
to a wide range of systems, such as distributed, parallel, concurrent, nondeterministic, stochastic
and asynchronous systems. For the formal modelling of RedEdge, we used a variant of the
conventional Petri net called high level Petri net (HLPN). The HLPN simulates a system and provides
its mathematical properties, which are used to analyse the behaviour of a system.

HLPN is based on a seven-tuple model N = (P, T, F, ϕ, R, L, M0), where P denotes a set of
places, T refers to the set of transitions (such that P ∩ T = ∅), F denotes flow relation (such that
F ⊆ (P× T) ∪ (T × P)), ϕ maps places P to data types, R denotes a set of rules for transitions and L
is a label on F and M0, which represents the initial marking. (P, T, F) provides information about
the structure of the net, and (ϕ, R, L) provides the static semantics (i.e., information), which does not
change throughout the system. In HLPN, places can have tokens of multiple types, which can be
a cross product of two or more types. A few mapping examples include ϕ(P1) = Boolean, ϕ(P2) = ID,
ϕ(P3) = P(Integer), and ϕ(P1) = Char, where P1, P2 and P3 are the places of HLPN.

SMT is used for verifying the satisfiability of formulae over the theories under consideration.
SMT-Lib provides a common input platform and benchmarking framework that helps with the
evaluation of the systems. The usage of SMT is common in many fields, including deductive software
verification. This thesis adopts the Z3 solver with SMT-Lib, which is a theorem prover developed
at Microsoft Research. Z3 is an automated satisfiability checker that determines whether the set
of formulas are satisfiable in the built-in theories of SMT-Lib. The HLPN model for the RedEdge
framework is shown in Figure 4. We identify data types, places and mapping of data types to places.
Data types and their mappings are shown in Tables 1 and 2, respectively. In Figure 4, the rectangular
black boxes represent transitions and belong to set T, whereas circles represent places and belong
to set P.
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Table 1. Data types for RedEdge high level Petri nets (HLPN).

Types Descriptions

T_stamp A DateTime type representing date and time

F_name A string type representing unprocessed data file name

DS_ID A string type representing name of data source

Chunk_ID A string type representing data chunk code generated by system

Flag_status An integer type representing status of data chunks (unprocessed, processed, processing)

Location A string type representing the name and GPS coordinates of a location

Charging A Boolean type representing the charging status of mobile edge device

Locked A Boolean type representing the lock status of mobile edge device

Calling A Boolean type representing the call status of mobile edge device

Internet A Boolean type representing the availability status of active Internet interfaces

Dev_ID A string type representing the device_id based on International Mobile Equipment
Identity(IMEI) of mobile edge device

Mem An integer type representing maximum memory in the mobile edge device

Storage An integer type representing maximum storage in the mobile edge device

App_ID A string type representing application_id in the mobile edge device

Avlb_Loc_storage An integer type representing available local storage in the mobile edge device

Avlb_SD_card An integer type representing available storage on the SD-card in the mobile edge device

Wifi A string type representing availability and connectivity through Wi-Fi

GSM A string type representing availability and connectivity status through GSM

BT A string type representing availability and connectivity through Bluetooth

BL A string type representing availability and connectivity through Bluetooth Low Energy

Exec_mode A string type representing the current execution mode of the system

Pattern_attribute A string type representing multiple attributes of extracted patterns (types of patterns,
number of patterns, quality of patterns)

Table 2. Places and mappings.

Places Mappings

φ(Data Sources) ρ(T_stamp × F_name × DS_ID)
φ(Loc Data) ρ(T_stamp × F_name × DS_ID)
φ(Data Tab) ρ(Chunk_ID × Flag_status × DS_ID × F_name)
φ(Up Data) ρ(Chunk_ID × Flag_status × DS_ID)
φ(Context Info) ρ(T_stamp × Location × Charging × Calling × Internet × Locked)
φ(Conn) ρ(Dev_ID ×Mem × Storage)
φ(Local Res) ρ(T_stamp ×Mem × Avlb_Loc_storage × Avlb_SD_Card ×Wifi × GSM × BT × BL)
φ(Est Res) ρ(App_ID ×Mem × Storage)
φ(Exec Mode) ρ(Exec_mode)
φ(Disc Pattern) ρ(Chunk_ID × Pattern_attributes)
φ(Intr Pattern) ρ(Chunk_ID × Pattern_attributes)
φ(Loc Pattern) ρ(Chunk_ID × Pattern_attributes)
φ(Cloud Str) ρ(Chunk_ID × DS_ID × Pattern_attributes)

For each data collection phase, the data_sources information is initialized, and the data collection
is started. The time series buffered data stream is created using T_stamp, the temporary file name
(F_name) and the system generated data sources’ ID (DS_ID). RedEdge generates all unique IDs
in the system at the time of application deployment. Therefore, these IDs remain constant until the
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application is installed on a device. When the collected data files reach a maximum threshold (i.e., the
file size given by the application developer), the data file is stored on the onboard storage. In addition,
a Flag_status is maintained for each data file (called the data chunk). The Flag_status shows the
current processing status of any data chunk (zero for unprocessed, one for under-processing and −1
for processed). This is done at transition T1, and the transition is mapped to the following rule (see
Equation (1)).

Once the sufficient data are collected, T2 gathers data from Loc_Data and corresponding attributes
(Chunk_ID, DS_ID and Flag_status) from Data_Tab and updates Flag_status to “under-processed”
(i.e., one). In addition, T1 periodically cleans processed data from Loc_Data and updates Data_Tab
accordingly. The data controlling rule at T2 is mapped as follows (see Equation (2)).

R(T1) = ∀a1 ∈ A1 • a1[1] 6= NULL ∧ a1[2] 6= NULL ∧ a1[3] 6= NULL∧
∀a3 ∈ A3 • a3[1] := a1[1] ∧ a3[2] := a1[2] ∧ a3[3] := a1[3]∧

∀a2 ∈ A2 • ∃a2[1] := dist(a1[2]) ∧ a2[2] := a1[3] ∧ a2[4] := a1[2]∧
∀a4 ∈ A4∧ A3′ = A3∪ (a3[1], a3[2], a3[3]) ∧ A2′ = A2∪ (a2[1], a2[2], a2[3], a2[4])

(1)

R(T2) = ∀a5 ∈ A5, ∀a6 ∈ A6 • a5[4] = a6[2] ∧ a5[3] = 0∧
∀a7 ∈ A7 • a7[1] := a5[1] ∧ a7[2] := a5[3] ∧ a7[3] := a5[2]∧

A7′ = A7∪ (a7[1], a7[2], a7[3]) ∧ a5[3] := 1∧ A5′ = A5∪ (a5[1], a5[2], a5[3], a5[4])

(2)

After the establishment of the amount and type of data to be processed, T3 collects Context_in f o,
Conn, Loc_Res, Est_Res and related information and executes the Rule_engine, which runs the
execution rules and switches between all three execution modes (i.e., LA, CA or CLA). The rule
for the selection of the execution mode is mapped at T3 as follows (see Equation (3)).

R(T3) = ∀a8 ∈ A8, ∀a9 ∈ A9, ∀a10 ∈ A10, ∀a11 ∈ A11, ∀a12 ∈ A12, ∀a13 ∈ A13,

•a13[1] = LA−Mode ∧ a12[2] > a11[2] ∧ ∀a12[3] > a11[3] + a11[4] ∧ a13 := CA−Mode∧
∀a18 ∈ A18 | a10[1] = a12[1]∧

a12[2] > a18[3] ∧ a12[3] > a18[4] ∧ a13 := CLA−ModeA13′ = A13∪ (a13)

(3)

T4 collects the Exec_mode status, and in the case of LA and CA, data mining tasks are initiated
locally. For LA, all data mining tasks are executed using onboard local resources. However, in the case
of CA, data mining tasks are offloaded to peer-candidate devices, where each peer-candidate device
acts as a standalone data mining platform. In addition, T4 collects Up_data and schedules the data
mining tasks accordingly. The Exec_mode at T4 is mapped using the following rule (see Equation (4)).

R(T4) = ∀a19 ∈ A19, ∀a20 ∈ A20, ∀a21 ∈ A21 • a21[1] := a19[1]∧
a21[2] := Data−Mining(a19[1]) ∧ A21′ = A21∪ (a21[1], a21[2])

(4)

Once the data mining tasks are executed successfully, the Disc_Pattern is evaluated at T5 and is
mapped as follows (see Equation (5)).

R(T5) = ∀a22 ∈ A22, ∀a23 ∈ A23 • a23[1] := a22[1] ∧ a23[2] := a22[2]∧
A23′ = A23∪ (a23[1], a23[2])

(5)
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After refinement of Disc_patterns into Intr_patterns, the relevant patterns are summarized and
merged at T6 using Equation (6). Depending on the configuration of each application, data patterns
are marked as public, private or protected and stored locally at Loc_Pattern.

R(T6) = ∀a24 ∈ A24, ∀a25 ∈ A25 • a25[1] := a24[1] ∧ a25[2] := a24[2]∧
A25′ = A25∪ (a25[1], a25[2])

(6)

T7 synchronizes Loc_patterns with cloud data stores (CloudStr). In addition, the Flag_status of
successfully executed Chunk_ID is updated to “processed” (i.e., −1). The synchronization at T7 is
mapped using Equation (7). Consequently, whenever the Internet connection is available, neither LA, CA,
or CLA is enabled, and there are some unsynchronized data patterns (UPs); then, UPs are synchronized
with their respective counterparts in the cloud. However, data patterns need to be stored in different
directories on the mobile edge devices to classify synchronized and unsynchronized versions.

R(T7) = ∀a26 ∈ A26,∀a27 ∈ A27,∀a28 ∈ A28 • a27[2] := a26[2]∧
a28[1] = a26[1]∧ a28[3] = −1∧ a27[1] := a26[1]∧ A27′ = A27∪ (a27[1], a27[2], a27[3])∧

A28′ = A28∪ (a28[1], a28[2], a28[3], a28[4])

(7)

Lastly, in the case of CLA, the raw data stream is uploaded to CloudStr using the following rule
(see Equation (8)).

R(T8) = ∀a29 ∈ A29,∀a30 ∈ A30 • a30[1] := a29[1]∧ A30′ = A30

∪(a30[1], a30[2], a30[3])
(8)

The formal verification of HLPN (using the Z3 solver) determines that RedEdge is completely
workable and executes according to specified properties. We also evaluated our RedEdge model using
the PIPE+ editor [53], which provides a graphical interface to develop and analyse HLPN for bounded
model checking (BMC) (see Figure 5).

Figure 5. PIPE+ Editor screenshot of RedEdge.
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The traversal paths in HLPN are given in forward and backward incidence matrices generated
using PIPE+ (see Tables 3 and 4).

Table 3. Forward incidence matrix.

Places T0 T1 T10 T11 T6 T5 T4 T12 T2 T7 T8 T3 T13 T14 T19

φ(Data Sources) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
φ(Loc Data) 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
φ(Exec Mode) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
φ(Loc Pattern) 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
φ(Intr Pattern) 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
φ(Disc Pattern) 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
φ(Data Tab) 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0
φ(Up Data) 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0
φ(Cloud Str) 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
φ(Context Info) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
φ(Conn.) 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
φ(Loc Res) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
φ(Est Res) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Table 4. Backward incidence matrix.

Places T0 T1 T10 T11 T6 T5 T4 T12 T2 T7 T8 T3 T13 T14 T19

φ(Data Sources) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
φ(Loc Data) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
φ(Exec Mode) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
φ(Loc Pattern) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
φ(Intr Pattern) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
φ(Disc Pattern) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
φ(Data Tab) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
φ(Up Data) 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
φ(Cloud Str) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ(Context Info) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ(Conn.) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ(Loc Res) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ(Est Res) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

The results show that all places in the RedEdge are reachable when moving forward (see Table 3).
Similarly, all places, except φ(Cloud Str), are reachable in reverse order (see Table 4). The φ(Cloud Str) is
made irreversible to eliminate the loop in the data processing cycle.

BMC handles the state space explosion problem by executing a limited number of states. Therefore,
BMC is applied over the finite set of transitions (M) using a linear temporal logic (LTL) formula ( f )
and given the upper bound value “k”. BMC determines an execution path of length “k” that satisfies
the LTL formula. For BMC, first of all, a logic formula φk is constructed from M, f and k and verified
using the constraint solver. If an “ f ” is satisfied over a path of maximum length “k” in M_k, then φk
is said to be satisfiable. In existential BMC, it is very hard to find the upper bound for “k”; therefore,
the negated safety property is used for validation. The negation safety property determines the safety
of the mode as long as f is not satisfiable. The HLPN model was translated to logic formulas and
evaluated for its satisfiability. The tokens are distributed in different places in various markings on
each state of HLPN. The detailed theory of HLPN mapping according to the SMT context is presented
in [54] for interested readers.

In general, during safety (reachability) analysis, PIPE+ generated 3072 states and 38,592 arcs,
creating a space explosion problem when φ(Data_Sources) and φ(Exec Mode) are enabled with one
token on each place. The simulation results (see Table 5) show that all places are reachable, and it
satisfies the safety property. The minimum thresholds, where all places are reachable, are 36 firings
with five replications. Alternately, the maximum threshold is 10,000 firings with 15 replications.
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The simulation results with minimum and maximum thresholds are presented in terms of the average
number of tokens produced at each place and the acceptable margin of error during each execution
cycle. Consequently, we establish an argument that RedEdge is completely workable, and all places
are reachable using specified rules.

Table 5. Simulation results of the RedEdge HLPN model.

Places
Minimum Threshold Maximum Threshold

Average No. of Tokens 95% Confidence Average No. of Tokens 95% Confidence

φ(Data Sources) 3.5135 1.7770 334.8233 18.1603
φ(Loc Data) 2.9189 0.6936 354.3783 27.6568
φ(Exec Mode) 4.2703 0.6006 684.8284 38.9546
φ(Loc Pattern) 2.1892 1.2426 342.7440 20.0734
φ(Intr Pattern) 1.72973 1.15794 675.6431 41.8029
φ(Disc Pattern) 2.4054 1.1550 340.9338 20.8442
φ(Data Tab) 0.4595 2.18681 323.2102 31.7452
φ(Up Data) 1.0270 1.4271 332.9073 32.9875
φ(Cloud Str) 1.5405 0.4962 305.2618 28.0542
φ(Context Info) 0.9729 1.0296 320.1321 30.2847
φ(Conn.) 1.0270 0 1.0001 0
φ(Loc Res) 0.5405 0.7352 339.9139 31.5361
φ(Est Res) 0.3514 0.5164 327.8112 25.2031

6. Performance Evaluation of the Proposed Data Reduction Strategy

To validate and demonstrate the effectiveness of the RedEdge architecture and the related data
reduction strategy employed by the RedEdge architecture, we have developed and tested an application
based on the RedEdge architecture in a real-world application setting. In this section, we present
the outcomes of this experimentation in terms of the effectiveness of the big data reduction strategy
(including battery power consumption, memory consumption and latency). We compare our results
with raw data stream uploading and present the potential savings in battery power and memory
overhead that can be achieved by the RedEdge architecture.

6.1. Big Data Reduction in Participatory Sensing Application

In a smart city scenario, participatory sensing applications aid in collecting data streams
from citizens and sensing systems deployed on roads, railway tracks, shopping and parking areas
and countless other places in the cities. Let us consider an example of a citizen sensing application for
a smart city, whereby the city administration wants to improve the quality of leisure time that citizens
want to spend in public parks, sporting places and shopping malls. The city government asks the
citizens to share information about their physical activities and locations in order to improve public
facilities. Conventionally, the applications installed on citizens’ mobile phones collect the sensing
information (i.e., readings from accelerometers, GPS, nearer Wi-Fi, etc.) and transfer the raw data
streams to the cloud for analysis. We use this scenario in order to evaluate the RedEdge architecture.

6.2. System Development Platform and Real-World Experiment Settings

We selected multiple application development platforms in order to evaluate the performance of
the RedEdge architecture. For local data reduction components, we developed data acquisition and
adaptation, knowledge discovery, knowledge management and system management modules using
Android SDK and Java 8. For collaborative data reduction, we integrated the AllJoyn framework for
device discovery, P2P network formation and data offloading. However, the data reduction modules
were implemented using Android SDK and Java 8. For cloud-based data reduction, we developed
multi-threaded cloud services and deployed it in a cloud environment using Google’s compute engine.
We select three classifiers, namely J48, naive Bayes and random forest as the underlying knowledge
discovery techniques employed by the participatory sensing application.
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The experiments were performed in two phases. In the first phase, we recruited 12 graduate
students to collect data streams in order to develop the learning models. In the second phase, we
deployed the learning models in the mobile edge devices for activity predictions and input the raw
data streams in order to perform the evaluation of RedEdge. The performance evaluation of RedEdge
was made in terms of battery power consumption and memory utilization during raw data uploading
and data reduction using RedEdge.

6.3. Results of the Real-World Experiment

Mobile edge devices operate in resource-constrained environments; therefore, power consumption
and memory utilization during data reduction were the main considerations during the evaluation.
We integrated a software-based open source power profiling tool in RedEdge in order to measure
the power consumed by application components. Since the nature of streaming data in big data
systems varies according to the application requirements, we configured RedEdge accordingly.
The accelerometer and GPS receiver collect the data stream at a constant rate (i.e., 100 readings
per second for the accelerometer and a GPS reading after every 5 s). However, we generated different
sizes of data chunks between time interval of 5 s and 300 s so that we can measure the effect of both
volume and velocity on the performance of RedEdge.

Figure 6 shows the power consumption comparison of data uploading strategies. Initially, the raw
data streams were uploaded in mobile edge devices, whereby the average battery power consumption
for each data chunk remained around 16 mW (milliwatts). However, due to mobility constraints and
switching among different networks, sometimes the average power overhead on the mobile edge
device increased about 3 mW. The maximum power consumed during raw data uploading in mobile
edge devices remained 19 mW. Comparatively during raw data uploading in clouds, the mobile edge
device consumed less power, whereby the average consumption remained around 11 mW. However,
the RedEdge architecture improves the performance, whereby the cost of uploading knowledge
patterns remained around 1.33 mW on average. The experiment revealed that power consumption for
knowledge transfer was almost 12-times lower as compared with raw data transfer in mobile edge
devices and almost eight-times lower in the case of the comparison with raw data transfer in the cloud.

Although RedEdge minimized the power consumption for data transfer, there remains an energy
overhead of data processing. The results presented in Figure 7 reveals that RedEdge consumed more
power while processing data streams in mobile edge devices as compared with data processing using
mobile edge devices in ad hoc networks and clouds. The average battery power consumption during
data processing in the mobile edge device, the serving mobile edge device and the cloud remained
468 mW, 61 mW and 367 mW, respectively. However, the power consumption does not significantly
impact the performance of mobile edge devices. For example, for a 2000-mAh (milliamperes per hour)
battery operating with 3.7 volts, the mobile edge device can last for around 16 h in LA mode, 140 h in
CA mode and around 20 h in CLA mode. The battery time was calculated using Equation (9). Here, “P”
represents the power.

Time =
2000

(P/3.7)
(9)
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Figure 7. Power consumption overhead of RedEdge.

Figure 8 shows the memory consumption during raw data uploading and knowledge transfer
in mobile edge devices and clouds. The mobile edge devices consumed 29 MB and 27 MB of total
memory during raw data transfer in mobile edge devices and clouds, respectively. However, the
memory consumption lowered up to 15 MB during knowledge pattern transfer in the cloud. Although
we achieved 50% memory gain, RedEdge introduces an overhead of memory consumption for LA, CA
and CLA modes. Figure 9 shows the memory overhead of the RedEdge architecture. The results reveal
that RedEdge consumed on average 25 MB in LA mode, 27 MB in CA mode and 28 MB in CLA mode.
Interestingly, the memory consumption during data processing using RedEdge does not significantly
differ from that of raw data uploading in mobile edge devices and clouds. Therefore, the memory
consumption overhead of RedEdge does not degrade the performance of mobile edge devices.
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Figure 9. Memory overhead of RedEdge.

Conventionally, big data systems collect the data streams, perform data indexing and storing
operations inside clouds and perform data processing at lateral stages. The process from raw data
acquisition to uncovering knowledge patterns involves latency in big data applications. We calculated
the latency overhead caused by RedEdge (see Figure 10). The local data reduction in mobile edge
devices creates a delay of about 1200 milliseconds (ms). Alternatively, collaborative data reduction
introduces an average delay of 2393 ms (about 2.4 s), and remote data reduction brings a latency of
5675 ms (about 5.7 s).
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Figure 10. Latency for data reduction.

The aim of data reduction was achieved in this study. The experimental analysis reveals that
out of 4.32 GB of data, acquired and processed using RedEdge, the architecture reduced the raw data
stream to 315.98 MB of the knowledge data stream. In total, the reduced data stream accounts for
7.14% of the overall data, which shows the significance of the research. Although there seems to be
little battery power consumption (see Figure 7) and memory (see Figure 9) overhead for RedEdge, the
achieved benefits out-weigh the incurred cost. The RedEdge architecture introduces the following
benefits by enabling early big data reduction:

• The architecture enables controlling the velocity of incoming data streams in big data systems.
The data acquisition and adaptation module of RedEdge enable setting the speed of data collection
according to the application requirements and provide mechanisms to acquire data streams from
multiple data sources.

• The value of big data matters rather than blindly collecting data streams in cloud data centres.
The knowledge discovery module of RedEdge enables improving the quality of big data streams.
The module provides functionality to convert raw data streams into knowledge patterns, hence
improving the quality of collected data streams. For example, in our use case application,
the conversion of raw sensor readings into meaningful activities improves the quality of
data streams.

• Handling a voluminous amount of big data is quite challenging and requires laborious efforts in
order to perform data deduplication, data indexing, storage, retrieval and data cleaning operations
for big data analytics. The three-level data reduction facilitates reducing the sheer volume of big
data in order to ease the big data management operations. For example, our use-case application
reduced the data volume about 13 times as compared with raw data transmission in cloud
data centres.

• Conventionally, big data systems do not provide the local view of knowledge patterns near the
data sources [55]. The visualization and actuation module of RedEdge ensures local knowledge
availability in order to control the data sharing by mobile users.
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• The architecture reduced big data streams near the data sources, hence lowering the bandwidth
utilization cost. The cost is incurred in terms of data plans consumed by individual users, as well
as the bandwidth utilization during in-network data movement in cloud data centres.

• The data reduction near the data sources is highly beneficial in order to reduce the operational
cost of big data systems. Governments and enterprises do not need to purchase extra data storage
and data processing facilities. Alternatively, the cloud service providers can lower the operational
cost due to less storage and processing requirements.

7. Conclusions and Future Work

Data reduction near the data sources is the right alternate solution of conventional methods
of data reduction in big data systems. This research shows that data reduction inside mobile edge
devices lowers the communication and computational burden in existing IoT-cloud communication
models. To this end, the proposed RedEdge architecture contributes by utilizing mobile edge devices
as the primary data mining platforms and further reduces the data stream in clouds before big data
aggregation. The RedEdge architecture improves the big data systems in terms of volume, velocity and
value by reducing 92.68% of the data streams before big data storage. RedEdge indirectly improves the
big data management and in-network data movement operations at later stages of big data processing
models. In the future, we aim to propose energy- and memory-efficient load balancing methods in
order to utilize mobile edge devices as data reduction platforms to reduce the overall latency of sharing
big data streams in clouds. In addition, we understand that security and privacy are grave concerns
with such approaches [56,57]. Hence, one important direction of this proposed work is to develop
novel privacy and security mechanisms that can support distributed big data analytics in mobile edge
cloud computing environments.

Acknowledgments: The work presented in this article is supported by the Ministry of Education Malaysia (FRGS
FP051-2013A and UMRG RP001F-13ICT). In addition, the authors would like to acknowledge the Bright Spark
Unit of University of Malaya for providing incentive support.

Author Contributions: M.H.R. and P.P.J.conceived of and designed the experiments. S.u.R.M. and A.u.R.K
designed the mathematical model and simulations. M.H.R. and P.P.J. performed experiments and analysed the
data. M.H.R. and P.P.J. wrote the article and M.M.G. supervised the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th u0tility. Future Gener. Comput. Syst. 2009,
25, 599–616.

2. Rehman, M.H.; Chang, V.; Batool, A.; Wah, T.Y. Big data reduction framework for value creation in
sustainable enterprises. Int. J. Inf. Manag. 2016, 36, 917–928.

3. Shuja, J.; Gani, A.; Rehman, M.H.; Ahmed, E.; Madani, S.A.; Khan, M.K.; Ko, K. Towards native code
offloading based MCC frameworks for multimedia applications: A survey. J. Netw. Comput. Appl. 2016, 75,
335–354.

4. Siddiqa, A.; TargioHashem, I.A.; Yaqoob, I.; Marjani, M.; Shamshirband, S.; Gani, A.; Nasaruddin, F. A Survey
of big data management: Taxonomy and state-of-the-art. J. Netw. Comput. Appl. 2016, 71, 151–166.

5. Rehman, M.H.; Liew, C.S.; Abbas, A.; Jayaraman, P.P.; Wah, T.Y.; Khan, S.U. Big Data Reduction Methods:
A Survey. Data Sci. Eng. 2016, 1, 265–284.

6. Trovati, M. Reduced topologically real-world networks: A big-data approach. Int. J. Distrib. Syst. Technol.
2015, 6, 13–27.

7. Patty, J.W.; Penn, E.M. Analyzing big data: Social choice and measurement. PS Political Sci. Politics 2015,
48, 95–101.

8. Yang, C.; Zhang, X.; Zhong, C.; Liu, C.; Pei, J.; Ramamohanarao, K.; Chen, J. A spatiotemporal compression
based approach for efficient big data processing on cloud. J. Comput. Syst. Sci. 2014, 80, 1563–1583.



J. Sens. Actuator Netw. 2017, 6, 17 20 of 22

9. Wang, W.; Lu, D.; Zhou, X.; Zhang, B.; Mu, J. Statistical wavelet-based anomaly detection in big data with
compressive sensing. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 1–6.

10. Fu, Y.; Jiang, H.; Xiao, N. A scalable inline cluster deduplication framework for big data protection.
In Middleware 2012; Springer: New York, NY, USA, 2012; pp. 354–373.

11. Dong, W.; Douglis, F.; Li, K.; Patterson, R.H.; Reddy, S.; Shilane, P. Tradeoffs in Scalable Data Routing
for Deduplication Clusters. Available online: https://www.usenix.org/legacy/events/fast11/tech/full_
papers/Dong.pdf (accessed on 15 August 2017)

12. Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.
Genome Res. 2008, 18, 821–829.

13. Lin, M.S.; Chiu, C.Y.; Lee, Y.J.; Pao, H.K. Malicious URL filtering—A big data application. In Proceedings of
the IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 589–596.

14. Leung, C.K.S.; MacKinnon, R.K.; Jiang, F. Reducing the search space for big data mining for interesting
patterns from uncertain data. In Proceedings of the IEEE International Conference on Big Data, Washington,
DC, USA, 27–30 October 2014; pp. 315–322.

15. Jiang, P.; Winkley, J.; Zhao, C.; Munnoch, R.; Min, G.; Yang, L.T. An intelligent information forwarder for
healthcare big data systems with distributed wearable sensors. IEEE Syst. J. 2016, 10, 1147–1159.

16. Akhbar, F.; Chang, V.; Yao, Y.; Muñoz, V.M. Outlook on moving of computing services towards the data
sources. Int. J. Inf. Manag. 2016, 36, 645–652.

17. Li, C.S.; Darema, F.; Chang, V. Distributed behaviour model orchestration in cognitive Internet of Things
solution. Ent. Inf. Sys. 2017, doi:10.1080/17517575.2017.1355984.

18. Mital, M.; Chang, V.; Choudhary, P.; Pani, A.; Sun, Z. Adoption of cloud based Internet of Things in India:
A multiple theory perspective. Int. J. Inf. Manag. 2016, doi:10.1016/j.ijinfomgt.2016.02.011.

19. Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Hu, W.; Amos, B. Edge Analytics in the
Internet of Things. IEEE Pervasive Comput. 2015, 14, 24–31.

20. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the Internet of Things.
In Proceedings of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 13–17 August 2012;
pp. 13–16.

21. Drolia, U.; Martins, R.P.; Tan, J.; Chheda, A.; Sanghavi, M.; Gandhi, R.; Narasimhan, P. The Case for
Mobile Edge-Clouds. In Proceedings of the IEEE 10th International Conference on Ubiquitous Intelligence
and Computing and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC),
Vietri sul Mare, Italy, 18–21 December 2013; pp. 209–215.

22. Ha, K.; Satyanarayanan, M. OpenStack++ for Cloudlet Deployment. Available online: http://reports-
archive.adm.cs.cmu.edu/cs2015.html (accessed on 10 August 2017).

23. Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Sun, L. Fog Computing: Focusing on Mobile Users at the Edge. arXiv
2015, arXiv:1502.01815.

24. Rehman, M.H.; Liew, C.S.; Wah, T.Y. Frequent pattern mining in mobile devices: A feasibility study.
In Proceedings of the International Conference on Information Technology and Multimedia (ICIMU),
Putrajaya, Malaysia, 18–20 November 2014; pp. 351–356.

25. Rehman, M.H.; Batool, A.; Liew, C.S.; Teh, Y.W.; Khan, A.U.R. Execution Models for Mobile Data Analytics.
IT Prof. 2017, 19, 24–30.

26. Rehman, M.H.; Liew, C.S.; Wah, T.Y. UniMiner: Towards a unified framework for data mining.
In Proceedings of the 4th World Congress on Information and Communication Technologies (WICT),
Malacca, Malaysia, 8–10 December 2014; pp. 134–139.

27. Trovati, M.; Bessis, N. An influence assessment method based on co-occurrence for topologically reduced
big data sets. Soft Comput. 2016, 20, 2021–2030.

28. Trovati, M.; Asimakopoulou, E.; Bessis, N. An analytical tool to map big data to networks with reduced
topologies. In Proceedings of the International Conference on Intelligent Networking and Collaborative
Systems (INCoS), Salerno, Italy, 10–12 September 2014; pp. 411–414.

29. Jalali, B.; Asghari, M.H. The anamorphic stretch transform, putting the squeeze on big data.
Opt. Photonics News 2014, 25, 24–31.

30. Ackermann, K.; Angus, S.D. A resource efficient big data analysis method for the social sciences: The case of
global IP activity. Procedia Comput. Sci. 2014, 29, 2360–2369.

https://www.usenix.org/legacy/events/fast11/tech/full_papers/Dong.pdf
https://www.usenix.org/legacy/events/fast11/tech/full_papers/Dong.pdf
http://reports-archive.adm.cs.cmu.edu/cs2015.html
http://reports-archive.adm.cs.cmu.edu/cs2015.html


J. Sens. Actuator Netw. 2017, 6, 17 21 of 22

31. Zou, H.; Yu, Y.; Tang, W.; Chen, H.W.M. Flexanalytics: A flexible data analytics framework for big data
applications with I/O performance improvement. Big Data Res. 2014, 1, 4–13.

32. Xia, W.; Jiang, H.; Feng, D.; Hua, Y. SiLo: A Similarity-Locality based Near-Exact Deduplication Scheme with
Low RAM Overhead and High Throughput. In Proceedings of the USENIX Annual Technical Conference,
Portland, OR, USA, 15–17 June 2011.

33. Cheng, Y.; Jiang, P.; Peng, Y. Increasing big data front end processing efficiency via locality sensitive Bloom
filter for elderly healthcare. In Proceedings of the IEEE Symposium on Computational Intelligence in Big
Data (CIBD), Orlando, FL, USA, 9–12 December 2014; pp. 1–8.

34. Hillman, C.; Ahmad, Y.; Whitehorn, M.; Cobley, A. Near real-time processing of proteomics data using
Hadoop. Big Data 2014, 2, 44–49.

35. Sugumaran, R.; Burnett, J.; Blinkmann, A. Big 3d spatial data processing using cloud computing environment.
In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data,
Redondo Beach, CA, USA, 7–9 November 2012; pp. 20–22.

36. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. Appl. Stat. 1979, 28, 100–108.
37. Hoi, S.C.; Wang, J.; Zhao, P.; Jin, R. Online feature selection for mining big data. In Proceedings of the 1st

International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications, Beijing, China, 12–16 August 2012; pp. 93–100.

38. Qiu, J.; Zhang, B. Mammoth Data in the Cloud: Clustering Social Images. In Cloud Computer and Big Data;
IoS Press: Amsterdam, The Nederlands, 2013; pp. 231–246, doi:10.3233/9783-1-61499-322-3-231.

39. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52.
40. Cichocki, A. Era of big data processing: A new approach via tensor networks and tensor decompositions.

arXiv 2014, arXiv:1403.2048.
41. Azar, A.T.; Hassanien, A.E. Dimensionality reduction of medical big data using neural-fuzzy classifier.

Soft Comput. 2014, 19, 1115–1127.
42. Stateczny, A.; Wlodarczyk-Sielicka, M. Self-organizing artificial neural networks into hydrographic big

data reduction process. In Rough Sets and Intelligent Systems Paradigms; Springer: Berlin, Germany, 2014;
pp. 335–342.

43. Rágyanszki, A.; Gerlei, K.Z.; Surányi, A.; Kelemen, A.; Jensen, S.J.K.; Csizmadia, I.G.; Viskolcz, B. Big data
reduction by fitting mathematical functions: A search for appropriate functions to fit Ramachandran surfaces.
Chem. Phys. Lett. 2015, 625, 91–97.

44. Rehman, M.H.; Liew, C.S.; Iqbal, A.; Wah, T.Y.; Jayaraman, P.P. Opportunistic Computation Offloading in
Mobile Edge Cloud Computing Environments. In Proceedings of the 17th IEEE International Conference on
Mobile Data Management, Porto, Portugal, 13–17 June 2016.

45. Klas, G.I. Fog Computing and Mobile Edge Cloud Gain Momentum Open Fog Consortium, ETSI MEC and
Cloudlets. Available online: http://yucianga.info/wp-content/uploads/2015/11/15-11-22-Fog-computing-
and-mobile-edge-cloud-gain-momentum-%E2%80%93-Open-Fog-Consortium-ETSI-MEC-Cloudlets-v1.
pdf (accessed on 10 August 2017).

46. Lin, B.S.P.; Lin, F.J.; Tung, L.P. The Roles of 5G Mobile Broadband in the Development of IoT, Big Data,
Cloud and SDN. Commun. Netw. 2016, 8, 9.

47. Ferreira, D.; Dey, A.K.; Kostakos, V. Understanding human-smartphone concerns: A study of battery life.
In Pervasive Computing; Springer: Berlin, Germany, 2011; pp. 19–33.

48. Diaz, M. Petri Nets: Fundamental Models, Verification and Applications; John Wiley & Sons: Hoboken, NJ,
USA, 2013.

49. De Moura, L.; Bjørner, N. Satisfiability modulo theories: An appetizer. In Formal Methods: Foundations and
Applications; Springer: Berlin, Germany, 2009; pp. 23–36.

50. De Moura, L.; Bjorner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on
Tools and Algorithms for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April
2008; pp. 337–340.

51. Othman, M.; Ali, M.; Khan, A.N.; Madani, S.A.; Khan, A.U.R. Pirax: Framework for application piracy
control in mobile cloud environment. J. Supercomput. 2014, 68, 753–776.

52. Abid, S.; Othman, M.; Shah, N.; Ali, M.; Khan, A. 3D-RP: A DHT-based routing protocol for MANETs.
Comput. J. 2014, 58, 258–279.

http://yucianga.info/wp-content/uploads/2015/11/15-11-22-Fog-computing-and-mobile-edge-cloud-gain-momentum-%E2%80%93-Open-Fog-Consortium-ETSI-MEC-Cloudlets-v1.pdf
http://yucianga.info/wp-content/uploads/2015/11/15-11-22-Fog-computing-and-mobile-edge-cloud-gain-momentum-%E2%80%93-Open-Fog-Consortium-ETSI-MEC-Cloudlets-v1.pdf
http://yucianga.info/wp-content/uploads/2015/11/15-11-22-Fog-computing-and-mobile-edge-cloud-gain-momentum-%E2%80%93-Open-Fog-Consortium-ETSI-MEC-Cloudlets-v1.pdf


J. Sens. Actuator Netw. 2017, 6, 17 22 of 22

53. Bonet, P.; Lladó, C.M.; Puijaner, R.; Knottenbelt, W.J. PIPE v2.5: A Petri Net Tool for Performance Modelling.
Available online: http://pubs-dev.doc.ic.ac.uk/pipe-clei/pipe-clei.pdf (accessed on 15 August 2017).

54. Liu, S.; Zeng, R.; Sun, Z.; He, X. Bounded Model Checking High Level Petri Nets in PIPE+ Verifier. In Formal
Methods and Software Engineering; Springer: Berlin, Germany, 2014; pp. 348–363.

55. Rehman, M.H.U.; Sun, L.C.; Wah, T.Y.; Khan, M.K. Towards next-generation heterogeneous mobile data
stream mining applications: Opportunities, challenges, and future research directions. J. Netw. Comput. Appl.
2017, 79, 1–24.

56. Daghighi, B.; Kiah, M.L.M.; Shamshirband, S.; Rehman, M.H.U. Toward secure group communication in
wireless mobile environments: Issues, solutions, and challenges. J. Netw. Comput. Appl. 2015, 50, 1–14.

57. Daghighi, B.; Kiah, M.L.M.; Iqbal, S.; Rehman, M.H.; Martin, K. Host mobility key management in dynamic
secure group communication. Wirel. Netw. 2017, doi:10.1007/s11276-017-1511-4.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://pubs-dev.doc.ic.ac.uk/pipe-clei/pipe-clei.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Case for a Multi-Layer Far-Edge Computing Architecture for Big Data Reduction
	RedEdge: An Architecture for Big Data Processing in MECC Environments
	Components and Operations for LA
	Data Acquisition and Data Adaptation
	Knowledge Discovery
	Knowledge Management
	System Management
	Visualization and Actuation

	Components and Operations for CA
	Discovering Mobile Edge Devices and Communication Interfaces
	Peer to Peer Network Formation
	Data Offloading in Mobile Edge Devices
	Knowledge Discovery and Pattern Synchronization

	Components and Operations for CLA

	Formal Modelling, Analysis and Verification
	Performance Evaluation of the Proposed Data Reduction Strategy
	Big Data Reduction in Participatory Sensing Application
	System Development Platform and Real-World Experiment Settings
	Results of the Real-World Experiment

	Conclusions and Future Work

