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Abstract: One of the research areas in radio-frequency identification (RFID) systems is the reduction
of the identification processing time for a number of tags within an RFID reader recognition region.
In the last decade, many research results regarding anticollision algorithms have been presented in
the literature. Most of them are tree-based protocols. However, it is important for tree-based protocols
to enhance stability and system throughput, since they may face long identification delays when the
network density is high. In this study, we present a highly efficient predetection tree-based algorithm
to achieve more efficient tag identification performance. Our proposed mechanism can effectively
reduce both collisions and idle cycles by exploiting the predetection technique and adjustable slot
size mechanism. The simulation results show that the proposed mechanism can effectively improve
tag identification time performance by around 29.9% to 64.8% over previous techniques. Further,
the number of query cycles, number of collisions, and total number of slots are reduced compared to
previous predetection-based protocols. It is also observed that the proposed scheme can have good
performance in large-scale RFID systems.
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1. Introduction

Radio-frequency identification (RFID) is an automatic technology that is widely used in modern
industrial practical applications, such as inventory management [1], object identification and tracking,
supply-chain management, and wireless sensor networks [2,3]. It also plays an important role in
realizing the Internet of Things concept [4]. Traditional identification systems, such as barcodes and
smart-card systems, are inefficient at automatic identification and data collection due to their read
rate, visibility, and contact limitations. RFID systems, on the other hand, provide fast and reliable
communication without the requirement of physical visibility or contact between readers and tags.
Based on these advantageous features, today’s RFID technology goes beyond identification of objects
and is being used for localization [5,6] and sensing applications [7]. In addition, more and more
battery-less tags can be augmented with sensors, so that tags can send not only their unique IDs,
but also sensed data to readers [8].

One of the areas of research in this field is the reduction of the identification processing time
for a given number of tags within an RFID reader recognition zone. To achieve the goal of fast tag
identification, anticollision protocols are required. An anticollision protocol aims to reduce collisions
during the tag identification process. The collisions can be categorized into two types: reader collisions
and tag collisions. When two or more neighboring readers inquire a tag simultaneously, reader
collisions occur. As a result, the tag cannot respond with its ID to the appropriate inquiring readers.
The reader collision problem can be solved easily by detecting the collisions and communicating with
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other readers. On the other hand, tag collisions occur when more than one tag tries to respond to a
reader concurrently, which causes the reader to identify no tag. In RFID systems with low-cost passive
tags, the only thing for a tag to do is to respond to the reader inquiry. Therefore, tag anticollision
protocols are necessary to achieve the efficiency of identifying tag IDs in RFID systems.

Many research results for reducing identification collisions have been presented in the literature.
These tag identification mechanisms can be classified into two main categories, the Aloha-based
anticollision scheme [9–11] and the tree-based scheme [12–23]. In the Aloha-based scheme, the RFID
reader creates a frame with several time slots, and then adds the frame length to the inquiry message
sent to the tags in its recognition region. Tags respond to the reader’s inquiry by choosing a random
time slot. Tags that respond simultaneously in the same time slot cannot be recognized by the reader
because of the collisions. Thus, the reader needs to send inquiries repeatedly until all tags are identified,
which makes the Aloha-based scheme suffer long processing times in identifying large-scale RFID
systems [20].

In a tree-based scheme, such as the query tree (QT) algorithm [12,13], Improved Bit-by-bit
Binary-Tree (IBBT) [14], binary tree splitting protocol [15], tree working algorithm [16,17], and
Intelligent Query Tree (IQT) [18], RFID readers use a scheme similar to a binary search algorithm to
recognize the tags. Once the tags collide, the readers split the collided tags into two subgroups and
repeat the process until they recognize the IDs of tags without collisions. Therefore, readers using the
tree-based scheme are able to identify all tags. Choi et al. [14] proposed a fast anticollision algorithm
called the Improved Bit-by-bit Binary-Tree algorithm (IBBT) for ubiquitous identification systems
and evaluated its performance along with three older schemes. The reader in the IBBT algorithm
requests all bits of tag IDs. After the reader receives responses from tags, it saves the results of each
receiving bit. Therefore, the reader knows which bits have collided, and it sequentially sends the
request only for the collided bits to tags in a bit-by-bit fashion. Myung et al. [13] proposed the adaptive
memoryless tag anticollision protocol, which is an extended scheme based on the query tree protocol.
The reader in this proposed approach uses not only a queue to maintain prefixes, but also an additional
candidate queue for maintaining both prefixes of identified nodes and no-response nodes of the last
identification process. As a result, when the number of tags is increased, the collision period can
be shortened. Sahoo et al. [18] proposed an intelligent query tree algorithm (IQT), which modified
the query tree protocol for scenarios where the tags have some common prefix. In [19], Zhou et al.
considered scenarios where multiple readers can be deployed in a region to improve the coverage.
In such environments, multiple readers can perform tag reading concurrently, and collisions may
occur when multiple readers are used within a close vicinity. They discussed the problem of slotted
scheduled access of RFID tags and developed centralized algorithms in a slotted time model to read
all the tags. In addition to the proof of NP-hardness, they also proposed approximation algorithms for
single-channel cases and heuristic algorithms for multiple-channel cases.

Unlike Aloha-based protocols that cause the tag starvation problems, tree-based protocols deliver
100% guaranteed read rates, but the identification delay is relatively long due to the large amounts of
collisions and idle time. Therefore, collision resolution and idle time elimination become the major
issues in tree-based anticollision protocols. Jia et al. [24] proposed a collision tree (CT) algorithm,
which is based on QT, aiming to eliminate collisions and idle time. The proposed algorithm both
generates prefixes and splits tags according to the first collide bit, which eliminates the idle slots
effectively. Lai et al. [25] proposed an optimal binary tracking tree protocol that employs a bit
estimation algorithm to split tags into small sets and then uses a binary tracking tree method to quickly
identify tags. Yan et al. [26] proposed a hybrid anticollision algorithm, called anticollision protocol
based on improved collision detection, to reduce tag collisions. Their approach employs the idea of
bit-tracking technology and dual-prefix matching into a collision arbitration mechanism in the RFID
system. Landaluce et al. [27] presented a bit window procedure to manage the length of tags’ bit
streams in order to reduce the energy consumption in collisions. They modified both QT and CT
protocols by adding the bit window procedure to produce the query window tree protocol and the
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collision window tree protocol. However, these algorithms have complicated implementation and
increase identification delay.

Ryu et al. [20] proposed a hyper-hybrid query tree protocol (HQT), aiming to reduce identification
delays. The proposed protocol reduces identification delay by eliminating collisions and idle time.
To reduce collisions, a quarternary query tree is used instead of a binary tree. In the quaternary query
tree mechanism, the prefix string of a collided query will be expanded by two bits instead of one
bit in the QT protocol. As a result, the collision cycles will be reduced substantially, but idle time
will increase as a side effect. To eliminate idle time, they introduced a slotted back-off mechanism to
reduce unnecessary query commands. When a tag responds to a reader, its back-off time is set from
the two bits following the prefix of tag ID to the query string sent by the reader. When a collision
occurs, the reader can partially detect to which subtrees the tags belong, and unnecessary queries
can potentially be reduced. However, the slotted back-off mechanism in the HQT protocol cannot
check the idle cycles between busy slots. To solve the problem, a hybrid hyper query tree algorithm
(H2QT) was proposed by Kim et al. [21]. The protocol aims to reduce the idle cycle by using a different
slotted back-off mechanism. When a tag responds to a reader, its back-off time is determined from the
three bits that follow the prefix of tag ID to the query string. Unlike the HQT protocol, the back-off
mechanism in the H2QT protocol counts the number of 1’s in the three bits and uses this number to
select a response slot in the tag response window. As a result, idle cycles can be reduced substantially.
However, collision cycles cannot be reduced by using the back-off mechanism in the H2QT protocol
and the identification delay is still long.

In a preliminary work [22], we addressed the key design aspect of using a predetection-based
technique called the Pre-Detection Broadcasting Query Tree (PDBQT) protocol, to eliminate those
unnecessary idle cycles and avoid collision cycles. The reader in the PDBQT protocol allocates some
tiny predetection slots for tags to respond in order to reveal the distribution of tags. Then, by knowing
the distribution of tags, only existing tags will respond in the corresponding response time slots of the
following tag response cycle. As a result, no idle slots are wasted and collision slots can be reduced.

In this paper, we extend the previous work by investigating the optimal assignment of tag response
time slots in the predetection scheme after collecting the tag distribution information. The proposed
identification scheme will (1) reduce the communication overhead between reader and tags during the
predetection process, (2) reduce the tag response time as much as possible, and (3) complete the tag
identification process as quickly as possible.

Our contributions may be summarized as follows:

• This paper introduces a tag identification problem for RFID systems, that readers collect tags’ IDs
with the goal of minimizing transmission completion time. We exploit the predetection scheme to
reveal the distribution of tags’ IDs, and no idle time slots are wasted.

• Then, by knowing the distribution of tags’ IDs, the reader can allocate the appropriate time slots
and broadcast the arranged information to tags with minimum communication overhead.

• Simulation results validate that its performance is better than previously proposed
predetection solutions.

The rest of this paper is organized as follows: in Section 2, we describe the idea and function of
the predetection scheme as the preliminary work of this study. Section 3 introduces our proposed
predetection-based tag identification technique. In Section 4, we evaluate the performance of our
proposed scheme, the Efficient Pre-Detection–based Query Tree (EPDQT) algorithm. Performance
comparisons and analyses are also given. Finally, we conclude the paper in Section 5.

2. Predetection-Based Scheme

The main idea of our anticollision algorithm is to understand the distribution of tag IDs as much
as possible. When the distribution is realized, the reader will send this information to tags so that each
tag is able to realize the appropriate time slot to respond in the response cycle. As a result, different
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tags will then respond to the reader in different time slots, which can reduce collisions substantially.
In addition, no empty slot occurs, since the reader allocates optimal time slots for tags to respond.

To do so, we propose a predetection-based scheme to reveal the distributions of tag IDs. Recall that
all passive tags follow the request-respond mode, since they cannot initiate communication between
themselves and readers. Therefore, the tag identification process can be viewed as several iterations of
two operations: the reader request and the tag response. In our predetection scheme, after the reader
request operation (i.e., the reader sends the request command or prefix string to tags), the operations
in the tag response cycle are composed of three phases: (1) the predetection phase, (2) the broadcasting
phase, and (3) the tag response phase, as shown in Figure 1. The purposes or functions of these three
phases can be described as follows:

• Predetection phase: The purpose of the predetection phase is to collect information about tags to
understand the overall distribution of tags. To do so, the reader allocates many tiny time slots,
and each tiny slot will be responsible for collecting tag information for a particular group. These
tiny slots are allocated for collecting tag’s information, instead of tag’s ID. Once the time slot has
information available, reader can understand the distribution of tags for that particular group,
and this distribution information will help the reader for determining if the time slot is needed to
receive tag’s ID during the tag response phase. There are 2n tiny time slots numbered from 0 to 2n

− 1 and each time slot can be represented as an n-bit binary string. Once a tag matches the prefix
string, it will respond a message to the tiny slot that has the same label as next n-bit of tag’s ID.
The message of tags to respond depends on the width of each tiny time slot. In general, the width
of these slots is smaller than the length of the tag’s ID, in order to reduce the communication
overhead. After receiving responses from tags, the reader can recognize the status of each tiny
slot: idle, success, or collision. When no tag responds, it leads to an idle state. When only one
tag responds, it is recognized as a success state. When more than one tag tries to respond to the
reader’s query, the reader can recognize it as a collision state.

• Broadcasting phase: After the predetection phase, the reader can encode the state of each time into
bit 0 or 1. The success state is encoded into bit 1, and both idle and collision states are encoded
into bit 0. Then, in the broadcasting phase, the reader sends the binary string representing the
status of each time slot to tags, so that those tags with IDs that match the prefixes can realize how
many time slots are allocated and which are available to respond with their IDs.

• Tag response phase: After receiving the broadcasted binary string representing the status of each
tiny slot in the predetection phase, each tag is able to realize the appropriate time slot to respond
with its ID. Note that each bit in the received 2n-bit binary string represents the status of the
corresponding tiny slot in the predetection phase. If it is bit 1, then only one tag is detected and its
ID can be successfully identified by the reader. For this purpose, the reader will allocate a long
time slot to receive tags’ IDs. On the other hand, if it is bit 0, then an idle cycle or collision cycle is
detected. The reader will not allocate any time slot to receive IDs for both cases. As a result, the tag
responses can be arranged into a sequence of time slots and collisions or idle slots can be avoided.
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In our preliminary work [22], we proposed an anticollision scheme called the Pre-Detection
Broadcasting Query Tree (PDBQT) protocol, which is based on the aforementioned predetection
scheme. In the PDBQT protocol, the reader will allocate four tiny slots, say 00, 01, 10, and 11, in the
predetection phase for tags to respond. Then, by using the quaternary query tree mechanism, each
tag that matches the reader’s query prefix string responds on the time slot that is determined from
the next two bits of its tag ID. In order to reduce communication overhead, only a four-bit random
number is responded to by a tag instead of the whole tag ID. If there is no tag response in a time slot,
the reader can realize that it is an idle slot, and no time slot will be allocated in the tag response phase.
If the receiving four bits can be identified correctly, the reader can realize that the time slot is a success
slot, and the corresponding time slot will be allocated in the tag response phase to receive the whole
tag ID. If more than one tag responds, since each tag responds to a four-bit random number, a collision
slot can be identified if different random numbers are transmitted to the reader. Since the probability
of transmitting same random number by different tags is low, the reader can identify a collision with
high accuracy when multiple tags respond. As a result, there is a high possibility that the reader can
realize the exact distribution of tag IDs.

As mentioned, in the predetection phase, those tags that match the prefixes respond on the time
slot that is determined from the next two bits, which follow the prefixes of their IDs identical to the
query string. The reader uses a four-bit binary string representation to indicate the status of time slots
and broadcasts the status to tags. After broadcasting, those tags with IDs identical to the query string
tag can realize the exact time slot to respond by checking the corresponding bit of the received four-bit
binary string. The tag can respond with its ID in the upcoming tag response phase if the corresponding
bit in the broadcasting four-bit string is 1. Otherwise, no tag response occurs. For those tags that can
respond in the tag-response phase, the exact time slot to respond can also be obtained by counting
the number of 1’s in the broadcasting four-bit string from the start bit to the corresponding bit that
represents the next two bits to the prefixes of their IDs. Consider the example in Figure 2. The tag
responding on the 11 time slot in the predetection phase is aware that its ID can be responded to by
the reader only on the third time slot, since the received four-bit broadcasted string is 1101, and it is
the third 1 from the beginning bit to the corresponding bit.
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3. Proposed Anticollision Scheme

Recall that the previous proposed PDBQT protocol can eliminate all idle cycles. However, it is
possible for different tags to respond to the same four-bit random numbers in the same time slot.
In such a situation, the collision will be identified in the tag response phase instead of the predetection
phase. As a result, more time slots will be needed to identify those collision tags and the time needed
to identify all tags will be prolonged. In this paper, we propose a highly efficient algorithm, called the
Efficient Pre-Detection based Query Tree (EPDQT) algorithm, to improve the performance in terms of
increasing system throughput and minimizing identification delay.
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3.1. System Model of EDPQT Scheme

In this section, we will describe the system model of our proposed EDPQT scheme. Suppose there
are t tags in the reader field and each tag has the same length of m-bit ID, which can be denoted as a
binary string b1b2...bm, where each bi is either 0 or 1. Since our scheme is based on the predetection
mechanism, the tag response cycle is composed of three phases: predetection phase, broadcasting
phase, and tag response phase, as mentioned above. In the predetection phase, the number of time
slots depends on a parameter, say n, which is varied and can be defined by users when using this
algorithm. After a reader sends an inquiring p-bit string (prefix), 0 ≤ p ≤ m, to tags, it allocates 2n

time slots for tags to respond. Then, tags located within the reader’s close vicinity respond to the
reader if the inquiring bits are the same as the first p bits of tag IDs. When a tag responds, it selects
one of 2n time slots to respond, depending on the n bits following the first p bits of its tag ID, that
is, bp+1bp+2...bp+n. Thus, the time slot represents the value of n bits. After determining the time slot
to respond, the tag sends the (n + 1)th bit following the first p bits of its tag ID, that is, bp+n+1, to the
reader. For example, if n = 2 and the tag ID is 010110, then after the reader sends a two-bit prefix string,
say 01, the tag will respond with its fifth bit, which is 1, on the 01 time slot in the predetection phase,
since the following two bits after the first two bits is 01. This means that in our algorithm, there is
only one bit for the tag to respond in the predetection phase. Furthermore, in the tag response phase,
those successfully recognized tags will send the remaining IDs, that is, bp+n+2...bm, to the reader. As a
result, communication overhead can be reduced substantially. Figure 3 shows the system model of the
interaction between the reader and tags in our proposed EPDQT scheme.
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After the predetection phase is completed, the distribution of tags can be realized by collecting
the status of each time slot in the predetection phase. The status of each time slot can be categorized as
one of four states: idle, collision, 0-success, or 1-success. The idle state indicates that no tag matches with
the prefixes. The collision state occurs when more than one tag matches with the prefixes. Then it is
necessary to resolve the collisions in the upcoming query cycles. The 0-success and 1-success states
indicate that the reader receives only 0 or 1, respectively, in the predetection phase. It should be noted
that the 0-success state or 1-success state may occur when only one tag is matched or more than one
tag is matched but returns the same bit string. The latter case will cause a collision, as many tags
return their IDs on the same time slot in the tag response phase. As a result, the reader needs more
cycles to identify those collided tags. It also should be noted that once the collision state has been
detected, either in the predetection phase or in the tag response phase, the prefix string, along with
the corresponding time slot string, will be added to a waiting queue for further inquiry by the reader.
This means that the whole tag identification process will be repeated until the waiting queue is empty.
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As the states of all time slots in the predetection phase are collected, each state is encoded into a
two-bit pattern. The idle, 1-success, 0-success, and collision states are represented as 00, 01, 10, and
11 bit patterns, respectively. Then, in the broadcasting phase, the reader broadcasts the whole bit
patterns of all time slots in the predetection phase. Since there are 2n slots allocated in the predetection
phase and each slot can be encoded into a two-bit pattern, there will be a total 2n+1-bit binary string
broadcasted by the reader. Each bit in the broadcasting binary string indicates whether a time slot
is needed in the tag response phase. The time slots needed in the tag response phase can also be
represented as an (n + 1)-bit binary string. Thus, for n = 1, there may be four time slots, which can be
represented as 00, 01, 10, and 11, in the tag response phase, and for n = 2, we may have eight time slots,
denoted as 000, 001, . . . , 111. However, not every time slot will exist in the tag response phase. In our
scheme, the reader will allocate the time slots for those bits in the broadcasting binary string that have
1’s. No time slot is needed for those 0’s. For example, the reader will allocate three time slots during
the tag response phase, namely 010, 100, and 111, if the broadcasting binary string is 00101001.

As the tags receive the broadcasting 2n+1-bit string, each tag will check the next (n + 1)-bit after the
first p-bit of its ID to see if the corresponding bit in the broadcasted binary string is 1 or 0. The tag will
respond during the tag response phase only if the corresponding bit is 1. Furthermore, the tag can also
be aware of the exact time slot to respond by counting the number of 1’s in the received broadcasting
string from the start bit to the corresponding bit. Again, if n = 2, tag ID is 01011010, and the prefix
string is 01, then after receiving the broadcasted binary string 00101001, the tag will check the next
three-bit, which is 011, after the first 01 bits of its ID to see if the corresponding bit in the broadcasted
binary string is 1 or 0.

Furthermore, to accelerate the identification, we propose different procedures for some special
cases where the length of a prefix query string approaches the length of tag IDs. These cases will be
explained in detail in the following section.

3.2. Special Cases of the EPDQT Scheme

In our scheme, as the number of iterations grows, the length of the prefix query string also
grows. This means that the value of p will increase as the identification process keeps running.
In such scenarios, special procedures are needed to speed up the identification process when p is
approaching m. Based on our observations, there are three possible special cases that can occur during
the identification process, which can be described as follows:

• p + n = m − 1: In this case, after the predetection phase, there is no bit left for each tag to
respond in the tag response phase. Thus, the reader can immediately identify the tag IDs after the
predetection phase by realizing the status of each time slot in the predetection phase. Assume that
the prefix string is b1b2...bp and the binary string of the corresponding time slot in the predetection
phase is bp+1bp+2...bp+n. Then, when the reader realizes the status of a time slot as a 0-success
or 1-success state, it can immediately identify a tag with ID as b1...bpbp+1...bp+n followed by bit
0 or bit 1, respectively. For the collision state, the reader can also identify two tags with IDs
b1...bpbp+1...bp+n0 and b1...bpbp+1...bp+n1.

• p + n ≥ m: In this case, the reader will change the value of n to m − p − 1 before sending the
prefix string. Then, the reader will follow the procedure described in the previous case, since now
p + n = m − 1.

• p + n = m − 2: In this case, there is only one bit left for each tag to respond in the tag response phase.
The reader can identify the tag IDs by verifying the results of each slot in the tag response phase.
Note that there are three possible results: idle, success, and collision. For the collision case, the reader
can immediately identify two tags with IDs b1...bpbp+1...bp+nbp+n+10 and b1...bpbp+1...bp+nbp+n+11.
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3.3. An Example of the EPDQT Scheme

To facilitate understanding of the EPDQT algorithm, we show below an example of the
identification procedure of our proposed protocol. We assume that there are eight tags with eight-bit
unique IDs: tag A (with ID 00101010), tag B (with ID 00110101), tag C (with ID 00111011), tag D
(with ID 10011100), tag E (with ID 11010001), tag F (with ID 11010100), tag G (with ID 11011001),
and tag H (with ID 11011010). The whole process is also shown in Figure 4. The iterations of the
identification process using the EPDQT protocol with n = 2 are described as follows:

Iteration 1: First of all, the waiting queue is empty and the reader sends the empty-prefix to the
tags and allocates four time slots for the predetection phase. All tags respond to this empty-prefix
request command. In this case, tags A, B, and C respond on the 00 time slot and send bit 1 to the
reader. Tag D responds on the 10 time slot with bit 0. Tags E, F, G, and H respond on the 11 time slot,
both with bit 0, to the reader. After receiving the responses from tags, the reader can realize the status
of four time slots in the predetection phase as 1-success in the 00 slot, idle in the 01 slot, 0-success in the
10 slot, and 0-success in the 11 slot. Thus, the broadcasting string representing the status of the time
slots in the predetection phase is encoded as 01001010. This indicates that there will be three time slots,
namely 001, 100, and 110, allocated in the tag response phase. After receiving the broadcasting string,
tags A, B, and C will respond with 01010, 10101, and 11011, respectively, to the reader on time slot 001.
As a result, the reader detects a collision and 001 will be added to the waiting queue for further query.
Furthermore, tag D responds with 11100 on slot 100, which can be successfully identified by the reader.
Tags E, F, G, and H will all respond on time slot 110 with 10001, 10101, 11001, and 11010, respectively.
Then a collision is detected and 110 will be added to the waiting queue. Figure 4a shows the situation
that occurs in this iteration.
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Iteration 2: The reader takes the prefix string 001 out of the queue and sends it to tags. This time,
only tags A, B, and C will respond in the predetection phase, since tag D is identified and tags E, F,
G, and H cannot match with the prefix string, as shown in Figure 4b. In this case, tag A responds on
the 01 time slot with bit 0, tag B responds on the 10 time slot with bit 1, and tag C responds on the
11 time slot with bit 0. Then the reader realizes the status of slots in the predetection phase as idle in
the 00 slot, 0-success in the 01 slot, 1-success in the 10 slot, and 0-success in the 11 slot. The reader then
broadcasts the status string 00100110 to tags, which indicates that there are three slots, namely 010,
101, and 110, allocated in the tag response phase. After receiving the broadcasting string, tags A, B,
and C will respond with 10, 10, and 11 to the reader on time slots 010, 101, and 110, respectively. As a
result, the reader can successfully identify all of them.

Iteration 3: The reader takes the prefix string 110 out of the queue and sends it to tags. This time,
tags E and F will respond in the predetection phase on the 10 time slot with 0 and 1, respectively, and
tags G and H will respond on the 11 time slot with bit 0, as shown in Figure 4c. In this case, the reader
realizes the status of slots as idle state in the 00 slot, 0-success in the 01 slot, 1-success in the 10 slot, and
0-success in the 11 slot. The reader then broadcasts the status string 00100110 to tags, which indicates
that there are three slots, namely 010, 101, and 110, allocated in the tag response phase. After receiving
the broadcasting string, tag E will respond 01 on time slot 100, tag F will respond 00 on time slot
101, and tags G and H will respond 01 and 10, respectively, on time slot 110. As a result, the reader
can successfully identify tags E and F. However, tags G and H cannot be identified, since a collision
occurred on time slot 110. Therefore, the reader will add the binary string 110110 to the waiting queue
and execute the next iteration.

Iteration 4: The reader takes the prefix string 110110 out of the queue for further query. At this
moment, the length p of the prefix string is 6, which satisfies the condition of the special case as
mentioned above; that is, p + n = m. Therefore, the reader will change the value of n to 1 and send
the prefix string and n to tags. This means that, in the predetection phase, only two time slots will
be allocated for tags to respond. In this case, tag G will respond on time slot 0 with bit 1 and tag H
will respond on time slot 1 with bit 0. Since tags G and H are responding with their last bit of ID to
the reader in the predetection phase, the reader can identify their IDs according to the status of their
corresponding time slot. In this case, both time slots for tags G and H are recognized as success states.
Thus, both tags can be identified immediately and no tag response phase is needed. Figure 4d shows
the situation.

4. Performance Evaluation

To evaluate the performance of our proposed mechanism, we implemented the EPDQT scheme
with three different settings, n = 2, n = 3, and n = 4, which are indicated as EPDQT-2, EPDQT-3, and
EPDQT-4, respectively, along with the H2QT and PDBQT algorithms. We conducted a set of simulation
experiments for the proposed algorithms. All experiments were performed on a computer equipped
with a 3.0 GHz central processing unit and 4 GB memory in C# on .NET platform. Every experiment
was repeated 100 times, and the recorded data was averaged over those runs into the final results.
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According to the EPCglobal C1 G2 standard [28], the simulation environment is as follows:
we consider an RFID system that has one reader and t tags within a reading range where t = 100,
500,..., 4000. The IDs of all tags are 96 bits long. We also consider two different distributions of tag IDs,
uniform random distribution and sequential distribution. The tag IDs in sequential distribution are
grouped and consecutive. The data rate of channels is set to be 128 kbps. For convenience, we consider
a noise-free channel between reader and tags and ignore the propagation delay of signal, since all the
aforementioned algorithms would be impacted equally. The parameter settings in our simulations
are listed in Table 1. More practically, we formulate the time needed for reader query command,
predetection phase, broadcasting phase, and tag response phase in different protocols, as shown in
Table 2.

Table 1. Parameter settings in simulations.

Parameter Value Meaning

t 100, 500, 1000, ..., 4000 Number of tags
Luid 96 bits Length of tag ID
Lq 128 bits Length of query command
Lb 22 bits Length of broadcast command

Lres Max. 96 bits Length of returned ID from tags
Rcom 128 kbps Data rate between reader and tags
Tbit 7.8125 µs 1-bit transmission time, i.e., 1/Rcom
Trt 20 µs Waiting time from reader transmission to tag response
Ttr 20 µs Waiting time from tag response to reader transmission

Table 2. Parameters used in simulations.

Protocol Reader Query Predetection Phase Broadcasting Phase Tag Response Phase

H2QT Lq × Tbit - - Trt + (Luid × Tbit) × 4
PDBQT Lq × Tbit Trt + 16 × Tbit Ttr + (Lb + 4) × Tbit Trt + (Lres × Tbit) × N1

1

EPDQT-2 Lq × Tbit Trt + 4 × Tbit Ttr + (Lb + 8) × Tbit Trt + (Lres × Tbit) × N2
1

EPDQT-3 Lq × Tbit Trt + 8 × Tbit Ttr + (Lb + 16) × Tbit Trt + (Lres × Tbit) × N3
1

EPDQT-4 Lq × Tbit Trt + 16 × Tbit Ttr + (Lb + 32) × Tbit Trt + (Lres × Tbit) × N4
1

1 N1, N2, N3, and N4 indicate the numbers of slots in the tag response phase in protocols PDBQT, EPDQT-2,
EPDQT-3, and EPDQT-4, respectively.

Our simulations focus on determining the performance for the impact of the number of tags
in terms of the number of queries, number of total slots, delay time, and system efficiency. System
efficiency is measured by two different perspectives: in terms of slots and time. In terms of slots,
system efficiency is measured as SEs = Sid/Stot, where Sid is the amount of identification slots, which is
equal to the number of tags, and Stot is the total number of slots. In terms of time, system efficiency
is measured as SEt = Tid/Ttot, where Tid is the time taken by identification slots and Ttot is the total
execution time.

4.1. Impact of the Number of Tags: Uniform Distribution

4.1.1. Number of Queries vs. Number of Tags

This experiment evaluates the effect that the number of tags has on the performance of number
of queries needed by the reader to complete the tag identification of the H2QT, PDBQT, EPDQT-2,
EPDQT-3, and EPDQT-4 approaches. The results are shown in Figure 5. In this graph, we can see that
as the number of tags increases, the number of queries of each algorithm increases linearly. This is
obvious, because the number of queries is proportional to the number of tags. Furthermore, the
number of queries is also dependent on the number of collisions that occurred during the identification
process. Therefore, as the number of tags increases, the number of collisions increases proportionally,
which implies that the number of queries increases as well. However, our proposed EPDQT schemes
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require fewer queries compared with other schemes. For example, when t = 4000, the number of
queries needed by the reader in the H2QT, PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 protocols is
3539, 2883, 2540, 2145, and 2018, respectively. Thus, our proposed EPDQT schemes perform around
29% to 43% better than the H2QT scheme. This is because the EPDQT protocols generate fewer collision
slots. It can also be seen that the number of queries in EPDQT-4 is around 19% less than in EPDQT-2.
This shows that for the EPDQT schemes, the number of queries decreases as the parameter increases,
since more time slots are allocated in the predetection phase to identify more tags.
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4.1.2. Number of Total Slots vs. Number of Tags

This experiment examines the effect that the number of tags has on the number of total slots
generated by the reader to complete tag identification of the H2QT, PDBQT, EPDQT-2, EPDQT-3,
and EPDQT-4 approaches. In this experiment, we ignore the tiny slots in the predetection phase
and take only the number of slots that occurred in the tag response phase into account, since it will
take more time to finish the process compared to the time spent in the predetection phase. The slot
comparison results are given in Figure 6.
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In general, Figure 6 shows that H2QT has the most total slots. That is because H2QT allocates
four slots to split tags in each query cycle. Many idle or collision slots will not be reduced. However,
in our proposed EPDQT and PDBQT protocols, the reader uses a predetection mechanism to realize
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the distribution of tag IDs, which decreases most of the collision slots, and only a few collisions
may occur in the tag response phase. As a result, the number of total slots decreases as well.
For example, when t = 4000, the number of total slots generated by the reader in the H2QT, PDBQT,
EPDQT-2, EPDQT-3, and EPDQT-4 protocols is 14,150, 4096, 6539, 6144, and 6017, respectively. Thus,
our proposed EPDQT schemes perform 91.9% to 93.8% better than the H2QT scheme. Our proposed
EPDQT protocols cost fewer slots than H2QT. However, the EPDQT protocols cost more slots than
PDBQT. The main reason is that PDBQT uses a random number for each tag to respond during the
predetection phase, and no slot will be allocated in the tag response phase once the collision is detected.
On the other hand, the EPDQT protocols will allocate slots to split the collided tags. As a result,
many collisions detected in the predetection phase will still collide in the tag response phase. We also
note that the number of total slots in EPDQT-4 is 7.98% less than in EPDQT-2. This is because as the
parameters in the EPDQT protocols increase, both queries and collisions decrease, which decreases the
total slots needed to identify tags.

4.1.3. Delay Time vs. Number of Tags

This experiment examined the effect that the number of tags has on the total time required to
complete tag identification of the H2QT, PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 approaches.
The time comparison results are shown in Figure 7.

In Figure 7, we can see that as the number of tags increases, the total time required for each
algorithm to complete the identification increases. However, our proposed EPDQT schemes require
less time compared to other schemes. For example, when t = 4000, the total time required in the H2QT,
PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 protocols is 16.07, 8.07, 7.11, 6.01, and 5.65 s, respectively.
Thus, our proposed EPDQT schemes perform 54.5% to 64.8% better than the H2QT scheme. This is
because the EPDQT protocols can reduce the idle and collision slots substantially. We also note that
the total time required in EPDQT-4 is 20.5% better than in PDQT-2. This indicates that for EPDQT
schemes, the total time required decreases as the parameter value increases, since more time slots are
allocated in the predetection phase and therefore more tags can be identified successfully.
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4.1.4. System Efficiency vs. Number of Tags

In the following, we examine the effect that the number of tags has on system efficiency in terms
of slots and time for the H2QT, PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 approaches. Results for slot
system efficiency and time system efficiency are presented in Figures 8 and 9. In terms of slot system
efficiency, each of the compared approaches experiences similar system efficiency as the number of
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tags increases. For example, the slot system efficiency of the H2QT, PDBQT, EPDQT-2, EPDQT-3, and
EPDQT-4 protocols is around 28.51%, 97.68%, 62.04%, 65.16%, and 66.58%, respectively, all of which are
independent of the number of tags. The rationale behind these results is quite clear. Since the numbers
of identification slots and total slots both increase as the number of tags increases, slot system efficiency
almost flattens. Furthermore, slot system efficiency of the PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4
protocols significantly outperforms the H2QT protocol. The rationale behind this result is also clear.
In the H2QT protocol, each query cycle allocates four time slots for tags to respond. Some of the slots
may receive one tag’s response and then identify the tag’s ID, but the rest of them may receive multiple
tags’ responses or no response, and as a result the slot may collide or be idle. Therefore, the utilization
of slots in H2QT is poor. On the other hand, in predetection-based protocols, no idle slot is allocated
and most of the collisions are detected during the predetection phase. As a result, the allocated slots
are almost used for identifying tags. However, the PDBQT protocol outperforms the EPDQT protocols,
since it reduces most collision slots. Furthermore, for the EPDQT protocols, as the parameter increases,
slot efficiency increases. Figure 8 shows that when t = 4000, the EPDQT-4 protocol performs around
5.3% better than the EPDQT-2 protocol.
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In terms of time system efficiency, as shown in Figure 9, each of the compared approaches
experiences similar time system efficiency as the number of tags increases. For example, time system
efficiency of the H2QT, PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 protocols is around 18.66%,
38.05%, 68.95%, 76.71%, and 79.85%, respectively, all of which are independent of the number of
tags. The reason behind this result is similar to the reason for slot system efficiency. Furthermore,
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time system efficiency of the PDBQT, EPDQT-2, EPDQT-3, and EPDQT-4 protocols also significantly
outperforms the H2QT protocol. The rationale behind this result is quite clear. Since there are many
more queries in the H2QT protocol than in the predetection-based protocols, by adding the time for
reader query commands and the waiting time from reader query to tag response, time system efficiency
of H2QT is lower than other protocols. Furthermore, the proposed EPDQT protocols outperform the
PDBQT scheme by around 30% to 41%. The rationale behind these results is quite clear. Since the
communication overhead in the predetection phase of the proposed EPDQT protocols is much less
than that in the PDBQT protocol, the time for each query cycle in EPDQT is much less than in PDBQT.
As a result, the proposed EDPQT protocols can achieve better time system efficiency than the others.

4.2. Impact of the Number of Tags: Sequential Distribution

4.2.1. Number of Queries vs. Number of Tags

In this simulation, we compare the number of query cycles of the test protocols as the value of
t increases from 100 to 4000 in sequential distribution fashion. The query cycle comparison results
are given in Figure 10. In general, Figure 10 shows that each protocol generates fewer query cycles
in sequential distribution than in uniform distribution. This is because the tag IDs are consecutive
in sequential distribution. Thus, a sequence of tags may be evenly distributed into the query slots.
As a result, more tags can be identified in a query cycle, which costs fewer query cycles than uniform
distribution. Figure 10 also shows that H2QT has the most query cycles. The reason is quite clear.
Despite the different distributions of tag IDs, H2QT spends more query cycles than the others, since it
cannot reduce the collisions regardless of tag ID distribution. However, in our proposed EPDQT
protocols, each query cycle can identify more tags than H2QT. The rationale behind this result is clear.
Due to the predetection mechanism, the tiny slots are allocated sequentially. As a result, a sequence
of tags can be identified in a query cycle, which decreases the number of query cycles dramatically.
Furthermore, the EPDQT-4 protocol outperforms the EPDQT-2 and EPDQT-3 protocols. This is because
the prefix string in EPDQT-4 is extended by five bits instead of the three bits and four bits in the
EPDQT-2 and EPDQT-3 protocols, respectively, which costs fewer query cycles for EPDQT-4 to identify
a tag’s ID.
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4.2.2. Number of Total Slots vs. Number of Tags

In this simulation, we compare the number of total slots of test protocols. The slot comparison
results are given in Figure 11. Figure 11 shows that each protocol generates fewer total slots in
sequential distribution than uniform distribution due to the same reason given in the previous
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subsection. Figure 11 also shows that the EPDQT protocols significantly outperform H2QT, since there
are much fewer query cycles in EPDQT than in H2QT. However, PDBQT performs a little better than
EPDQT. This is because PDBQT generates much fewer collisions than EPDQT protocols, which costs
fewer total slots.J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  15 of 18 
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4.2.3. Delay Time vs. Number of Tags

This simulation compares the time needed to complete tag identification in sequential distribution
for test protocols. The time comparison results are shown in Figure 12. Figure 12 shows that each
protocol costs less time than uniform distribution. Figure 12 also shows that the EPDQT protocols
significantly outperform the H2QT and PDBQT protocols.
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4.2.4. System Efficiency vs. Number of Tags

The comparison results for system efficiency in terms of slots and time for test protocols are given
in Figures 13 and 14. Each of the compared approaches experiences similar slot system efficiency
as the number of tags increases, as shown in Figure 13. Figure 13 also shows that each protocol
achieves better performance under sequential distribution than uniform distribution. This is because
of the large amount of tag identifications in the query cycles of each protocol. Specifically, the EPDQT
protocols achieve very high slot system efficiency (around 85.4% to 98.0%). This is because the EPDQT
protocols generate much fewer collisions under sequential distribution than uniform distribution.
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However, time system efficiency of the EPDQT protocols is much worse than H2QT and PDBQT.
The rationale behind this result is also clear. Since the EPDQT protocols cost a few collisions in
sequential distribution, the time spent in tag identification is much less than the communication
overhead for reader query commands. As a result, time system efficiency is low compared to H2QT
and PDBQT protocols.J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  16 of 18 
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5. Conclusions

Developing a highly efficient tag identification process in a large-scale RFID system is a crucial
and very challenging task. Many collisions may occur during the tag identification process due
to the nature of large-scale RFID systems. On the other hand, many idle cycles may also occur,
since tag IDs in, say, a big shopping mall may have some common prefix (e.g., common product
code or vendor ID). Identification protocols such as H2QT can reduce idle cycles, but there are still
many collisions. Therefore, collision resolution becomes a major issue in improving performance.
In this paper, we proposed a nearly collision-free tag identification algorithm to reduce collisions
and improve identification performance substantially. We used the predetection technique to detect
all idle cycles and many possible collided inquiries. As a result, we were able to not only reduce
unnecessary collided inquiries, but also eliminate idle time slots. Therefore, the performance of tag
identification can be significantly improved. To evaluate the efficiency of our proposed protocol,
we implemented our proposed EPDQT protocol along with previous H2QT and PDBQT protocols in
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two tag ID distributions: uniform distribution and sequential distribution. The simulation results show
that our proposed protocol can provide considerable improvement in terms of number of queries,
number of total slots, system efficiency, and total time required for tag identification. Simulation results
also show that the proposed EPDQT protocol can provide substantial improvement in identification
time for a large-scale RFID system.
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