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Abstract: A key enabler for Cognitive Radio (CR) is spectrum sensing, which is physically
implemented by sensor and actuator networks typically using the popular energy detection method.
The threshold of the binary hypothesis for energy detection is generally determined by using the
principles of constant false alarm rate (CFAR) or constant detection rate (CDR). The CDR principle
guarantees the CR primary users at a designated low level of interferences, which is nonetheless
subject to low spectrum usability of secondary users in a given sensing latency. On the other hand, the
CFAR principle ensures secondary users’ spectrum utilization at a designated high level, while may
nonetheless lead to a high level of interference to the primary users. The paper introduces a novel
framework of energy detection for CR spectrum sensing, aiming to initiate a graceful compromise
between the two reported principles. The proposed framework takes advantage of the summation of
the false alarm probability Pf a from CFAR and the missed detection probability (1− Pd) from CDR,
which is further compared with a predetermined confidence level. Optimization presentations for the
proposed framework to determine some key parameters are developed and analyzed. We identify
two fundamental limitations that appear in spectrum sensing, which further define the relationship
among the sample data size for detection, detection time, and signal-to-noise ratio (SNR). We claim
that the proposed framework of energy detection yields merits in practical policymaking for detection
time and design sample rate on specific channels to achieve better efficiency and less interferences.

Keywords: fundamental limitations; SNR; energy detection; noise variance; spectrum sensing

1. Introduction

Cognitive Radio (CR) was first introduced as a promising candidate for dealing with spectrum
scarcity in future wireless communications [1]. Under-utilized frequency bands originally allocated to
licensed users (i.e., primary users) are freed and become accessible by non-licensed users (i.e., secondary
users) equipped with CR in an opportunistic manner to maximize the spectrum utilization while
minimizing interferences to the primary users. Despite its obvious advantages, CR technology is
subject to a great challenge in detection of spectrum holes through spectrum sensing. This is because
secondary users generally have very limited knowledge about the whole spectrum, which may
leave the spectrum sensing results far from accurate. Some existing spectrum sensing methods in
the literature are by way of matched filtering, waveform-based sensing [2], cyclostationary-based
sensing [3,4], eigenvalue-based method [5,6], energy detection [7–13], etc. Obviously, energy detection
is the most popular and simple way for spectrum sensing.
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The energy detection method [7–13] for spectrum sensing measures the average energy of the
total received signal during a period of time and compares it with a properly assigned threshold to
decide the presence or absence of users. Typically, the energy detection method is formulated in a
binary hypothesis test with a null Hypothesis H0 for absence of users and an alternative Hypothesis H1

for presence. The threshold is determined typically based on two standard principles: constant false
alarm rate (CFAR) and constant detection rate (CDR) [14,15]. With the emphasis on promoting usage
of spectrum hole, a threshold by CFAR is derived by assuring the probability of false alarm under H0

less than a given confidence level α, while, with the emphasis on less interference of users, a threshold
by CDR is derived by letting the probability of missed detection under H1 less than a given confidence
level α. Each criterion can ensure the error detection probability of one hypothesis under a low level
while ignoring the error detection probability for the opponent hypothesis. Therefore, under some
extreme circumstances, one error probability may be large although the other one is small. It is
the purpose of this paper to develop a new criterion to simultaneously keep the two kinds of error
detection probabilities at a low level. To the author’s knowledge, it is the first effort to develop this
kind of criterion in energy detection for spectrum sensing.

A simple way to keep the two kinds of error detection probabilities simultaneously small is to
restrict the summation of the two probabilities to less than a confidence level. To describe more in
detail, let u be a constructed statistics for the binary hypothesis test. For a given small α ∈ (0, 1),
say α = 0.05, the threshold by CFAR principle is selected by the smallest λ such that

P[u ≥ λ|H0] ≤ α,

while the threshold by CDR principle is selected by maximal λ such that

P[u ≤ λ|H1] ≤ α.

The new criterion to select λ based on the summation of the two probabilities is proposed as

P[u ≥ λ|H0] + P[u ≤ λ|H1] ≤ α,

which ensures the two probabilities simultaneously smaller than the confidence level α. Denote the false
alarm probability Pf a(λ) = P[u ≥ λ|H0] for CFAR and the missed detection probability (1− Pd(λ))

for CDR with Pd(λ) = P[u ≥ λ|H1], respectively. The aforementioned summation principle turns to be

Pf a(λ) + (1− Pd(λ)) ≤ α, (1)

This is actually not a well-posed presentation though, since there may be too many solutions or
no solution sometimes to the inequality in Equation (1) with respect to λ for a given noise variance σ2

n ,
signal to noise ratio (SNR), and data size M.

In this paper, to derive unique solution of threshold λ from (1), two kinds of optimization
problems are introduced: (i) to find the minimum data size M with σ2

n and SNR given; and (ii) to
find the lowest SNR with σ2

n and M given. Under the first optimization setting, we show that, with a
small SNR, the data size M should be larger than a critical value, denoted by Mmin, to guarantee the
existence of threshold λ that can satisfy the inequality in Equation (1) under a given confidence level
α. We also show an asymptotical formula, i.e., Equation (61), for the minimum data size Mmin as SNR
goes to zero. Under the second optimization setting, we show that for a given data size M the SNR
should be greater than a minimum SNR to ensure the existence of threshold λ that satisfies inequality
in Equation (1) under given confidence level α. The asymptotical formula for the minimum SNR, i.e.,
Equation (62), is found as M → ∞. Theoretical analysis and simulations are conducted for the two
optimization settings and the obtained asymptotical formulas are verified.

The main contributions of this paper are as follows. (i) A new principle to select the threshold of
energy detection is proposed by assuring the summation of the two kind of error detection probabilities
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less than a given confidence level. To derive unique threshold under the constraint, two kinds of
optimization frameworks are proposed. (ii) The possible optimal selection of the thresholds under the
proposed two optimization frameworks have been analyzed in Propositions 1 and 3 regardless of the
constraints. (iii) The lower and upper bounds of the solutions for the two optimization frameworks
have been established in Theorems 1–4, respectively, to the accurate distribution and the approximate
distribution of the test statistics. Two asymptotical formulae under corresponding limit process for
the two optimization problems are also derived to describe the fundamental limitations when using
energy detection for spectrum sensing.

The fundamental limitations in energy detection found in this paper based on the constraint
Equation (1) are different from the SNR wall introduced in [16], which is on the other hand a limitation
regarding robustness of detectors. It is discovered in this paper that even when the noise variance keeps
constant, some limitations still exist regarding the tradeoff between efficiency and noninterference.
For example, when channel detection time is 2 s [17] and sample rate of a channel [18] is once every
16µs (which yields the data size M = 2/0.000016 = 125, 000), by the asymptotical Equation (62),
the minimum SNR is approximately 0.0158 (i.e., −18.0124 dB) under a confidence level α = 0.05.
In other words, it is impossible to detect any signal with SNR lower than −18.0124 dB under such
a setting with a confidence level α = 0.05. The analysis and understanding on these limitations not
only enables a wise choice of channels in the CR spectrum sensing, but also helps policymaking in
determination of detection settings, such as detection time and sample rate, for a specific channel
under certain requirements on efficiency and interference at a confidence level. These issues are critical
in the design of a CR spectrum sensing system, which address fundamental impacts on the resultant
system performance.

The rest of this paper is organized as follows. The model setting and the CFAR and CDR
principles for energy detection are introduced in Section 2, where the thresholds are derived by
assuming that all signals are Gaussian. The principle of compromise for CFAR and CDR is introduced
in Section 3, and the two presentations of optimization are introduced and theoretically analyzed.
Some numerical experiments are conducted to check the relevant evolutions of the solutions of the
proposed optimization problems in Section 4. In Section 5, the fundamental limitations in energy
detection are demonstrated, and some asymptotical orders of the critical values are discovered via
theoretical analysis. Finally, the conclusive remarks of this study are given in Section 6.

2. Model Setting and Thresholds by CFAR and CDR

A block diagram of typical energy detection for spectrum sensing is shown in Figure 1. The input
Band Pass Filter (BPF) which has bandwidth W centered at fc aims to remove the out-of-band signals.
Note that W and fc must be known to the secondary user so that it can perform spectrum sensing
for the corresponding channels. After the signal is digitized by an analog-to-digital converter (ADC),
a simple square and average device is used to estimate the received signal energy. Assume the input
signal to the energy detection is real. The estimated energy, u, is then compared with a threshold, λ,
to decide if a signal is present (H1) or not (H0).
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Figure 1. Block diagram of an energy detector.

Spectrum sensing is to determine whether a licensed band is currently used by its primary user.
This can be formulated into a binary hypothesis testing problem [19,20]:
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x(k) =

{
n(k), H0(vacant),
s(k) + n(k), H1(occupied),

(2)

where s(k), n(k), and x(k) represent the primary user’s signal, the noise, and the received signal,
respectively. The noise is assumed to be an iid Gaussian random process of zero mean and variance σ2

n ,
whereas the signal is also assumed to be an iid Gaussian random process of zero mean and variance of
σ2

s . The signal to noise ratio is defined as the ratio of signal variance to the noise variance

SNR = σ2
s /σ2

n . (3)

The test statistics generated from the energy detector, as shown in Figure 1, is

u =
1
M

M

∑
k=1

x2
k . (4)

The threshold is determined typically based on two standard principles: constant false alarm
rate (CFAR) and constant detection rate (CDR) [14,15]. CDR guarantees a designated low level of
interference to primary users, which nonetheless results in low spectrum usability of secondary users
given a fixed sensing time. On the other hand, CFAR protects secondary users’ spectrum utilization at
a designated high level, which may lead to a high level of interference to primary users. Therefore,
each of the CFAR and CDR principles can general ensure either one of the error probabilities under
low level within a limited sensing time, i.e., false alarm probability Pf a for CFAR and missed detection
probability (1− Pd) for CDR, respectively.

Under Hypotheses H0 and H1, the test statistics u is a random variable whose probability density
function (PDF) is chi-square distributed. Let us denote a chi-square distributed random variable X
with M degrees of freedom as X ∼ χ2

M, and recall its PDF as

fχ(x, M) =





1
2M/2Γ(M/2)

xM/2−1e−x/2, for x > 0,

0, otherwise,
(5)

where Γ(·) denotes Gamma function, given in Equation (A2) in the Appendix.
Clearly, under Hypothesis H0, Mu/σ2

n ∼ χ2
M; and Mu/σ2

t ∼ χ2
M under H1 with σ2

t = (1+SNR)σ2
n .

Thus, the PDF of test statistics u, given by test, is

fu(x) ∼
{

σ2
n

M fχ(
xσ2

n
M , M), under H0;

σ2
t

M fχ(
xσ2

t
M , M), under H1.

(6)

Observe that Eu = σ2
n and var(u) = 2

M σ4
n under H0, by the central limit theorem [21],

the test statistics u asymptotically obeys the Gaussian distribution with mean σ2
n and variance

2
M σ4

n . Similar distribution can be derived under H1. Therefore, when M is sufficiently large, we can
approximate the PDF of u using a Gaussian distribution:

f̃u(x) ∼
{
N (σ2

n , 2σ4
n/M), under H0;

N (σ2
t , 2σ4

t /M), under H1.
(7)

For a given threshold λ, the probability of false alarm is given by
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Pf a(λ) = prob[u > λ|H0] = Γ
(

M
2

,
Mλ

2σ2
n

)
, (8)

where Γ(a, x) is the upper incomplete gamma function in Equation (A3) in the Appendix, and the
approximated form of Pf a corresponding to distribution in Equation (7) for large M is

P̃f a(λ) = Q
(

λ− σ2
n

σ2
n/
√

M/2

)
, (9)

where Q(·) is defined in Equation (A1) in the Appendix.
In practice, if it is required to guarantee a reuse probability of the unused spectrum, the probability

of false alarm is fixed to a small value (e.g., Pf a = 0.05) and meanwhile the detection probability is
expected to be maximized as much as possible. This is referred to as constant false alarm rate (CFAR)
principle [19,22]. Under the CFAR principle, the probability of false alarm rate (Pf a) is predetermined,
and the threshold (λ f a) can be set accordingly by

λ f a =
2σ2

n
M

Γ−1
(

M/2, Pf a

)
, (10)

where Γ−1(a, x) is the inverse function of Γ(a, x). For the approximation case corresponding to
distribution Equation (7) for large M, the threshold is

λ̃ f a = σ2
n

(
1 +

Q−1(Pf a)√
M/2

)
, (11)

where Q−1(x) is the inverse function of Q(x).
Similarly, under Hypothesis H1, for a given threshold λ, the probability of detection is given by

Pd(λ) = prob[u > λ|H1] = Γ
(

M
2

,
Mλ

2σ2
t

)
, (12)

where Γ(a, x) is the upper incomplete gamma function. Its approximating form of Pd corresponding to
distribution in Equation (7) for large M is

P̃d(λ) = Q

(
λ− σ2

t

σ2
t /
√

M/2

)
. (13)

Practically, if it is required to guarantee interference-free to the primary users, the probability of
detection should be set high (e.g., Pd = 0.95) and the probability of false alarm should be minimized
as much as possible. This is called the constant detection rate (CDR) principle [19,22]. With this,
the threshold under the CDR principle to achieve a target probability of detection is given by

λd =
2σ2

n(1 + SNR)
M

Γ−1 (M/2, Pd) . (14)

The corresponding approximation case is

λ̃d = σ2
n(1 + SNR)

(
1 +

Q−1(Pd)√
M/2

)
. (15)

Due to the similarity of Equations (10) and (14), we can expect that the derivation of the threshold
values for CFAR and CDR are similar. Thus, it is not surprising to see that some analytic results derived
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by assuming CFAR based detection can be applied to CDR based detection with minor modifications
and vice versa (see, e.g., [19,22]).

3. Thresholds by New Principle

It is clear that using CFAR and CDR principles can guarantee a low Pf a and (1− Pd), respectively.
However, in practice, we may hope both of them to be low. This motivates us to come up with a
new principle such that a threshold is determined to keep the sum of the two error probabilities at
a designated low level. The problem of interest in the study is to find a threshold, for a given small
α ∈ (0, 1), say α = 0.05, such that

Pf a(λ) + (1− Pd(λ)) ≤ α, (16)

where Pf a(λ) and Pd(λ) are given by Equations (8) and (12), respectively. This is nonetheless not a
well-posed presentation, since there may be too many solutions or no solution to the inequality in
Equation (16) with respect to λ for a given noise variance σ2

n , SNR (or σ2
t ), and data size M. In this

section, a suite of well-posed presentations for realizing this idea are formulated and analyzed, and
relevant properties are developed for reference. Specifically, the presentations considered in the study
include the following two scenarios:

(i) By assuming given σ2
n and SNR (or σ2

t ), our target is to find minimum data size M and the
corresponding threshold λ satisfying the inequality in Equation (16). This results in a nonlinear
optimization problem as following:

(NP1)

{
Min M
s.t. Γ

(
M
2 , Mλ

2σ2
n

)
+ 1− Γ

(
M
2 , Mλ

2σ2
t

)
≤ α.

(ii) By taking σ2
n and M fixed, we target to find minimum SNR and corresponding threshold λ

satisfying the inequality in Equation (16). This also results in a nonlinear optimization problem as
following:

(NP2)

{
Min SNR

s.t. Γ
(

M
2 , Mλ

2σ2
n

)
+ 1− Γ

(
M
2 , Mλ

2σ2
t

)
≤ α.

We find in Proposition 1 that the threshold can be unambiguously determined if σ2
n and SNR are

given. Based on this theoretical discovery, the numerical algorithm for solving (NP1) and (NP2) can be
significantly simplified.

Proposition 1. Both in nonlinear optimization problems (NP1) and (NP2), if solvable, the solution for λ

should be

λ0 =
(1 + s)σ2

n ln(1 + s)
s

, (17)

where s represents SNR for brief.

Proof. Let us consider the case for (NP1) only, since (NP2) has a very similar shape. We consider the
Lagrange function of (NP1) with respect to a multiplier µ as

L(M, λ, s1, µ) = M + µ

[
Γ
(

M
2

,
Mλ

2σ2
n

)
+ 1− Γ

(
M
2

,
Mλ

2σ2
t

)
+ s1 − α

]
, (18)

where s1 ≥ 0 is a slack variable. Clearly, differentiating L(M, λ, s, µ) by λ, we have
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∂L(M, λ, s1, µ)

∂λ
=

µ

Γ(M
2 )

[(
Mλ

2σ2
t

)M
2 −1

e
− Mλ

2σ2
t

M
2σ2

t
−
(

Mλ

2σ2
n

)M
2 −1

e
− Mλ

2σ2
n

M
2σ2

n

]
.

Let ∂L(M,λ,s1,µ)
∂λ = 0, we get a simplified equivalent equation as

1
σ2

t
e
− λ

σ2
t =

1
σ2

n
e
− λ

σ2
n ,

which further means

e

(
1

σ2
n
− 1

σ2
t

)
λ
=

σ2
t

σ2
n
= 1 + s.

Solving this equation, we derive Equation (17).

The following proposition shows that the two nonlinear optimization problems (NP1) and (NP2)
are well-posed, i.e., the solutions for (NP1) and (NP2) uniquely exist.

Proposition 2. Both nonlinear optimization problems (NP1) and (NP2) are well-posed: (i). for any given
α ∈ (0, 1), σ2

n and SNR> 0, (NP1) has one and only one solution pair (M, λ); and (ii) for any given α ∈ (0, 1),
σ2

n and M > 0, (NP2) has one and only one solution pair (SNR, λ).

Proof. Let SNR be denoted by s, and the LHS of the restriction inequality of (NP1) be expressed by
a function

Γ(M, s, λ) = Γ
(

M
2

,
Mλ

2σ2
n

)
+ 1− Γ

(
M
2

,
Mλ

2σ2
t

)
. (19)

By the definition of SNR, it follows that σ2
t = (1 + s)σ2

n . Thus, we have

Mλ

2σ2
n
− Mλ

2σ2
t
=

Mλσ2
s

2σ2
t σ2

n
=

Msλ

2σ2
t

. (20)

Note that the threshold λ should be located between the two energies σ2
n and σ2

t , i.e., λ ∈ (σ2
n , σ2

t ).
We know that, for small SNR (s) and small M, the distance between Mλ

2σ2
n

and Mλ
2σ2

t
is very close. Hence,

the value of Γ(M, s, λ) given by Equation (19) is close to 1, which means the restriction Γ(M, s, λ) ≤ α

is probably violated.
Next, we demonstrate that the solution of (NP1) is unique if it exists. Clearly, it is sufficient to

show that ∂Γ(M,s,λ)
∂M < 0. For this, by noticing that

∂Γ
(

M
2 , Mλ

2σ2
n

)

∂M
= − 1

Γ(M
2 )

dΓ(M
2 )

dM
Γ
(

M
2

,
Mλ

2σ2
n

)
− 1

Γ(M
2 )

(
Mλ

2σ2
n

)M
2 −1

e
− Mλ

2σ2
n

λ

2σ2
n

+
1

Γ(M
2 )

∫ ∞

Mλ

2σ2
n

e−tt
M
2 −1 ln t

2
dt (21)

and
∂Γ
(

M
2 , Mλ

2σ2
t

)

∂M , similar to Equation (21) by replacing σn by σt therein, we have
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∂Γ(M, s, λ)

∂M

∣∣∣
λ=λ0

=
1

Γ(M
2 )

∫ Mλ0
2σ2

n
Mλ0
2σ2

t

e−tt
M
2 −1

[
1

Γ(M
2 )

dΓ(M
2 )

dM
− ln t

2

]
dt ∆

=
D(M, s)

Γ(M
2 )

, (22)

where λ0 = (1+s)σ2
n ln(1+s)
s is given by Equation (17).

Denote

a ∆
=

Mλ0

2σ2
t

=
M ln(1 + s)

2s
, b ∆

=
Mλ0

2σ2
n

=
M(1 + s) ln(1 + s)

2s
.

Clearly, b = a(1 + s). By noticing that a −−→
s→0

M
2 and b −−→

s→0
M
2 , we have lims→0 D(M, s) = 0.

Similarly, by a −−−→
s→∞

0 and b −−−→
s→∞

∞, it follows that lims→∞ D(M, s) = 0. Thus, to find the sign of

Equation (22), we analyze the derivative of D(M, s) with respect to s below:

∂D(M, s)
∂s

= e−aa
M
2 −1

[
e−as(1 + s)

M
2 −1(CM −

1
2

ln b)
∂b
∂s
− (CM −

1
2

ln a)
∂a
∂s

]

∆
= e−aa

M
2 −1D1(M, s), (23)

where CM = 1
Γ( M

2 )

dΓ( M
2 )

dM . Note that

e−as = e−
M ln(1+s)

2 = (1 + s)−
M
2 ,

∂b
∂s

= (1 + s)
∂a
∂s

+ a,

we proceed the essential terms of Equation (23) as

D1(M, s) =
1

1 + s
(CM −

1
2

ln b)
∂b
∂s
− (CM −

1
2

ln a)
∂a
∂s

=
∂a
∂s

1
2

ln
a
b
+

a
1 + s

(CM −
1
2

ln b)

=
M

2s(1 + s)

[
ln2(1 + s)

2s
+ (CM −

1
2

ln
M
2
− 1

2
) ln(1 + s) + δ(s)

]
, (24)

where δ(s) = 1
2 ln(1 + s) ln s

ln(1+s) . Recalling an inequality

ln x− 1
x
<

Γ′(x)
Γ(x)

< ln x− 1
2x

for x > 1 , we find

− 2
M

< CM −
1
2

ln
M
2
< − 1

M
.

Thus, the sign of D1(M, s) changes from negative to positive as s moves from 0 to ∞, and it also
does for ∂D(M,s)

∂s . Together with the two limitations of D(M, s), we know that D(M, s) decreases from

D(M, 0) = 0 to negative minimum and then increase to D(M, ∞) = 0. Thus, ∂Γ(M,s,λ)
∂M

∣∣∣
λ=λ0

< 0 for

s ∈ (0, ∞), which derives the uniqueness of the solution.
Let us recall some basic facts of Gamma distribution below before the deducing the existence of

the solution of (NP1) when M is sufficiently large. For a Gamma distribution with density function as
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1
Γ(k) xk−1e−x, its expectation and deviation are k and

√
k, respectively. Let us first introduce a Gamma

distributed random variable ξ with k = M/2. Denote

Mλ

2σ2
n
− M

2
∆
= β1

M
2

,

M
2
− Mλ

2σ2
t

∆
= β2

M
2

,

where β1 > 0 and β2 > 0, by the fact that λ ∈ (σ2
n , σ2

t ). By Equation (A3) (in the Appendix) and
Chebyshev’s inequality, we have

Γ
(

M
2

,
Mλ

2σ2
n

)
= P

[
ξ − Eξ > β1

M
2

]
≤ P

[
|ξ − Eξ| > β1

M
2

]

≤ Var(ξ)
β2

1(M/2)2
=

2
β2

1M
−−−→
M→∞

0. (25)

Similarly,

1− Γ
(

M
2

,
Mλ

2σ2
t

)
= P

[
Eξ − ξ > β2

M
2

]
≤ P

[
|ξ − Eξ| > β2

M
2

]

≤ Var(ξ)
β2

2(M/2)2
=

2
β2

2M
−−−→
M→∞

0. (26)

Hence, by Equation (19), Γ(M, s, λ) → 0 as M → ∞. This means the restriction of (NP1) can be
satisfied if M is sufficiently large, which derives Assertion (i).

For Assertion (ii), by Equation (20), we also know that the distance between Mλ
2σ2

n
and Mλ

2σ2
t

is very

close for small SNR (s). Thus, the restriction Γ(M, s, λ) ≤ α is probably violated.
Differentiating Γ(M, s, λ) by s, we have

∂Γ(M, s, λ)

∂s
=
−Mλ

2Γ(M
2 )

(
Mλ

2σ2
t

)M
2 −1

e
− Mλ

2σ2
t

σ2
n

σ4
t
< 0.

Thus, we know that Γ(M, s, λ) decreases as s → ∞. This means the solution is unique.
By noticing that

Mλ0

2σ2
t

=
M ln(1 + s)

2s
−−−→
s→∞

0,
Mλ0

2σ2
n

=
M(1 + s) ln(1 + s)

2s
−−−→
s→∞

∞,

which declares that Γ(M, s, λ) → 0 as s → ∞. This further proves the existence of the solution, and,
thus, Assertion (ii) follows.

Similarly, by replacing Pf a and Pd in Equation (16) with the approximated distributions P̃f a and
P̃d given by Equations (9) and (13), respectively, the corresponding case based on approximation
distribution in Equation (7) for the new principle can be obtained. Precisely, for a given small α > 0, a
threshold λ can be identified such that

P̃f a(λ) + (1− P̃d(λ)) ≤ α, (27)

where P̃f a(λ) and P̃d(λ) are given by Equations (9) and (13), respectively. To achieve this, we have to
formulate the two nonlinear optimization problems. Firstly, with given σ2

n and SNR (or σ2
t ), we try
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to derive the minimum data size M and the corresponding threshold λ satisfying the inequality in
Equation (27), the nonlinear optimization problem is formulated as:

(ÑP1)





Min M

s.t. Q
(

λ−σ2
n

σ2
n/
√

M/2

)
+ 1−Q

(
λ−σ2

t
σ2

t /
√

M/2

)
≤ α.

Secondly, let σ2
n and M be fixed, such that the minimum SNR and corresponding threshold λ

satisfying the inequality in Equation (27) will be identified. This is also a nonlinear optimization
problem as described as follows:

(ÑP2)





Min SNR

s.t. Q
(

λ−σ2
n

σ2
n/
√

M/2

)
+ 1−Q

(
λ−σ2

t
σ2

t /
√

M/2

)
≤ α.

It is also found below that the potential threshold can be deterministically selected with given σ2
n

and SNR and data size M. By this theoretical discovery, the numerical algorithm to solve (ÑP1) and
(ÑP2) can be largely simplified.

Proposition 3. In both nonlinear optimization problems (ÑP1) and (ÑP2), if solvable, the solution for λ

should be

λ̃0 =
σ2

t σ2
n(σ

2
t − σ2

n) +
√

∆
σ4

t − σ4
n

, (28)

where

∆ = σ4
t σ4

n(σ
2
t − σ2

n)[σ
2
t − σ2

n + δ(σ2
t + σ2

n)] (29)

with δ = 4
M ln(1 + SNR). A simplified form is

λ̃0 =

σ2
n(1 + s)

(
1 +

√
1 + δ + 2δ

s

)

2 + s
, (30)

where s represents SNR. To assure λ̃0 ∈ (σ2
n , σ2

t ), it requires that

M >
4 ln(1 + s)

s2 . (31)

Proof. In the following, only the case of (ÑP1) is proven since the proof for (ÑP2) is similar. We first
construct the Lagrange function for (ÑP1) with respect to a multiplier µ as

L̃(M, λ, s2, µ) = M + µ

[
Q
(

λ− σ2
n

σ2
n/m

)
+ 1−Q

(
λ− σ2

t
σ2

t /m

)
+ s2 − α

]
, (32)

where m =
√

M/2 and s2 ≥ 0 is a slack variable. Clearly, differentiating L̃(M, λ, s, µ) in terms of λ,
we have

∂L̃(M, λ, s2, µ)

∂λ
=

µ√
2π


 m

σ2
t

e
−m2(λ−σ2

t )
2

2σ4
t − m

σ2
n

e
−m2(λ−σ2

n)
2

2σ4
n


 .
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Let ∂L̃(M,λ,s2,µ)
∂λ = 0, we get a simplified equivalent equation as

(λ− σ2
n)

2

σ4
n

− (λ− σ2
t )

2

σ4
t

=
2

m2 ln
(

σ2
t

σ2
n

)
=

2
m2 ln(1 + SNR) ∆

= δ,

which further means

(σ4
t − σ4

n)λ
2 − 2σ2

t σ2
n(σ

2
t − σ2

n)λ− δσ4
t σ4

n = 0.

Thus,

λ =
σ2

t σ2
n(σ

2
t − σ2

n)±
√

∆
σ4

t − σ4
n

,

where ∆ is given by Equation (29). Note that λ ∈ (σ2
n , σ2

t ), i.e., the threshold should be located between
the two expectations of the distributions under Hypotheses H0 and H1, and

√
∆ ≥ σ2

t σ2
n(σ

2
t − σ2

n),

thus we derive Equation (28). Equation (30) follows by substituting σ2
t = (1 + s)σ2

n in Equation (28).
Clearly, λ̃0 > σ2

n . For λ̃0 > σ2
t , it is sufficient to require that

1 +

√
1 + δ +

2δ

s
< 2 + s,

which is equivalent to Equation (31).

From the above, we have demonstrated that the two nonlinear optimization problems (ÑP1) and
(ÑP2) are well-posed.

Proposition 4. Both nonlinear optimization problems (ÑP1) and (ÑP2) are well-posed: (i) for any given
α ∈ (0, 1), σ2

n and SNR> 0, (ÑP1) has one and only one solution pair (M, λ); and (ii) for any given α ∈ (0, 1),
σ2

n and M > 0, (ÑP2) has one and only one solution pair (SNR, λ).

Proof. For convenience, let SNR be denoted by s, and the LHS of the restriction inequality of (ÑP1) be
expressed by a function

Q(M, s, λ) = Q
(

m(λ− σ2
n)

σ2
n

)
+ 1−Q

(
m(λ− σ2

t )

σ2
t

)
, (33)

where m =
√

M/2. For small SNR, σ2
t and σ2

n are very close. Thus, for small M, it is impossible to

require that Q(M, s, λ) ≤ α, since m(λ−σ2
n)

σ2
n

and m(λ−σ2
t )

σ2
t

are too close.

(i) By differentiating Q(M, s, λ) in terms of m, we have

∂Q(M, s, λ)

∂m
=

1√
2π


λ− σ2

t
σ2

t
e
−m2(λ−σ2

t )
2

2σ4
t − λ− σ2

n
σ2

n
e
−m2(λ−σ2

n)
2

2σ4
n


 < 0,

by noticing that λ ∈ (σ2
n , σ2

t ). This concludes the uniqueness of the solution. Now, we derive the
existence of the solution. Denote λ̃0 as the possible threshold of λ given by Equation (28). Clearly,
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λ̃0 −−−→m→∞

2σ2
t σ2

n

σ2
t + σ2

n
=

2(1 + s)σ2
n

2 + s
∆
= λ∗, (34)

thus, for sufficiently large m, we have

λ̃0 − σ2
n ≥ γ1|λ∗ − σ2

n |, σ2
t − λ̃0 ≥ γ2|λ∗ − σ2

t |,

where γ1 > 0 and γ2 > 0. Thus, we further have

Q
(

m(λ̃0 − σ2
n)

σ2
n

)
≤ Q

(
mγ1|λ∗ − σ2

n |
σ2

n

)
−−−→
m→∞

0,

1−Q
(

m(λ− σ2
t )

σ2
t

)
≤ Q

(
mγ2|λ∗ − σ2

t |
σ2

t

)
−−−→
m→∞

0.

These mean Q(M, s, λ) −−−→
m→∞

0, which implies the existence of solution.

(ii) By differentiating Q(M, s, λ) in terms of s, we have

∂Q(M, s, λ)

∂s
=
−mλσ2

n

σ4
t
√

2π
e
−m2(λ−σ2

t )
2

2σ4
t < 0,

which declares the uniqueness of solution for this case. Consider λ̃0 given by Equation (28) as s→ ∞;
clearly, λ̃0 −−−→s→∞

∞ with the order
√

ln s, and σ2
t −−−→s→∞

∞ with the order s. Thus, we have

λ̃0 − σ2
n −−−→s→∞

∞, σ2
t − λ̃0 −−−→s→∞

∞,

which means Q(M, s, λ) −−−→
s→∞

0, guaranteeing the existence of solution for this case.

Based on the above propositions, the proposed principles for threshold selection can be well
defined provided data size M is sufficiently large and SNR is given, or SNR is sufficiently large and M
is given. Hence, mathematically, some fundamental limitations are identified regarding data size M
when SNR is given, as well as SNR when M is given.

4. Numerical Experiments

Two kinds of simulations are conducted in this section. One is to observe the evolutions of
the solutions of the above four nonlinear optimization problems, and the other is to investigate the
accuracy of the two asymptotical equations: Equation (61) for both (NP1) and (ÑP1) as SNR tends
to zero, and Equation (62) for both (NP2) and (ÑP2) as M tends to infinity. The two formulae are
discovered by Theorems 1–4.

4.1. Intuitive Sense of the Solutions for Relevant Optimization Problems

Specifically, we would like to check the evolutions of solutions M in (NP1) and (ÑP1) as SNR tends
to 0, respectively; and the evolutions of solutions SNR in (NP2) and (ÑP2) as M tends to ∞, respectively.

The nonlinear optimization problems (NP1)(NP2) and (ÑP1)(ÑP2) can be solved directly by Matlab
code /fmincon/, which is used to find minimum of an object function with nonlinear constraints.
However, it is found to be quite unstable when using /fmincon/ to solve them directly, say (NP1),
most likely due to the nonlinearity in the constraint of (NP1).

Proposition 1 significantly simplifies the solution process for (NP1) and meanwhile makes it stable
by substituting the potential optimal threshold given by Equation (17) into the constraint of (NP1). The
same for (NP2). As to (ÑP1) and (ÑP2), Proposition 3 plays the same role.
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Example 1. Let α = 0.05 and σn = 1. We deal with (NP1) by letting SNR = 1
k with k = 1, 2, . . . , 20.

The solutions for M and corresponding λ are shown in Figure 2a,b, respectively.

Example 2. Let α = 0.05 and σn = 1. We deal with (NP2) by letting M = 1000k with k = 1, 2, . . . , 20.
The solutions for SNR and λ are shown in Figure 3a,b, respectively.

Example 3. Let α = 0.05 and σn = 1. We deal with (ÑP1) by letting SNR = 1
k with k = 1, 2, . . . , 20.

Since the solutions for M and λ are very close to the counterparts of Example 1, we only plot the differences
between the two examples (the quantities of Example 3 minus that of Example 1), shown practically negligible in
Figure 4a,b, respectively.

Example 4. Let α = 0.05 and σn = 1. We deal with (ÑP2) by letting M = 1000k with k = 1, 2, . . . , 20.
Since the solutions for SNR and λ are very close to the counterparts of Example 2, we only plot the differences
between the two examples (i.e., the quantities of Example 4 minus that of Example 2), as shown practically
negligible in Figure 5a,b, respectively.
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(a) M vs. 1/SNR (b) λ vs. 1/SNR

Figure 2. The plot of the solutions (M, λ) for (NP1) with SNR = 1
k , k = 1, 2, . . . , 20, under setting

α = 0.05 and σn = 1. (a) The plot of the solutions M of (NP1) vs. 1/SNR. (b) The plot of the
corresponding λ vs. 1/SNR.
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Figure 3. The plot of solutions (SNR, λ) for (NP2) with M = 1000k with k = 1, 2, . . . , 20, k = 1, 2, . . . , 20,
under setting α = 0.05 and σn = 1. (a) The plot of SNR vs. M/1000. (b) The plot of corresponding λ

vs. M/1000.
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Figure 4. The plot of differences between the solutions (M, λ) for (ÑP1) and (NP1) with SNR = 1
k ,

k = 1, 2, . . . , 20, under setting α = 0.05 and σn = 1. (a) The plot of the differences between solutions M
of (ÑP1) and (NP1) vs. 1/SNR. (b) The plot of differences for the corresponding λ vs. 1/SNR.
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Figure 5. The plot of differences between the solutions (SNR, λ) for (ÑP2) and (NP2) with M = 1000k,
k = 1, 2, . . . , 20, under setting α = 0.05 and σn = 1. (a) The plot of the differences between solutions
SNR of (ÑP2) and (NP2) vs. M/1000. (b) The plot of differences for the corresponding λ vs. M/1000.

With Propositions 1 and 3, it is under our expectation that the thresholds λ tend to σ2
n = 1 in

Examples 1 and 3 as SNR tends to 0. The thresholds in Examples 2 and 4 tend to σ2
n = 1 as M → ∞

due to the fact that the minimum SNR required tends to 0 as M→ ∞.

4.2. Accuracy of the Two Asymptotical Equations (61) and (62)

To investigate the performances of asymptotical Equation (61) for both (NP1) and (ÑP1) as SNR
tends to zero and Equation (62) for both (NP2) and (ÑP2) as M tends to infinity, we design two more
simulation examples below.

Example 5. Let α = 0.05 and σn = 1. For both (NP1) and (ÑP1), let SNR = 101−3(k−1)/19, k = 1, 2, . . . , 20,
corresponding to the range of 10 dB to −20 dB. Let M be defined by Equation (61) and the corresponding λ

is given by Equation (17) for (NP1) and Equation (30) for (ÑP1). The constraint summation probabilities of
(NP1) and (ÑP1), marked by “-o” and “-x”, are plotted in Figure 6a. The bias between the solutions M from
either (NP1) or (ÑP1) and the asymptotical Equation (61) are plotted in Figure 6b. It is clear from both figures
that the asymptotical Equation (61) provides quite accurate estimation of the solution for both (NP1) and (ÑP1),
meanwhile, the required confidence level α = 0.05 is also satisfied.
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Example 6. Let α = 0.05 and σn = 1. For both (NP2) and (ÑP2), let M = 10k with k = 1, 2, . . . , 20. Let
SNR be defined by Equation (62) and the corresponding λ is given by Equation (17) for (NP1) and Equation (30)
for (ÑP1). The constraint summation probabilities of (NP2) and (ÑP2), marked by “-o” and “-x”, are plotted
in Figure 7a. The bias between the solutions SNR from either (NP2) or (ÑP2) and the asymptotical Equation
(62) are plotted in Figure 7b. It is clear from both figures that the asymptotical Equation (62) provides quite
accurate estimation of the solution for both (NP2) and (ÑP2); meanwhile, the required confidence level α = 0.05
is also satisfied.
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Figure 6. The plot for Example 5 under the setting SNR = 101−3(k−1)/19, k = 1, 2, . . . , 20, corresponding
to the range of 10 dB to −20 dB, α = 0.05 and σn = 1. (a) The plot of the constraint summation
probabilities of (NP1) and (ÑP1), marked by “-o” and “-x”, respectively. (b) The plot of the bias
between the solution M from either (NP1) or (ÑP1) and the asymptotical Equation (61), marked by “-o”
and “-x”, respectively.
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Figure 7. The plot for Example 6 under the setting M = 10k, k = 1, 2, . . . , 20, under setting α = 0.05
and σn = 1. (a) The plot of the constraint summation probabilities of (NP2) and (ÑP2), marked by “-o”
and “-x”, respectively. (b) The plot of the bias between the SNR solutions from either (NP2) or (ÑP2)
and the asymptotical Equation (62), marked by “-o” and “-x”, respectively.

From the simulation Examples 5 and 6, it is clear that the asymptotical Equations (61) and (62)
provide quite accurate estimation of the solutions for the relevant four optimization problems with
the constraint inequalities satisfied. The constraint inequality is tight for Equation (61) when SNR is
sufficient small, and for Equation (62) when M is sufficient large. The relative difference between the
two optimization frameworks is insignificant. This shows the potential application value of the two
Equations (61) and (62).
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5. Fundamental Limits of Detection

Let us denote Mmin as the solution of (NP1) or (ÑP1), and SNRmin as the solution of (NP2) or (ÑP2),
respectively. Obviously, for a fixed SNR, it is impossible to find a threshold λ satisfying inequality
in Equation (16) or Equation (27) if the data size is smaller than Mmin. Equivalently, for a fixed data
size M, it is not possible to find a threshold λ satisfying inequality in Equation (16) or Equation (27)
if the SNR is smaller than SNRmin. It can be observed that there exists some fundamental limitations
in the effort of keeping the sum of the two error probabilities smaller than a designated confidence
level. Theoretically, it is impossible to explicitly solve the four optimization problems introduced in
Section 3. In this section, we investigate the asymptotical performances of the solutions to the four
nonlinear optimization problems, i.e., to find the orders of Mmin as SNR tends to 0, and the orders of
SNRmin as M tends to ∞.

We fist analyze (ÑP1)(ÑP2), since Q function is much better than incomplete Gamma function,
e.g., Q function possesses an interesting property as Q(x) = 1−Q(−x). Then, we establish a relation
between incomplete Gamma function given by Equation (A3) (in the Appendix) and Q function in
Lemma 1 to facilitate the investigations for (NP1)(NP2). Throughout this section, SNR is usually
simplified as s for brief. Two functions ψ(t) and φ(t) are called to be of equivalent order, if

lim
t→t0

ψ(t)
φ(t)

= 1.

and are simply denoted below by ψ(t) ∼ φ(t) as t→ t0.
The solution of (ÑP1) is discussed in the followings as a starting point.

Theorem 1. The solution of nonlinear optimization problem (ÑP1) with α ∈ (0, 1
2 ), denoted by Mmin, has

bounds given as

2(2 + s)2

s2 x2
1 < Mmin < 1 +

2(2 + s)2

s2 x2
2, (35)

where x1 = Q−1
(

α+α1
2

)
and x2 = Q−1

(
α−α2

2

)
with α1 = s+2√

πMmin
and α2 = s+2√

π(Mmin−1)
. Additionally,

Mmin ∼
2(2 + s)2

s2

[
Q−1

(α

2

)]2
(36)

as s→ 0.

Proof. Recall the notations λ̃0 and λ∗ given by Equations (30) and (34), respectively, we derive

σ2
n < λ∗ < λ̃0 < σ2

t

for M > 4 ln(1+s)
s2 . It clearly indicates Mmin > 4 ln(1+s)

s2 . Otherwise, the minimum point λ̃0 of
function Q(M, s, λ), given by Equation (33), does not belong to (σ2

n , σ2
t ). Thus, the minimum value of

Q(M, s, λ) over (σ2
n , σ2

t ) attains at either λ = σ2
n or σ2

t , which means Q(M, s, λ) > 1
2 > α over (σ2

n , σ2
t ),

contradicting the definition of Mmin. Thus, Mmin → ∞ as s→ 0.
Clearly, we have

λ̃0 − λ∗ =
(1 + s)(δ1 − 1)

2 + s
σ2

n , (37)

where δ1 =
√

1 + δ + 2δ
s and δ = 4

M ln(1 + s).
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Using standard Mean Value Theorem to Q(M, s, λ), given by Equation (33), with respective to
λ = λ̃0, λ∗, we have

Q(M, s, λ̃0) = Q(M, s, λ∗) +
∂Q(M, s, λ)

∂λ

∣∣∣
λ=ξ

(λ̃0 − λ∗), (38)

where ξ ∈ (λ∗, λ̃0). Note that

∣∣∣∣
∂Q(M, s, λ)

∂λ

∣∣∣
λ=ξ

∣∣∣∣ =
m√
2π

∣∣∣∣∣∣
1
σ2

t
e
−m2(ξ−σ2

t )
2

2σ4
t − 1

σ2
n

e
−m2(ξ−σ2

n)
2

2σ4
n

∣∣∣∣∣∣

<
m√
2π

(
1
σ2

t
+

1
σ2

n

)
=

m
σ2

n
√

2π

2 + s
1 + s

,

and

δ1 − 1 =

√
1 + δ +

2δ

s
− 1 < 1 +

δ

2
+

δ

s
− 1 =

(s + 2)δ
2s

=
2(s + 2) ln(1 + s)

Ms
<

2(s + 2)
M

,

we have, by Equation (38),

∣∣Q(M, s, λ̃0)−Q(M, s, λ∗)
∣∣ < m(δ1 − 1)√

2π
<

2m(s + 2)
M
√

2π
=

s + 2
m
√

2π

∆
= α1(m, s). (39)

Clearly, α1(m, s)→ 0 as m→ ∞.
Observing that Q(M, s, λ∗) = 2Q

( ms
2+s
)
, and recalling Mmin, the solution of (ÑP1), by Equation (39)

we know that

2Q
(

m0s
2 + s

)
− α1(m0, s) < Q(Mmin, s, λ̃0) ≤ α, (40)

2Q
(

m1s
2 + s

)
+ α1(m1, s) > Q(Mmin − 1, s, λ̃0) > α, (41)

where m0 =
√

Mmin/2 and m1 =
√
(Mmin − 1)/2.

By solving the inequality in Equation (40), we derive a lower bound of Mmin as

Mmin >
2(2 + s)2

s2 x2
1,

where x1 = Q−1
(

α+α1(m0,s)
2

)
. By solving the inequality in Equation (41), we derive an upper bound of

Mmin as

Mmin < 1 +
2(2 + s)2

s2 x2
2,

where x2 = Q−1
(

α−α1(m1,s)
2

)
.

Recalling the fact that Mmin → ∞ as s → 0 guaranteed in the beginning of the proof,
Equation (36) follows immediately.

Now, based on the facts revealed in the above proof, the consideration of (ÑP2) is much simplified.
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Theorem 2. The solution of nonlinear optimization problem (ÑP2) with α ∈ (0, 1
2 ), denoted by SNRmin,

has bounds as following:

2Q−1( α+α1
2 )√

M
2 −Q−1( α+α1

2 )
< SNRmin < ε +

2Q−1( α−α2
2 )√

M
2 −Q−1( α−α2

2 )
, (42)

where α1 = SNRmin+2√
πM

and α2 = SNRmin−ε+2√
πM

with ∀ε > 0. Additionally,

SNRmin ∼
2Q−1( α

2 )√
M
2 −Q−1( α

2 )
(43)

as M→ ∞.

Proof. Recalling the solution of (ÑP2) SNRmin, denoted by sm for brief, by Equation (39) we have

2Q
(

msm

2 + sm

)
− α1(m, sm) < Q(M, sm, λ̃0) ≤ α, (44)

2Q
(

m(sm − ε)

2 + (sm − ε)

)
+ α1(m, sm − ε) > Q(M, sm − ε, λ̃0) > α, (45)

where ε > 0 and α1(m, s) is given by Equation (39). After solving the two inequalities and
Equations (44) and (45), we can derive Equation (42).

Note that α1 −−−→
M→∞

0 and α2 −−−→
M→∞

0, Equation (43) follows directly.

As already mentioned, we establish a relation between Q function and incomplete Gamma
function before the considerations of (NP1) and (NP2).

Lemma 1. Extend the incomplete Gamma function given by Equation (A3) (in the Appendix) by letting
Γ(k, x) = 1 for x < 0. Then, for ∀x,

∣∣∣∣∣Γ
(

M
2

,
M
2

+ x

√
M
2

)
−Q(x)

∣∣∣∣∣ ≤
14C√

2M
, (46)

where C = 0.7056.

Proof. Let us first recall a simple version of the Berry–Esseen inequality (see, e.g., page 670 of [23])
here: Let ξ1, ξ2, . . . , be iid random variables with Eξ1 = µ, Eξ2

1 = σ2, and E|ξ1 − Eξ1|3 = ρ < ∞.
In addition, let Sn = ∑n

k=1 ξk. Let the distribution function of

S∗n =
Sn − nµ√
n(σ2 − µ2)

be denoted by Fn(x), and the normal distribution function be denoted by Φ(x). There exists a positive
constant C such that, for all x and n,

|Fn(x)−Φ(x)| ≤ Cρ√
n(σ2 − µ2)3/2 .

The best current bound for C was discovered by Shevtsova as 0.7056 [24] in 2007.
For M iid standardly normal distributed random variables ηk, k = 1, 2, . . . , M, we know that

Eη2
k = 1, Eη4

k = 3, Eη6
k = 15. On the other hand, by the definition of chi-square distribution, it is clear

that SM = ∑M
k=1 η2

k is chi-square distributed with degree M, i.e., SM ∼ χ2
M. Apply the Berry–Esseen



J. Sens. Actuator Netw. 2018, 7, 25 19 of 24

inequality to ξk = η2
k , k = 1, . . . , M, by noticing µ = 1, σ2 = 3 and ρ ≤ 28 (by the fact |η2

k − 1| ≤ η2
k + 1)

for this case, we have
∣∣∣∣Pr
[

SM −M√
2M

> x
]
−Q(x)

∣∣∣∣ ≤
14C√

2M
, (47)

where C = 0.7056.
Recalling the PDF of chi-square distribution given by Equation (5), we have

Pr
[

SM −M√
2M

> x
]
= Pr

[
SM > M + x

√
2M
]

=
∫ ∞

M+x
√

2M

t
M
2 −1e−

t
2 dt

2
M
2 Γ(M

2 )

=
∫ ∞

M
2 +x

√
M
2

u
M
2 −1e−udu

Γ(M
2 )

= Γ

(
M
2

,
M
2

+ x

√
M
2

)
. (48)

Combining Equations (47) and (48), we derive Equation (46).

Now, we are in the position to analyze the situation of (NP1).

Theorem 3. The solution of nonlinear optimization problem (NP1) with α ∈ (0, 1), denoted by Mmin, has bounds
as following:

2(2 + s)2

s2 x2
1 < Mmin < 1 +

2(2 + s)2

s2 x2
2, (49)

where x1 and x2 are given in the following proof. Additionally,

Mmin ∼
2(2 + s)2

s2

[
Q−1

(α

2

)]2
(50)

as s→ 0.

Proof. Recalling the functions Γ(M, s, λ) and Q(M, s, λ) given by Equations (19) and (33), respectively,
by Equation (46), we have

|Γ(M, s, λ)−Q(M, s, λ)| ≤ 14C√
2M

, (51)

where C = 0.7056.
Recalling also λ0 and λ∗ given by Equations (17) and (34), respectively, we have

σ2
n < λ∗ < λ0 < σ2

t

by the fact 2s
2+s < ln(1 + s) for s > 0, and by the inequality ln(1 + s) < s − s2

2 + s3

3 for s > 0,
we further have

0 < λ0 − λ∗ =
(1 + s)σ2

n
s

[
ln(1 + s)− 2s

2 + s

]
<

s2(1 + s)(1 + 2s)σ2
n

6(2 + s)
. (52)
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Similar to the derivation of Equation (39), by Equation (52), we have

|Q(M, s, λ0)−Q(M, s, λ∗)| <
ms2(1 + 2s)

6
√

2π
. (53)

Observing that Q(M, s, λ∗) = 2Q
( ms

2+s
)
, and recalling Mmin, the solution of (NP1), by Equations (51)

and (53) we know that

2Q
(

m0s
2 + s

)
− α2(m0, s) < Γ(Mmin, s, λ̃0) ≤ α, (54)

2Q
(

m1s
2 + s

)
+ α2(m1, s) > Γ(Mmin − 1, s, λ̃0) > α, (55)

where m0 =
√

Mmin/2, m1 =
√
(Mmin − 1)/2, and

α2(m, s) =
14C√

2M
+

ms2(1 + 2s)
6
√

2π
. (56)

By solving the inequality in Equation (54), we derive a lower bound of Mmin as

Mmin >
2(2 + s)2

s2 x2
1,

where x1 = Q−1
(

α+α2(m0,s)
2

)
. While by solving the inequality in Equation (55), we derive an upper

bound of Mmin as

Mmin < 1 +
2(2 + s)2

s2 x2
2,

where x2 = Q−1
(

α−α2(m1,s)
2

)
.

It is sufficient to prove Equation (50) based on the facts that α2(m0, s)→ 0 and α2(m1, s)→ 0 as
s→ 0. For this, we first note that

0 <
Mλ0

2σ2
n
− Mλ0

2σ2
t

=
M ln(1 + s)

2
<

Ms
2

= m2s.

If m2s −−→
s→0

0, then Γ(M, s, λ) −−→
s→0

1. This means that M −−→
s→0

∞. On the other side, we have

Mλ0

2σ2
n
− M

2
=

M
2

[
(1 + s) ln(1 + s)

s
− 1
]
>

m2s
2 + s

,

M
2
− Mλ0

2σ2
t

=
M
2

[
1− ln(1 + s)

s

]
>

m2s(3− 2s)
6

by inequalities ln(1 + s) > 2s
2+s and ln(1 + s) < s − s2

2 + s3

3 for s > 0. Thus, we know that
m0s = O(1) as s→ 0. Otherwise, by Chebyshev’s inequality, similar to Equations(25) and (26), we have
Γ(Mmin, s, λ) −−−→

s→∞
0, which contradicts the fact that Γ(Mmin, s, λ) should be around the quantity α > 0.

Hence, the conclusions that α2(m0, s) −−−→
s→∞

0 and α2(m1, s) −−−→
s→∞

0 follow directly.

Based on the foundation in above proof, the analysis of (NP2) is simplified as below.
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Theorem 4. The solution of nonlinear optimization problem (NP2) with α ∈ (0, 1), denoted by SNRmin, has
bounds as follows:

2Q−1( α+α1
2 )√

M
2 −Q−1( α+α1

2 )
< SNRmin < ε +

2Q−1( α−α2
2 )√

M
2 −Q−1( α−α2

2 )
, (57)

where α1 and α2 are given in the following proof, equipped with ∀ε > 0. Additionally,

SNRmin ∼
2Q−1( α

2 )√
M
2 −Q−1( α

2 )
(58)

as M→ ∞.

Proof. Recalling the solution of (NP2) SNRmin, denoted by sm for brief, and observing
Q(M, s, λ∗) = 2Q

( ms
2+s
)
, by Equations (51) and (53), we have

2Q
(

msm

2 + sm

)
− α2(m, sm) < Q(M, sm, λ̃0) ≤ α, (59)

2Q
(

m(sm − ε)

2 + (sm − ε)

)
+ α2(m, sm − ε) > Q(M, sm − ε, λ̃0) > α, (60)

where ε > 0 and α2(m, s) is defined by Equation (56). Solving the two inequalities in Equations (59)
and (60), we derive Equation (57) with α1 = α2(m, sm) and α2 = α2(m, sm − ε).

By the facts pointed out in last part of proof for Theorem 3, i.e., that m2s is not an infinitesimal
quantity (thus, s→ 0 if m→ ∞) and that ms is bounded, and recalling the definition in Equation (56)
we have α1 −−−→

M→∞
0 and α2 −−−→

M→∞
0. Thus, Equation (58) follows directly.

Now, we find Mmin, either the solution of (NP1) or (ÑP1), has an asymptotical order as

Mmin ∼
2(2 + s)2

s2

[
Q−1

(α

2

)]2
(s→ 0); (61)

and SNRmin, either the solution of (NP2) or (ÑP2), has an asymptotical order as

SNRmin ∼
2Q−1( α

2 )√
M
2 −Q−1( α

2 )
(M→ ∞). (62)

If replacing the notations “∼” by “=” in the above two formulas, we find that the derived two
equations are equivalent by ignoring the differences between M, SNR and Mmin SNRmin respectively.

Based on the foundation in above proof, the analysis of (NP2) is simplified as below.
By noticing the facts that the potential threshold λ̃0 tends to λ∗ as SNR→ 0 (or M→ ∞), and that

Q(M, s, λ∗) = 2Q
( ms

2+s
)
, we can propose another principle by replacing the restriction in Equation (27)

in (ÑP1)(ÑP2) as

P̃f a(λ∗) + (1− P̃d(λ∗)) ≤ α,

which is equivalent to

2Q
(

ms
2 + s

)
≤ α.
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Under this principle, the corresponding (ÑP1)(ÑP2) issues can be explicitly solved. Such an idea
of replacement also serves as the key for the proofs presented in this section.

6. Conclusions

Spectrum sensing is a key step of enabling the recently emerged CR technologies by detecting the
presence/absence of signals to explore spatial and temporal availability of spectrum resources. Among
the possible methods for spectrum sensing, energy detection is the most popular and widely adopted
technique, most likely due to its low implementation complexity. Two detection principles, i.e., CFAR
and CDR, have been reported to set a threshold for corresponding binary hypothesis. CDR protects
primary users at a designated low level of interference, while CFAR ensures a high resource utilization
available to the secondary users. In practice, it is desired to initiate a graceful tradeoff between these
two principles.

Motivated by this, the paper explored a new principle where the sum of the false alarm
probability Pf a from CFAR and the false detection probability (1− Pd) from CDR is kept smaller
than a predetermined confidence level. Mathematically, for a given small confidence level α ∈ (0, 1),
say α = 0.05, the proposed principle aims to identify a threshold λ such that

Pf a(λ) + (1− Pd(λ)) ≤ α. (63)

However, this equation regarding potential threshold λ may lead to too many solutions or no
solutions for a given noise variance σ2

n , SNR and data size M. To tackle this situation, the paper firstly
introduced two well-posed presentations for the optimization problems by finding the minimum data
size M (with σ2

n and SNR given) and SNR (with σ2
n and M given), respectively.

From our analysis, we found that for a fixed small SNR the data size M should be larger than
a critical value, denoted by Mmin, to guarantee the existence of threshold λ suggested by the new
principle under given confidence level α. An asymptotical explicit form between Mmin and SNR,
i.e., Equation (61), is further given in Section 5. On the other hand, it is also discovered that, for a
given data size M, SNR should be greater than a minimum SNR to ensure the existence of threshold
λ suggested by the new principle under a given confidence level α. An asymptotical explicit form
between the minimum SNR and M, i.e., Equations (62), is further proposed in Section 5. We found that,
if data size M is fixed, SNR should be greater than a certain level to perform considerate detection.
If SNR known to be small and fixed, the data size should be greater than a certain level to detect
reliably. These discoveries are important for policymaking for the settings of a CR sensing system, such
as detection time and design sample rate for a special channel to achieve efficiency and noninterference
at a confidence level. The proposed optimization problems can be effectively solved fast by setting the
initial solution given by Equation (61) or (62). Therefore, the proposed framework is applicable both in
theoretical and operational aspects.

It is worth noting that the inequality in Equation (63) can be extended to a more general form as

w1Pf a(λ) + w2(1− Pd(λ)) ≤ α, (64)

where w1 ≥ 0 and w2 ≥ 0. Clearly, if w1 = 1 and w2 = 0, Equation (64) derives CFAR principle;
if w1 = 0 and w2 = 1, Equation (64) leads to CDR principle; and, finally, if w1 = 1 and w2 = 1,
Equation (64) turns to be the new principle introduced in this paper. It is of interest to consider relevant
theories based on the inequality in Equation (64) in the general setting.
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Appendix

The Appendix provides some preliminaries on a number of commonly used distributions in the
paper for easy reading.

The complement of the standard normal distribution function is often denoted Q(x), i.e.,

Q(x) =
∫ ∞

x

1√
2π

e−
t2
2 dt, (A1)

and is sometimes referred to simply as the Q-function, especially in engineering texts. This represents
the tail probability of the standard Gaussian distribution. The Gamma function and regularized upper
incomplete Gamma function are defined as

Γ(k) =
∫ ∞

0
tk−1e−tdt, (A2)

Γ(k, x) =
1

Γ(k)

∫ ∞

x
tk−1e−tdt (A3)

for k > 0, respectively. We simply use Q−1(x), Γ−1(k, x) to present the inverse functions of Q(x),
Γ(k, x) respectively.
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