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Abstract: This work proposes a novel approach for tracking a moving target in non-line-of-sight
(NLOS) environments based on range estimates extracted from received signal strength (RSS) and
time of arrival (TOA) measurements. By exploiting the known architecture of reference points to act
as an improper antenna array and the range estimates, angle of arrival (AOA) of the signal emitted
by the target is first estimated at each reference point. We then show how to take advantage of these
angle estimates to convert the problem into a more convenient, polar space, where a linearization of
the measurement models is easily achieved. The derived linear model serves as the main building
block on top of which prior knowledge acquired during the movement of the target is incorporated
by adapting a Kalman filter (KF). The performance of the proposed approach was assessed through
computer simulations, which confirmed its effectiveness in combating the negative effect of NLOS
bias and superiority in comparison with its naive counterpart, which does not take prior knowledge
into consideration.

Keywords: target tracking; non-line-of-sight (NLOS); received signal strength (RSS); time of arrival
(TOA); angle of arrival (AOA); Kalman filter (KF)

1. Introduction

Tracking a mobile target is important in many practical applications, such as autonomous
surveillance, search-rescue, robotic navigation, and wildlife monitoring, to name a few [1–13].
Besides striving towards accurately attaining this goal, another important requirement is to do so while
maintaining low implementation cost. Therefore, taking advantage of already installed technological
solutions, such as terrestrial radio frequency founts, is highly supported. These include received signal
strength (RSS) [14–17], time of arrival (TOA) [18–22], angle of arrival (AOA) [23–25], or perhaps an
amalgamation of them [16–36].

Target localization and tracking problems have lured great attention in the research community
lately. The authors of refs. [3–5,7,8,10,13,15,17–36] considered only a classical problem of target
localization in wireless sensor networks (WSNs), where the authors disregarded completely any
previous knowledge and awarded all significance to measurements exclusively. The authors of
refs. [27,28] studied the problem of range estimation founded on RSS and TOA contents. In
refs. [34–36], the target localization problem in a mixture of line-of-sight (LOS)/non-line-of-sight
(NLOS) environments is addressed. The authors of ref. [34] started by identifying the type of path for
each link based on Nakagami distribution, after which they derived a weighted least squares (WLS)
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estimator that makes use of TOA-only/RSS-only observations if the link is recognized as LOS/NLOS,
respectively. A sequential squared range WLS estimator is presented in ref. [35]. The authors of ref. [35]
partially mitigated the harmful impact of NLOS biases by managing to approximate all NLOS biases
by a lone (mean) variable, after which an intermittent process was applied to obtain an estimate the
location of the target. In ref. [36], the authors took into account a worst-case setting where it was
assumed that every link in the network is NLOS. Founded on this, as well as the presumption that
(imperfect) knowledge about the magnitude of the NLOS bias is available, they deduced a min-max
problem from which a robust estimator written in a generalized trust region sub-problem structure
was derived. The works in refs. [16,37,38] consider the problem of tracking a moving target, where
the measurements are integrated with some previously accumulated knowledge to complement the
localization precision. Nevertheless, all of these works investigate only target tracking problem
based on RSS solely. The authors of ref. [14] studied the problem of tracking a moving target by
incorporating hybrid, RSS and AOA, observations. The solution proposed for such a problem in
ref. [14] is based on a Kalman filter (KF). For this purpose, it is assumed that sensors are equipped
with suitable hardware to measure AOA. Besides the referred schemes designed particularly for RSS-
and RSS-AOA-based target tracking, several other classical approaches (fundamentally nothing else
but alterations of the KF) can be found in the literature nowadays. Among others, these include the
extended KF (EKF) [39–45], which does not require any presumptions regarding the linearity of the
state or measurement models. Alternatively, EKF approximates these non-linear models by the use
of the first-order Taylor series expansion. Nonetheless, this implies calculating the Jacobian matrix,
which can be arduous or sometimes even not feasible. Another popular modification is unscented KF,
which is based on unscented transformation. This transformation is based on the rationale that it is
easier to approximate a probability distribution than it is to approximate an arbitrary non-linear function or
transformation [46]. The key concept here is to represent the state distribution by a least possible set of
thoughtfully chosen motes, also known as sigma points. The sigma points entirely apprehend both
mean and covariance of the distribution, thus, even after they are fed into the original (non-linear)
model, they can still seize the mean and covariance up to the third order (Taylor series extension) for
any non-linearity [46–48]. Analogously with the unscented KF, particle filter (PF) tends to capture
the posterior probability distribution function (PDF) of the state through sample motes, referred to
as particles. However, the main distinction between the two methods is that the particles are chosen
randomly, and usually, high number of particles is used. Basically, a particle filter is nothing else but
an ordinary randomization scheme and its performance, as well as its computational burden, highly
depend on the number of particles employed [14,37]. The particles are sequentially re-sampled based
on latest measurements. Similar to the previous two extensions, particle filters do not require linearity
or Gaussianity presumptions [48,49]. Furthermore, the authors of refs. [1,43,50] investigated the
problem of tracking a moving target with mobile sensors. Lastly, in ref. [51,52], the authors considered
the target tracking problem based on fused RSS and TOA measurements. More specifically, a PF is
proposed in ref. [51], whereas an EKF is presented in ref. [52].

The main contribution of this work is threefold. We show how to obtain an estimate of the AOA
of the incoming radio signal without the necessity of any additional hardware, such as a directional
antenna or an antenna array, which could severely raise the financial cost of the network. This is
done by using range estimates extracted from RSS and TOA measurements, as well as exploiting
the known topology of the available reference points to play the role of an irregular antenna array.
In this way, we form triangles between a pair of anchors and the target, and use the law of cosines
to estimate the angle information. Next, we also show how to make use of the estimated AOA
information to effortlessly approximate the highly non-linear measurement model by a linear one.
This is accomplished by applying Cartesian to polar coordinates conversion, which allows us to tackle
the problem in a more suitable space given that AOA information is available. Finally, we show
how to incorporate prior knowledge acquired during the target’s movement on top of the derived
linear model, which results in an efficient tracking algorithm. This is achieved by applying Bayesian
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methodology and adapting KF equations. Hence, in huge contrast to the existing RSS and TOA tracking
algorithms [51,52], the new one takes advantage of the network topology to gather extra information
about the AOA of the received signal. Note that this is also in sharp contrast to the RSS-AOA tracking
algorithm presented in ref. [43], where the authors assumed that anchors are conveniently equipped
with additional hardware in order to measure the AOA quantity of the received signal. Moreover,
instead of employing a high number of particles [51] or calculating the Jacobian matrix [52], which
can considerably elevate the computational burden, the proposed approach is based on linearizing the
measurement models by the use of estimated AOA information, which makes it very light in terms of
computational cost.

The current work is assembled as follows. Section 2 introduces the measurement model together
with the target state transition model, and formulates the target tracking problem based on a Bayesian
methodology. In Section 3, the proposed technique to estimate the AOA information of the received
radio signal at each anchor is described. Section 4 shows how to make use of the additional AOA
information in order to linearize the measurement model on top of which prior knowledge can easily be
incorporated by means of adapting KF equations. In Section 5, simulation results for a fairly complex
target trajectory are presented with the objective of validating the performance of the new approach.
Lastly, Section 6 abridges the main findings of the work and identifies some possible directions of our
future work.

2. Problem Formulation

Let us consider a two-dimensional WSN, where ai and xt represent the known location of the ith
reference point, also called anchor (i = 1, ..., N) and the unknown location of a moving target at time
t, respectively. At each time instant, the target sends a radio signal to anchors, which are adequately
equipped to withdraw the RSS and the TOA quantity from the received signal. In inauspicious
NLOS surroundings, RSS and TOA observations at time t, labeled as Pi,t and di,t respectively, can be
modeled [27,28] as

Pi,t = P0 − bi,t − 10γ log10
‖xt − ai‖

d0
+ ni,t, (1a)

di,t = ‖xt − ai‖+ βi,t + mi,t, (1b)

where P0 is the RSS (dBm) at a reference distance d0 (‖xt − ai‖ ≥ d0), bi,t (dB) and βi,t (m) are the
(positive) NLOS biases, γ is the path loss exponent that indicates the rate at which the RSS decreases
with distance, ni,t is the log-normal shadowing term (dB) modeled as a zero-mean Gaussian random
variable, i.e., ni,t ∼ N (0, σ2

ni
), and mi,t ∼ N (0, σ2

mi
) is the TOA measurement noise (m). Similar to some

existing works [19–21], it is assumed here that the magnitude of the NLOS biases can be bounded by a
known constant, i.e., 0 ≤ bi,t ≤ bmax and 0 ≤ βi,t ≤ βmax. This upper bound can be easily estimated
during the calibration phase [21,36].

If all RSS and all TOA observations are stored into a sole vector, i.e., Pt = [Pi,t]
T and dt = [di,t]

T

(Pt, dt ∈ RN), the joint likelihood function can be written as

Λ(Pt, dt|xt, bi,t, βi,t) = p(Pt|xt, bi,t) p(dt|xt, βi,t)

= 1√
2πσ2

ni σ2
mi

exp

−
(

Pi,t−P0+bi,t+10γ log10
‖xt−ai,t‖

d0

)2
σ2

mi
+(di,t−‖xt−ai,t‖−βi,t)

2
σ2

ni

σ2
ni σ2

mi

 ,
(2)

where p(•) denotes the probability density function (PDF). The function in Equation (2) represents
the exact likelihood function if RSS and TOA measurements are taken from independent sources [28].
Even though this might not be the case in practice, the authors of refs. [27,32] showed through
experimental measurements that the observations extracted from the same signal are weakly correlated.
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The joint RSS-TOA maximum likelihood (ML) estimator of xt, bi,t and βi,t at time t is obtained by
maximizing the joint PDF as

{
x̂t, b̂i,t, β̂i,t

}
= arg min

xt ,bi,t ,βi,t

N

∑
i=1

(
Pi,t − P0 + bi,t + 10γ log10

‖xt−ai‖
d0

)2
σ2

mi
+
(
di,t − ‖xt − ai‖ − βi,t

)2
σ2

ni

σ2
ni

σ2
mi

.

(3)
However, Equation (3) is a very difficult optimization problem that cannot be solved directly,

since it is highly non-convex and under-determined (the number of unknowns, 2N + 2, is superior
to the number of measurement readings, 2N, at every time instant). Moreover, Equation (3) does not
take any prior knowledge accumulated during the movement of the target into consideration, which,
for the case of tracking a moving target, makes it a naive approach. Thus, to improve accuracy of an
estimator, one should incorporate prior knowledge into the estimator.

Here, it is assumed that the target is moving according to a nearly constant velocity motion model.
Therefore, the velocity elements in x- and y-directions at time t are given by

vt = vt−1 + rv,t, (4)

where rv,t represents the noise perturbations (e.g., due to wind gust). Therefore, according to the
equations of motion [39], the location of the target at time instant t is given by

xt = xt−1 + vt−1∆ + rx,t, (5)

where ∆ and rx,t are, respectively, the sampling interval among two successive time steps and location
process noise. Hence, by describing the target state at time instant t by both its location and velocity,
that is, θt = [xT

t , vT
t ]

T (i.e., θt ∈ R4), from Equations (4) and (5) it follows that

θt = S θt−1 + rt, (6)

where

S =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

,

represents the state transition matrix and rt = [rT
x,t, rT

v,t]
T is the state process noise [16,37,38,42],

assumed to be a zero-mean Gaussian random variable with covariance matrix Q, that is, rt ∼ N (0, Q).
This noise covariance matrix is defined by

Q = q


∆3

3 0 ∆2

2 0
0 ∆3

3 0 ∆2

2
∆2

2 0 ∆ 0
0 ∆2

2 0 ∆

,

where q represents the intensity of the state process noise [38,42,53]. A detailed derivation of the state
transition model, as well as the matrices S and Q is given in Appendix A.

Moreover, for ease of notation, the measurement equation (Equation (1)) is rewritten in vector
form as

zt = h(xt) + nt, (7)

where zt = [PT
t , dT

t ]
T (zt ∈ R2N) is the vector of all measurements at time instant t. Thus, the function

h(xt) = [hi(xt)]T in Equation (7) is defined as hi(xt) = P0 − bi,t − 10γ log10
‖xt−ai‖

d0
for i = 1, ..., N [54],
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and hi(xt) = ‖xt − ai‖ + βi,t for i = N + 1, ..., 2N [27]. The measurement noise, nt, is modeled as
nt ∼ N (0, C), with the noise covariance matrix being defined as C = diag([σ2

ni
, σ2

mi
]), with diag(•)

denoting a diagonal matrix.
According to Bayesian methodology, prior knowledge, acquired via the state transition model

in Equation (6), can be combined with noisy observations in Equation (7) to get a marginal posterior
PDF, p(θt|z1:t). The reason for this is that through p(θt|z1:t) one can quantify the confidence one has
in the values of the state θt given all the past observations z1:t, from which an estimate at any desired
time instant can be obtained. For the reader to have a better intuition of how it works, the key parts of
the Bayesian estimation are summarized as follows [39].

• Initialization: The marginal posterior PDF at t = 0 is set to the prior PDF p(θ0) of θ0.
• Prediction: By following the state transition model in Equation (6), the predictive PDF of the state

at t is given by

p(θt|z1:t−1) =
∫

p(θt|θt−1)p(θt−1|z1:t−1)dθt−1. (8)

• Update: According to Bayes’ rule [42,53], one has that

p(θt|z1:t) =
p(zt|θt)p(θt|z1:t−1)

p(zt|z1:t−1)
, (9)

where p(zt|θt) is the likelihood and p(zt|z1:t−1) =
∫

p(zt|θt)p(θt|z1:t−1)dθt is just a normalizing
constant that does not depend on θt, required to assure that p(θt|z1:t) integrates to 1 [39].
Generally, the marginal PDF at t− 1 cannot be calculated in analytic form. Moreover, the integral
in Equation (8) cannot be obtained in closed-form, unless the state model is linear. Hence, certain
approximations are necessary to get p(θt|z1:t).

In the following section, we show how to estimate AOA information at each anchor, by only
taking advantage of the network architecture formed by anchors and range estimates from RSS and
TOA measurements, without requiring any additional hardware. This information is then exploited
to linearize the measurement models in Equation (1), which serve as a base on top of which we adapt
a KF.

3. Angle of Arrival Estimation

Notice that, from Equation (1), the distances that best estimate ‖xt − ai‖ in the mean ML sense are

d̂ RSS
i,t = d010

P0−Pi,t−
bmax

2
10γ , (10a)

d̂ TOA
i,t = di,t −

βmax

2
. (10b)

Once these distance estimates are obtained at any time instant, together with ai, i = 1, ..., N,
one can form triangles between any pair of anchors and the target, as illustrated in Figure 1, where d̂i,t
is used instead of d̂ RSS

i,t and d̂ TOA
i,t for the sake of simplicity. Hence, in each of the triangles, the lengths

of the three sides are (imperfectly) known. This allows for straightforward estimation of the angle βi,t
(see Figure 1), by just applying the law of cosines [55] as

β̂i,t = cos−1

d2
ij + d̂2

i,t − d̂2
j,t

2dijd̂i,t

 , (11)
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based on both RSS and TOA observations. Then, the estimated azimuth angle of the received radio
signal at the ith anchor at time t (from both RSS and TOA measurements) is obtained according to

ϕ̂i,t = αij ± β̂i,t, (12)

where αij is the azimuth angle between anchors i and j, and ± is used due to possible orientation of
the target (see Figure 1). In general, to find the right orientation of the target, i.e., the correct sign in
Equation (12), it suffices to obtain only a coarse estimate of the target’s location, which, for example,
can be accomplished by the trilateration approach in ref. [23]. However, due to high degree of difficulty
of the problem at hand, achieving the right orientation of the target might not be feasible in practice.
Therefore, due to flip-ambiguity issues, the estimation accuracy might get seriously compromised.
Nonetheless, in some favorable deployments of the anchors (such as the ones considered in Section 5),
where the orientation of the target is known a priori, we show that using the angle estimates in
Equation (12) can significantly improve localization accuracy of an algorithm.

aiaj

xt

xt’

βi,t
    

    ϕi,t
αij

dj,t di,t

dij

Figure 1. Geometrical interpretation of the AOA estimation process.

4. Target Tracking

In this section, we propose a novel tracking algorithm based on KF, which can be contemplated as
a generalized consecutive minimum mean square estimator of a signal corrupted by noise, where the
unknown parameters are permitted to develop in time in concordance with a given dynamical
model [39]. What is characteristic for this filter is that, if both the state and the observation models
are linear and the noise is known to be zero-mean (having finite covariance), KF renders the optimal
solution in the least squares sense [42]. However, our measurement model in Equation (1) is highly
non-linear. Therefore, we first take advantage of the angle estimates in Equation (12) to linearize
it. This procedure allows straightforward derivation of a sub-optimal solution in a closed-form
for the target localization problem in Equation (3), in which the prior knowledge is completely
disregarded. Moreover, we also show that the derived linearized measurement model also triggers
effortless adaptation of KF equations, which take the prior knowledge into consideration to improve
the localization performance.

Note that one can rewrite Equation (10) as follows.

λi,t‖xt − ai‖ = ηd0, (13a)

‖xt − ai‖ = di,t −
βmax

2
, (13b)
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where λi,t = 10
Pi,t+

bmax
2

10γ and η = 10
P0

10γ . Furthermore, from geometry, one has that

ϕ̂i,t = tan−1
( xty − aiy

xtx − aix

)
,

where xty and aiy, respectively, designate the y-coordinates of the target and the ith anchor at time t,
and xtx and aix their x-coordinates at t. By applying some simple algebraic manipulations, the above
equation can be rewritten as

cT
i,t (xt − ai) = 0, (14a)

kT
i,t (xt − ai) = 0, (14b)

where ci,t = [− sin(ϕ̂RSS
i,t ), cos(ϕ̂RSS

i,t )]T and ki,t = [− sin(ϕ̂TOA
i,t ), cos(ϕ̂TOA

i,t )]T .
Hence, an estimate of xt can be obtained by solving the following problem

x̂t = arg min
xt

N

∑
i=1

(
λi,t‖xt − ai‖ − ηd0

)2
+

N

∑
i=1

(
cT

i,t (xt − ai)
)2

+
N

∑
i=1

(
‖xt − ai‖ − d̂ TOA

i,t

)2
+

N

∑
i=1

(
kT

i,t (xt − ai)
)2

,
(15)

resulting from the application of the least squares criterion to Equations (13) and (14).
However, the problem in Equation (15) is non-convex due to the norm terms containing xt.

Consequently, combating Equation (15) directly is difficult, and we take a different approach here.
Rather than dealing with the problem in the Cartesian space, we exploit the estimated angles to
transform Equation (15) into the polar space, a more suitable one when dealing with angles [33,56,57].
To do so, we express xt − ai = ri,tui,t in Equation (13a), with ri,t ≥ 0 and ‖ui,t‖ = 1, where the
estimated unit vector is defined as ui,t = [cos(ϕ̂RSS

i,t ), sin(ϕ̂RSS
i,t )]T . This results in ‖xt − ai‖ = ri,t.

A similar procedure is applied to Equation (13b), where xt − ai = ρi,tvi,t, with ρi,t ≥ 0 and the
estimated unit vector defined as vi,t = [cos(ϕ̂TOA

i,t ), sin(ϕ̂TOA
i,t )]T . The applied process is easily reversed

by just multiplying the two equations by uT
i,tui,t = 1, i.e., vT

i,tvi,t = 1, which brings us back to the
Cartesian space. Thus, by enforcing the above described procedure to Equation (13), we get

λi,tuT
i,tri,tui,t = ηd0 ⇔ λi,tuT

i,t (xt − ai) = ηd0, (16a)

vT
i,tρi,tvi,t = d̂ TOA

i,t ⇔ vT
i,t (xt − ai) = d̂ TOA

i,t . (16b)

Consequently, Equation (16) can be rephrased in a (linear) vector form as

Atxt = bt, (17)
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where

At =



λ1,tuT
1,t

...
λN,tuT

N,t
cT

1,t
...

cT
N,t

vT
1,t
...

vT
Ni,t

kT
1,t
...

kT
N,t



, bt =



λ1,tuT
1,ta1 + ηd0

...
λN,tuT

N,taN + ηd0

cT
1,ta1

...
cT

N,taN

vT
1,ta1 + d̂ TOA

1,t
...

vT
N,taN + d̂ TOA

N,t
kT

1,ta1
...

kT
N,taN



,

which becomes our linearized measurement model.
With the intention to assign more belief to close by links (both RSS and TOA), we introduce weights,

wt = [
√wi,t]

T and ωt = [
√

ωi,t]
T , with wi,t = 1− d̂ RSS

i,t / ∑N
i=1 d̂ RSS

i,t and ωi,t = 1− d̂ TOA
i,t / ∑N

i=1 d̂ TOA
i,t .

Then, based on the WLS principle, we obtain an estimate of xt by solving

x̂t = arg min
xt

N

∑
i=1

wi,t

(
λi,tuT

i,t (xt − ai)− ηd0

)2
+

N

∑
i=1

wi,t

(
cT

i,t (xt − ai)
)2

+
N

∑
i=1

ωi,t

(
vT

i,t (xt − ai)− d̂ TOA
i,t

)2
+

N

∑
i=1

ωi,t

(
kT

i,t (xt − ai)
)2

.
(18)

Note that the optimization variable appears in a quadratic form in Equation (18), which makes
the problem convenient to solve in closed-form. To give its solution, we first rewrite Equation (18) in a
vector form as

minimize
xt

‖W t(Atxt − bt)‖2, (19)

where W t = diag
([

wT
t , wT

t , ωT
t , ωT

t

])
, with diag(•) denoting a diagonal matrix. Hence, the solution

to Equation (19) is given in closed-form as

x̂t =
(

AT
t W T

t W t At

)−1 (
AT

t W T
t bt

)
.

In the remaining text, the estimator in Equation (18) is referred to as “WLS”.
Although Equation (18) is an efficient solution to the target localization problem, it completely

disregards any prior knowledge one might have accumulated during the movement of the target along
its trajectory. Therefore, in the following text, we show that Equation (18) can be used as the main
building block on top of which prior knowledge can be incorporated.

To do so, we rely on the the most common principle of Bayesian methodology for getting a state
estimate, which is the maximum a posteriori principle [39]. Based on this estimation criterion, one
chooses a state estimate, θ̂t|t, that maximizes the marginal PDF, which formally translates into

θ̂t|t = arg max
θt

p(θt|z1:t) = arg max
θt

p(zt|θt)p(θt|z1:t−1), (20)

where the second equality comes from Equation (9). By taking a closer look at Equation (20), one
notices that it contains exactly what we aspired for: ML part related to the measurement model and
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prior PDF part related to prior knowledge. This means that, by the help of KF approach [39], we can
adapt the filter’s equations to derive our own version of the KF as follows.

The mean and the covariance of the one-step predicted state are obtained according
to Equation (6) as

θ̂t|t−1 = S θ̂t−1|t−1 (21a)

Σ̂t|t−1 = S Σ̂t−1|t−1 ST + Q, (21b)

respectively, whereas the updated mean and covariance are given by

θ̂t|t = θ̂t|t−1 + Kt(b̃t −Gtθ̂t|t−1), (22a)

Σ̂t|t = (I4 − KtGt) Σ̂t|t−1, (22b)

with
Kt = Σ̂t|t−1GT

t (GtΣ̂t|t−1GT
t + C)−1 (23)

representing the Kalman gain at time instant t, and Gt = [At, 02N×2] (Gt ∈ R2N×4).
A step-by-step framework of the proposed KF algorithm (labeled here as “KF”) is summarized in

Algorithm 1, and its flow chart is illustrated in Figure 2.

Algorithm 1 KF algorithm description.

Require: S, Q, C, zt, for t = 0, ..., T
1: Initialization: x̂0|0 ← Equation (19), θ̂0|0 ← [x̂T

0|0, 0, 0]T , Σ̂0|0 ← I4

2: for t = 1, ..., T do

3: Prediction:
• θ̂t|t−1 ← Equation (21a)

• Σ̂t|t−1 ← Equation (21b)
4: Kalman gain:

• Kt ← Equation (23)
5: Update:

• θ̂t|t ← Equation (22a)

• Σ̂t|t ← Equation (22b)

6: end for
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Input: S, Q, C, zt, for t = 0, ..., T

Initialize: x̂0|0 ← (19),
θ̂0|0 ← [x̂T

0|0, 0, 0]T ,
Σ̂0|0 ← I4

t← 1

• Prediction: θ̂t|t−1 ← Equation(21a)
Σ̂t|t−1 ← Equation(21b)

• Update: θ̂t|t ← Equation (22a)
Σ̂t|t ← Equation(22b)

t ≤ T?

Stop

t← t + 1

no

yes

Figure 2. Flow chart of the proposed KF algorithm.

5. Performance Results

This section validates the performance of the proposed algorithm based on computer simulations.
The considered algorithms, the PF in ref. [51] and the EKF in ref. [52], as well as the WLS in Equation (19)
and the proposed KF in Algorithm 1, were implemented in MATLAB, and the radio measurements
were generated according to Equation (1). True anchor locations are summarized in Table 1, whereas
the target follows the trajectory illustrated in Figure 3 within an area of B × B m2 in every Monte
Carlo, Mc, run. The rest of the simulation parameters are summarized in Table 2. Furthermore,
NLOS biases (both bi (dB) and βi (m), jointly designated here as biasi for simplicity) are generated
randomly from a uniform distribution on the interval [0, biasmax] (dB, m), i.e., biasi ∼ U [0, biasmax],
i = 1, ..., N in each Mc run. The main performance metric is the root mean squared error (RMSE),

RMSE =
√

∑Mc
i=1

‖xi,t−x̂i,t‖
Mc

, where x̂i,t denotes the estimate of the true target location, xi,t, in the ith Mc

run at time instant t.

Table 1. True locations of anchors in the simulation environment.

i 1 2 3 4 5 6 7 8

ai (m) 0 0 B B 0 B/2 B/2 B
0 B 0 B B/2 0 B B/2
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Table 2. Summary of the simulation parameters.

Parameter Description Value

N The number of sensors ≤8
|LNLOS| The number of NLOS links N

B The length of the area border 30
ai The true anchor locations See Table 1
P0 The reference power 20 (dBm)
d0 The reference distance 1 (m)
γ The PLE 3
σi The noise power (RSS and TOA) ≤6 (dB, m)

biasmax The magnitude the NLOS bias (RSS and TOA) ≤6 (dB, m)
biasi The NLOS bias (RSS and TOA) biasi ∼ U [0, biasmax] (dB, m)
‖vt‖ Speed of the target 0.5 (m/s)

∆ The sampling interval 1 (s)
T Trajectory duration 160 (s)
q The state process noise 2.5× 10−3 (m2/s3)

Mc The number of Monte Carlo runs 500

The proposed KF algorithm is compared with the existing RSS and TOA tracking algorithms,
namely the PF in ref. [51] and the EKF in ref. [52], as well as the WLS in Equation (19), which represents
its main building block that disregards the prior knowledge, in the scenario illustrated in Figure 3.
Note that the trajectory in Figure 3 is composed of several straight-line trajectories connected by
sharp maneuvers, together with somewhat smoother maneuvers, but with constant changes in the
direction of movement; hence, it represents a fairly complex trajectory, whose portions are often found
in practice. Moreover, notice that a constant speed of the target is considered here for simplicity.
This does not cause loss of generality, since the proposed KF algorithm is extremely light in terms of
computational cost, which translates into its execution time being of order of milliseconds. In other
words, this means that we could drastically reduce the sampling interval, which would result in
much smaller steps of the target (at the order of centimeters) within a sample period, producing the
effect of approximately constant velocity model for virtually all achievable speeds in practice. Lastly,
to conclude the simulation setting part, it is worth mentioning that, in all simulations presented here,
the first N anchors from Table 1 were used.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 3. The considered target’s trajectory: the initial target’s location and its direction of movement
are indicated by the circle and the arrow, respectively.
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Figure 4 plots a realization of the estimation trial in the considered setting of KF and WLS in a
single Mc run. On the one hand, the figure clearly shows that KF has much smoother performance and
traces the target’s trajectory more accurately. Naturally, KF struggles slightly at each sharp maneuver
of the target. This is explained by the fact that at these points all previously acquired prior knowledge
becomes fallacious, and misleads KF to stumble. Nevertheless, it can be seen that KF recovers quite
quickly from these predicaments. On the other hand, the figure shows that, although the performance
of WLS does not suffer such inconveniences and is fairly good, the trace of the trajectory obtained
through WLS seems a bit chaotic. This is because WLS disregards the prior knowledge, and every
plotted estimation point is a result independent of any previous one.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(a) KF

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b) WLS

Figure 4. Illustration of the estimation process in a single Mc run, when N = 4, |LNLOS| = 4, σi = 3
(dB, m), biasmax = 5 (dB, m), biasi ∼ U [0, biasmax], B = 30 m.

Figure 5 illustrates the RMSE (m) versus t performance for various N. Besides the RMSE at each
time instant t, the average RMSE, RMSE, for all t is also shown in the figure (straight horizontal lines
marked with respective symbols and colors). Superior performance of tracking algorithms is clearly
noted in general. Interestingly, the tracking algorithms are not always better than WLS, i.e., not at
all time instants. It seems that KF and EKF struggle with the sharp maneuvers taken by the target at
the top right corner of its trajectory and the one immediately after. Nevertheless, these peaks in the
performance of KF and EKF are of relatively short duration, and do not change the overall conclusion
that incorporating prior knowledge can improve the performance of an algorithm. Finally, it can
be seen from the figure that, apart from the case where N = 2, PF has the most stable performance,
with very few peaks. This is not too surprising, since its performance is directly proportional to the
number of particles used, but so is its computational complexity.

Figure 6 illustrates RMSE (m) versus N performance. In addition to KF, PF, EKF and WLS
algorithms, we also include the results for the counterpart of the proposed KF, when, instead of
estimating the angles, anchors can measure them. These results can be seen as a lower bound on the
performance of the new algorithm. Nonetheless, it is worth noting that, in order for these results to
be feasible, anchors would require additional hardware, such as a directional antenna or an antenna
array, which would raise the network implementation cost. Moreover, the angle measurement noise
power was drawn from a zero-mean von Mises distribution [56] with the concentration parameter
set as to correspond to a zero-mean Normal distribution with noise power σAOA = 8◦, as stated
explicitly in Figure 6. The figure exhibits that the performance of all algorithms betters when N is
increased. This behavior is anticipated, due to extra information gathered within the network with
every additional anchor. Furthermore, apart from the performance of PF for N = 2, the performance
of the tracking algorithms is superior than that of WLS for all N, with the biggest margin for low N,
which confirms the hypothesis that prior knowledge can be exploited to improve localization accuracy.
Finally, one can notice that the performance of the proposed KF is fairly close to its counterpart that
can measure the AOA. This is an important result, which suggests that the proposed approach for
angle estimation is a useful one in practical scenarios where no additional hardware to measure the
AOA is available.
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(a) N = 2
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(b) N = 4
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(c) N = 6
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Figure 5. RMSE versus t (s) for different N, when |LNLOS| = N, σi = 3 (dB, m), biasmax = 5 (dB, m),
biasi ∼ U [0, biasmax], B = 30 m.
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Figure 6. RMSE versus N, when |LNLOS| = N, σi = 3 (dB, m), biasmax = 5 (dB, m), biasi ∼
U [0, biasmax], B = 30 m.

Figure 7 illustrates RMSE (m) versus noise powers, σi (dB, m), performance comparison. To get a
better comprehension of the influence of this parameter on localization performance, the magnitude of
the NLOS bias was set to a relatively small value, i.e., biasmax = 1 (dB, m) was considered. Naturally,
when the measurement quality deteriorates, i.e., when σi (dB, m) grows, the localization accuracy drops.
Nevertheless, Figure 7 shows that KF has superior performance in noisy environments, outperforming
significantly WLS (almost 2.5 m) and PF and EKF (roughly 1 m). This result confirms that our
linearization technique is a well-founded solution, since our derivation do not make any assumptions
about noise levels.

Figure 8 illustrates RMSE (m) versus biasmax (dB, m) performance comparison. Similar to the
previous setting, to better see the influence of this parameter on the performance of the considered
algorithm, the noise powers were set to a relatively small value, i.e., σi = 1 (dB, m) was considered. As
before, Figure 8 corroborates the superiority of tracking algorithms over classical localization ones for
all considered values of biasmax (dB, m), indicating that prior knowledge should not be disregarded.
However, achieving precision just above 3 m for WLS suggests that the proposed approach handles
NLOS bias efficiently, even for a naive approach.
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Figure 7. RMSE versus σi (dB, m) comparison, when N = 4, |LNLOS| = 4, biasmax = 1 (dB, m),
biasi ∼ U [0, biasmax], B = 30 m.
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Figure 8. RMSE versus biasmax (dB, m) comparison, when N = 4, |LNLOS| = 4, σi = 1 (dB, m),
biasi ∼ U [0, biasmax], B = 30 m.

6. Conclusions and Future Work

In this work, we proposed a novel approach for tracking a moving target in adverse NLOS
environments by means of combined RSS and TOA measurements. Initially, we showed how to
estimate the angle of the received signal at each reference point, without requiring any additional
hardware. For this purpose, the known topology of the reference points was exploited to act as
an irregular antenna array, which together with range estimates obtained through RSS and TOA
measurements allowed us to form triangles with (imperfectly) known side lengths between a pair
of reference points and the target. From there, we simply applied the law of cosines to get the
desired AOA estimations. We then showed how to use these estimates to effortlessly convert the
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originally non-linear measurement model into a linear one, by applying Cartesian to polar coordinates
transformation. On top of the linearized model, we incorporated prior knowledge acquired during
the movement of the target, by adaptation of the KF equations. The proposed approach was assessed
via computer simulations in which a fairly complex target trajectory was studied. In all considered
scenarios, the new approach exhibited good performance, corroborating our intuition that one can
benefit from extra information inherent in the network topology.

Note that the proposed approach is not restricted to RSS and/or TOA measurements, but can
easily be adapted to any range-based localization/tracking technique, as it merely requires distance
information and a couple of reference point. Even though we showed here that it can be very beneficial
for the problem at hand, some challenges remain. For instance, the application of the proposed
approach to an ad-hoc network is straightforward, but one has to be able to resolve the problem of
target orientation, i.e., flip-ambiguity. This is very demanding to achieve always due to elevated
degree of difficulty of the considered problem (NLOS bias, noise, etc.), which obviously reflects on the
estimation accuracy. Therefore, our future research will include combating flip-ambiguity in order to
accomplish also full potential of the proposed approach in ad-hoc networks. In addition, testing the
proposed KF algorithm against real-world experimental measurements will be of highest priority.
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Appendix A. Derivation of the State Transition Model

Consider the following continuous-time state transition model [58].

θ̇(t) = Aθ(t) + Du(t) + Br(t), θ(t0) = θ0, (A1)

where θ(t) ∈ Rn is the state vector; u(t) ∈ Rp is the vector containing any control inputs (steering angle,
throttle setting, and breaking force); A ∈ Rn×n, D ∈ Rn×p and B ∈ Rn×r are the transition, input gain
and noise gain matrices, respectively; and r(t) is a continuous-time process noise with covariance
Q(t).

By using Euler’s method or zero-order hold [59,60], we can rewrite the continuous-time state
transition model in Equation (A1) for a time-invariant continuous-time system with sampling rate ∆,
for initial time t0 = t∆ and final time t f = (t + 1)∆, as

θ(t f ) = exp
{

A(t f − t0)
}

θ(t0) +
∫ t f

t0

exp
{

A(t f − τ)
} (

Du(τ) + Br(τ)
)

dτ,

which is equivalent to

θ(t + 1) = exp {A∆}θ(t) +
∫ (t+1)∆

t∆
exp

{
A((t + 1)∆− τ)

} (
Du(τ) + Br(τ)

)
dτ. (A2)
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If we assume that the input u(t) changes slowly, relative to the sampling period, we have
u(t f ) ≈ u(t0) for t0 ≤ t ≤ t f . Then, by changing the variable of integration ϕ = (t + 1)∆− τ such that
dϕ = −dτ, Equation (A2) can be rewritten

θ(t + 1) = exp {A∆}θ(t) +
∫ 0

∆ exp
{

Aϕ
}

D(−dϕ)u(t)
+
∫ (t+1)∆

t∆ exp
{

A((t + 1)∆− τ)
}

Br(τ)dτ

= exp {A∆}θ(t) +
∫ ∆

0 exp
{

Aϕ
}

Ddϕu(t) +
∫ (t+1)∆

t∆ exp
{

A((t + 1)∆− τ)
}

Br(τ)dτ,

(A3)

and the state model in Equation (A1) can be discretized as

θt+1 = Sθt + Gut + rt,

where
S = exp {A∆}, (A4)

G =
∫ ∆

0
exp

{
Aϕ
}

Ddϕ,

rt =
∫ (t+1)∆

t∆
exp

{
A((t + 1)∆− τ)

}
Br(τ)dτ. (A5)

The process noise, r(t), is assumed to be zero-mean and white Gaussian, and the discretized process
noise, rt, retains the same characteristics [58], i.e.,

E [rt] = 0, E
[
rtrT

t

]
= Qtδt,

where δt represents a Dirac impulse, and the covariance of the state process noise is given, according
to Equation (A5), as

Qt =
∫ ∆

0
exp

{
A((t + 1)∆− τ)

}
BQBT exp

{
AT((t + 1)∆− τ)

}
dτ, (A6)

and Q = diag([q, q]), with q denoting a tuning parameter for the state process noise intensity.
Since this thesis assumes a two-dimensional constant velocity model, the continuous-time target

state model in Equation (A1) can be simplified [58] as

θ̇(t) = Aθ(t) + Br(t), (A7)

where

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
1 0
0 1

 ,

and r(t) ∼ N (0, Q).
The discrete-time model equivalent to the above one is described by

θt+1 = Sθt + rt, (A8)

where, by solving Equations (A4) and (A6), respectively, we get

S =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , Q = q


∆3

3 0 ∆2

2 0
0 ∆3

3 0 ∆2

2
∆2

2 0 ∆ 0
0 ∆2

2 0 ∆

 .
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