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Abstract: Road safety is an active area of research for the automotive industry, and certainly one of
ongoing interest to governments around the world. The intelligent transportation system (ITS) is one
of several viable solutions with which to improve road safety, where the communication medium
(e.g., among vehicles and between vehicles and the other components in an ITS environment, such as
roadside infrastructure) is typically wireless. A typical communication standard adopted by car
manufacturers is IEEE 802.11p for communications. Thus, this paper presents an overview of IEEE
802.11p, with a particular focus on its adoption in an ITS setting. Specifically, we analyze both MAC
and PHY layers in a dedicated short-range communication (DSRC) environment.
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1. Introduction

Vehicle manufacturers and government agencies have been exploring and researching ways
to improve road safety, more effectively manage traffic flows, etc. [1–3]. With the advancement in
wireless communication systems [4–7], the vision of vehicles communicating with each other and with
other devices (e.g., mobile devices and roadside units) situated at various locations (e.g., roads
and buildings) is becoming a reality [8–10]. For instance, an Internet-connected device (e.g., a mobile
device/application) could notify drivers of the proximity of a bicyclist in the street or a pedestrian
on a crosswalk [11–15], which could potentially reduce the number of pedestrian-related accidents.
Such intelligent or smart safety systems have been referred to in the literature as vehicle-to-vehicle (V2V;
or car-to-car (C2C)), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X; or car-to-everything
(C2X)), vehicular ad hoc networks (VANETs), and so on [16–18].

All these terminologies can be assorted into a particular extensive research area denominated
intelligent transportation systems (ITS) [19–25]. The main aim is to suggest innovative and smart
solutions based on information and communication technologies (ICT) [26–30]. For instance,
autonomous driving, which is cause for considerable excitement now, can also be facilitated by ITS,
whose applications range from infotainment to automated and connected vehicles. These applications
can be safety-related or not. It is useful to note that reliability and low-latency in communications are
the most crucial necessities in numerous ITS safety applications.

One key role of intelligent or smart safety systems is traffic control, based on (real-time) analysis
of data from different sources (e.g., vehicles or other devices, and different content or service
providers) [31–35] relevant to the road and other conditions (e.g., weather) [36]. A more efficient and
effective traffic control system will also result in reduced carbon emissions, for instance. Similarly to
most technologies and systems, ITS systems differ in terms of features and functionalities, based on
user and societal needs, regional and regulatory factors, and so on. Table 1 presents some works in the
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literature focused on revising several features of the IEEE 802.11p protocol. The analysis of these works
has highlighted that, typically, ITS systems use IEEE 802.11p [37] for the MAC and PHY layers [38–43].
At the upper levels, services are provided by protocols designed by different working groups, such as
IEEE 1609.2, IEEE1609.3, and IEEE 1609.4. These protocols relate to vehicle communications, which
have also been referred to as wireless access in vehicular environments (WAVE).

Table 1. Existing IEEE 802.11p analyses/reviews/surveys: a comparative summary.

Contribution DSRC
Analysis

PHY
Analysis

MAC
Analysis

ITS
Analysis

Scope of
Literature Review

Our review Yes Yes Yes Yes 2006–2019
[39] No Yes No No 2000–2018
[40] No Yes No Yes 2004–2016
[41] Yes Yes Partial Partial 2000–2016
[42] Yes Yes Yes Partial 2000–2010
[43] Yes Yes Yes Partial 2010–2017

In this paper, we provide an overview of the IEEE 802.11p, with a particular focus on ITS.
The development of the IEEE 802.11p standard has also been partly attributed to advances in dedicated
short-range communication (DSRC), which allows one to provide communication services between
vehicles and road infrastructures; e.g., V2V [44,45] and V2I [46,47]. In other words, the IEEE 802.11p
is a set of protocol architectures, whose primary purpose is to guarantee road safety and to manage
traffic better.

The remainder of this review paper is organized as follows. Section 2 presents relevant preliminary
materials concerning DSRC. MAC and PHY features of IEEE 802.11p are respectively analyzed in
Sections 3 and 4. Section 5 presents a brief comparison between some features of IEEE 802.11p and
LTE-V2X. Section 6 presents some features of the protocol which should be the evolution of IEEE
802.11p, and finally, Section 7 concludes this paper.

2. Preliminary Notes on Dsrc

DSRC is a standard proposed by the Federal Communication Commission (FCC), which, in 1999,
reserved 75 MHz of bandwidth in the 5.9 GHz frequency (5.850–5.925 GHz) to support both V2V and
V2I communications. A DSRC system consists of an on board unit (OBU) and a road side unit (RSU).
The term short range indicates a coverage of hundreds of meters—less than, for instance, that of mobile
phones [48,49].

The IEEE 802.11p standard has a set of specifications useful for making communication possible
in the vehicular environment; that is, in an environment where there are rapid changes. The operating
frequency of WAVE is fixed in the DSRC, the 5.85–5.925 GHz band. Within this range, there is a
channel reserved for system control and safety-related messages, and it takes the name of CCH (control
channel); and up to six channels are used for the exchange of non-safety data, signaling channels
(SCHs). WAVE conceives an alternate access scheme: the channel time is divided into synchronization
intervals with a fixed length of 100 ms, consisting of intervals of equal length alternating between the
CCH and the SCH. During the CCH interval, all vehicular devices must tune in to the CCH frequency
for safety-related and system control data exchange; during the SCH interval, vehicles (optionally)
switch to one of the SCH frequencies. At the beginning of each interval, a guard time of 4 ms is set
to take into account the radio switching delay and timing inaccuracies in the devices. Coordination
between channels uses Coordinated Universal Time (UTC) for a global time reference provided by a
global satellite navigation system.

As shown in Figure 1, the DSRC spectrum is arranged in seven 10 MHz channels. The guard
band is 5 MHz; i.e., a part of the DSRC spectrum not employed to prevent interference. Channel 178
(5.885–5.895 GHz) is reserved solely for safety communications and is termed the control channel
(CCH); it carries the most critical alarms and beacons. It is the unique channel shared between all the
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WAVE devices, and consequently, constitutes a joining point between the nodes. The two channels at
the edge of the spectrum are reserved for prospective applications and particular employment, such as
advanced accident prevention and public safety uses. The remaining channels are service channels
(SCH) for the residual applications and regular communications. Pairs of these adjacent channels
can also be blended in a 20 MHz channel. Nevertheless, the necessity to have 10 MHz channels is
associated with the use of parallel applications, and as a consequence, the partial reduction of channel
congestion. Besides, physical tests prove that 10 MHz channels are more suitable both for delays and
the Doppler effect ascertained in vehicular environments. The DSRC band is subject to limitations
and governed by several rules, such as the application of a specific one standard, unlike the Industrial
Scientific and Medical (ISM) bands (900 MHz, 2.4 GHz, and 5 GHz) which are not licensed.
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Figure 1. Dedicated short-range communication (DSRC) spectrum.

In the DSRC architecture (Figure 2), each layer practices different protocols. For the PHY and
MAC layers, the IEEE 802.11p is adopted, while at the upper layers the IEEE 1609.2, 1609.3, and
1609.4 protocols are implemented, each of which deals explicitly with some services. In particular,
they are respectively: security services (1609.2), network services (1609.3), and channel switching
(1609.4). In the network layer, the WAVE Short Message Protocol (WSMP) is employed, but, as shown
in Figure 2, depending on the application, it is also permissible to utilize other protocols, such as IPv6,
TCP, and UDP.
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Figure 2. DSRC architecture.

The WAVE architecture includes IEEE P1609.1 (application layer), IEEE P1609.2 (security layer),
IEEE P1609.3 (network layer), IEEE P1609.4 (upper MAC Layer), and IEEE 802.11p (lower MAC
and physical layers). The SAE J2735 standard defines message sets, data-frames, and data-elements
used by applications to exchange data over the DSRC/WAVE, and other communication protocols.
Moreover, the SAE J2735 includes the following message categories: general, safety, geolocation,
traveler information, and electronic payment.
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The IEEE 802.11p outlines an unfolding of the IEEE 802.11 protocol. Changes have been made
regarding the MAC and PHY layers to support different classes of vehicular communications. Since the
IEEE 802.11p works on 5.9 GHz, the modifications have been principally applied to the most related
standard, i.e., the IEEE 802.11a, which works at frequencies around 5 GHz. It is beneficial to perceive
that the IEEE 802.11p has two precise purposes:

• Describe the functions and services required by the WAVE systems;
• Define the interfaces that allow communication with higher layers.

The DSRC standard is essentially an ad-hoc adjustment of the IEEE 802.11 aimed at reducing,
as much as possible, the size of the packet to be sent via the radio link. The architecture of
the IEEE 802.11p is an adjustment to the IEEE 802.11, although it can be considered as a new
architecture. It is entirely based on the previous IEEE 802.11a protocols and the main features of
the IEEE 802.11q. The main changes were made at the MAC layer, as it was necessary to intervene to
make communication between vehicles faster, and at the same time, efficient, also because V2V or V2I
communications can also take place at high speeds, and therefore, the communication time must be
able to be very short.

3. Mac Layer

It is useful to appraise the differentiation between basic service set (BSS), service set identifier
(SSID), and basic service set identifier (BSSID) to estimate the adjustments to the MAC layer introduced
in IEEE 802.11p. A BSS is the fundamental part of the IEEE 802.11 standard and consists of a set of
stations that can communicate with each other. An SSID represents the name with which the network
distinguishes itself and is communicated, for instance, through a beacon frame by an access point (AP)
in the case of BSS infrastructure. On the contrary, the BSSID recognizes the MAC address, composed
of 6 bytes, of the access point.

A new feature introduced in IEEE 802.11p is represented by the WAVE mode [50–53]. Vehicles can
interact with each other with a diminished overhead because they practice the same BSSID wildcard
and the same channel. In the WAVE mode, the station can transmit and receive data frames with
a BSSID wildcard regardless of its wave basic service set (WBSS). The latter consists of a set of stations
(vehicles) working in WAVE mode that employs a common BSSID. The endowment of a WBSS befalls
when a station in WAVE mode transfers a WAVE beacon comprising information on the type of
service and parameters required for auto-configuration. Just one exchange of the WAVE beacon must
be sufficient to warrant more numerous vehicles to join the WBSS. Anyhow, it is beneficial to heed
that a station cannot belong to more than one WBSS. The WAVE beacon is obtained by the stations
and transferred to others to raise the number of devices belonging to the WBSS. Hence, the latter is
formed by a vehicle that requests it through the WAVE beacon and remains active even if the first
vehicle is no longer in existence. On the contrary, the WBSS desists when there are no more vehicles
that make it up. The stations use the BSSID wildcard for secure communications. Moreover, the BSSID
wildcard is received by all stations, even without the obligation to belong to a specific WBSS.

The MAC layer is commensurate to the EDCA (enhanced distributed channel access) of IEEE
802.11e [54]. The ECDA keeps not only the feedback mechanisms represent by the ACK but also
the request to send/clear to send (RTS/CTS) process. Moreover, it adds the possibility of exploiting
a transmission opportunity (TXOP), and as a consequence, the messages are listed in different access
categories (ACs), where AC0 has the lowest priority and AC3 the highest.

At the MAC layer, carrier sensing multiple access with collision avoidance (CSMA/CA) is adopted
to make sure that a node that needs to transmit detects the means to verify if it is free. A random
backoff mechanism is also used to reduce the likelihood of collisions. In vehicular communications,
the recognition is not envisaged, and therefore, the exponential backoff mechanism, introduced in the
other versions, is not applied. However, the CSMA/CA introduces significant overhead, especially
in the presence of short packets and high-level modulations. Furthermore, the communications are
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known to be severely affected by collisions when channel occupancy increases by 50–60%, a condition
during which mechanisms are needed to avoid overloading [55]. To complete the analysis of the MAC
layer, it is useful to analyze two phenomena that often lead to a decrease in performance in vehicular
communications: the hidden terminal and the capture effect. The problem of hidden terminals is
often indicated as the main factor of performance degradation within ad-hoc vehicle networks [56].
As demonstrated in ref. [57], it is possible to verify that by comparing two different methods of control
of average access, i.e., CSMA and self-organizing time division multiple access (STDMA), the results
reveal that the presence of hidden terminals does not significantly affect the performance of the two
MAC protocols. However, the STDMA bestows a higher probability of receiving packets for all settings
due to the synchronized packet transmissions. The phenomenon of frame capture, sometimes also
referred to as capture echo, is the event that IEEE 802.11 chipsets show when dealing with frame
collisions. Depending on the differences in the precise arrival times of the various transmitted frames
and the respective signal-to-noise ratios (SNRs), the receiver could correctly receive one of the frames
instead of discarding them and losing both [58].

4. Phy Layer

IEEE 802.11p makes changes to IEEE 802.11a [59–61]. First of all, the operating frequency
is 5.9 GHz instead of 5 GHz. Moreover, in the PHY layer of IEEE 802.11a, 5, 10, and 20 MHz
bandwidths are available. The 5 and 10 MHz bandwidths can be accomplished by employing a
shortened clock/sampling rate. IEEE 802.11a practices the full clocked mode with 20 MHz bandwidth,
while IEEE 802.11p employs the half clocked mode with 10 MHz bandwidth. Notwithstanding the
bandwidth, the fast Fourier transform (FFT) size is 64, and the amount of subcarriers is 52 (i.e., 48 data
subcarriers and four pilot subcarriers). In more detail, Table 2 furnishes a matching of fundamental
orthogonal frequency division multiplexing (OFDM) parameters regarding the channel bandwidth.

Table 2. IEEE 802.11 OFDM PHY parameters concerning the channel bandwidth.

Paramerers 20 MHz
Bandwidth

10 MHz
Bandwidth

5 MHz
Bandwidth

Bit rate (Mbit/s)
6, 9, 12, 18

24, 36, 48, 54
3, 4.5, 6, 9

12, 18, 24, 27
1.5, 2.25, 3, 4.5

6, 9, 12, 13.5

Modulation mode
BPSK, QPSK,

16QAM, 64QAM
BPSK, QPSK,

16QAM, 64QAM
BPSK, QPSK,

16QAM, 64QAM

Code rate 1/2, 2/3, 3/4 1/2, 2/3, 3/4 1/2, 2/3, 3/4

Number of subcarriers 52 52 52

Symbol duration 4 µs 8 µs 16 µs

Guard time 0.8 µs 1.6 µs 3.2 µs

FFT period 3.2 µs 6.4 µs 12.8 µs

Preamble duration 16 µs 32 µs 64 µs

Subcarrier spacing 312.5 kHz 156.25 kHz 78.125 kHz

As mentioned above, the IEEE 802.11 OFDM PHY defines the IEEE 802.11p OFDM PHY.
Nevertheless, there are two critical differences to the transmitter and receiver specifications to sustain
the IEEE 802.11p for ITS. They are a significant sterner spectrum mask and more stringent adjacent
and non-adjacent channel rejection conditions. These challenging terms are required because the
cross channel interference significantly meddles with the transmission when the interferer is nearby
to the destination channel and/or when the distance separating the transmitter and receiver is 10×
higher than that between the interferer and receiver. It is valuable to heed that the cross channel
interference represents the obstructive impact that transmission in a channel creates on communications
in another channel.
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Finally, Table 3 shows the enhanced adjacent and nonadjacent (seldom termed alternate) channel
specifications for IEEE 802.11p, and the transmission rates available in a channel; and Table 4
summarizes the differences between IEEE 802.11a and IEEE 802.11p.

Table 3. Transmission rates and channel rejection comparison.

Modulation Coding
Rate

Adjacent Channel
Rejection (dB)

Nonadjacent Channel
Rejection (dB) Coded

Bit Rate
(Mbit/s)

Data
Rate

(Mbit/s)

Data Bits per
OFDM

SymbolsIEEE
802.11
a/g/n

IEEE
802.11p

IEEE
802.11
a/g/n

IEEE
802.11p

BPSK 1/2 16 28 32 42 6 3 24

BPSK 3/4 15 27 31 41 6 4.5 36

QPSK 1/2 13 25 29 39 12 6 48

QPSK 3/4 11 23 27 37 12 9 72

16QAM 1/2 8 20 24 34 24 12 96

16QAM 3/4 4 16 20 30 24 18 144

64QAM 2/3 0 12 16 26 36 24 192

64QAM 3/4 −1 11 15 25 36 27 216

Table 4. Differences between IEEE 802.11a and IEEE 802.11p.

Parameter IEEE 802.11a IEEE 802.11p

Sample rate 20 MHz 10 MHz

Chip duration 50 ns 100 ns

Number of fft points 64 64

Number of subcarriers 52 + DC 52 + DC

Number of data subcarriers 52 52

Number of pilot subcarriers 4 4

OFDM symbol period TSymbols = 80 chips = 4 µs 8 µs

Cyclic prefix 16 chips = 0.8 µs 1.6 µs

FFT symbol period 64 chips = 3.2 µs 6.4 µs

Modulation scheme BPSK, QPSK, 16QAM, 64QAM BPSK, QPSK, 16QAM, 64QAM

Coding scheme 1/2 industry convulutional 1/2

Puncturing optional puncturing 3/4 or 2/3 3/4 or 2/3

Available data rate 6, 9, 12, 18, 24, 36, 48, 54 Mbps 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps

5. Comparison between IEEE 802.11p and Lte-V2x

Several papers cited in previous sections facilitate the assessment of a further feature related to the
development and dissemination of the IEEE 802.11p protocol concerning vehicular communications;
i.e., the comparison with its primary competitor, represented by the LTE-V2V. It is clear that, to date,
the IEEE 802.11p is as widespread as the LTE-V2V. There is not a definitive standard for V2V
communications, but several car manufacturers have already implemented, in some of their modern
cars, the equipment that practices the technology based on the IEEE 802.11p. Nevertheless, it is
useful to carry out a comparison between the features related to the IEEE 802.11p and LTE-V2V
to understand if one of them is possibly more flexible, more suitable, and better performing in
vehicular communications.
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Considering the analysis carried out in ref. [38], the two different technologies are compared in
identical external conditions; i.e., in a highway scenario. From the achieved experimental results, it is
feasible to acknowledge that the LTE-V2V can deliver a 10% improvement in the packet reception ratio
and a ten times lower update delay compared to the IEEE 802.11p. Anyhow, these results are obtained
only in conditions with low data traffic. The situation changes when a more stressful traffic condition,
in terms of packets sent and received, is taken into account. In these conditions, while the LTE-V2V
performs better concerning the packet reception ratio (ends up 26% better), the IEEE 802.11p instead
guarantees a lower update delay.

It is beneficial to estimate the results of using different modulation and coding scheme (MCS)
strategies that can determine a meaningful impact on both quality of service (QoS) and long-range
performance. In ref. [42], it has been determined that the use of IEEE 802.11p allows having outstanding
performance up to a few hundred meters, intended as coverage range. It is reasonable to support more
than one vehicle every 10 m with an awareness range of up to 250–300 m. Due to the excessive collision
rate, this leads to a decrease in communication reliability in applications with greater distances than
those just mentioned. Considering the same conditions, it can be verified that the LTE-V2V standard
has reduced performance in short distance communications but is more reliable as the distance
increases (for instance, even up to almost 500 m) [43].

Finally, it is not conceivable to establish which of the two standards produce the more enhanced
performance. Besides, depending on the use conditions and the precise features that the application to
be developed requires, it will be feasible to choose one of the standards [61].

6. IEEE 802.11bd as an Evolution of the IEEE 802.11p

Before concluding the review carried out in this paper, it is appropriate to perform a brief
analysis of the protocol that should be the successor of IEEE 802.11p in the coming years. An IEEE
Study Group named Next Generation Vehicular (NGV) was constituted in 2018 to accomplish on
an improvement to the IEEE standard for enhanced V2X communication technologies. A task force was
appointed to deliver the IEEE 802.11bd, a kind of evolution for IEEE-based V2X communications [62].
This amendment aims at higher spectral efficiency, enhanced reliability, and extended range,
while, at the same time, guaranteeing backward adaptability with the existing disposed systems
working at 5.9 GHz. Thus, in the future, IEEE 802.11bd-based devices could communicate with any
IEEE 802.11p-based systems and could be able to transmit in such a way that the IEEE 802.11p devices
can receive and decode. Anyhow, it is necessary to note that IEEE 802.11p remains the one deployed.
Only when IEEE 802.11bd is entirely standardized and tested, will future application scenarios be able
to seamlessly embrace the next-generation technology.

It will be possible to achieve a smooth transition from “legacy” IEEE 802.11p-based systems to the
new standard. IEEE 802.11bd will profit from enduring deployments and infrastructures everywhere
in the world by practicing the identical frequency channel without producing an interruption
to available ITS stations. In IEEE 802.11bd, the interoperability is accomplished through the
employment of a congenial waveform structure. Besides, a well-known channel access mechanism,
“listen-before-talk” (i.e., carrier sensing) will be adopted. The asynchronous and non-persistent type of
V2X communications applies favorably to conventional V2X networks, where messages are entirely
various and non-persistent regarding the size and transmission rate. In fact, the actions triggering the
message production are tightly linked to the dynamics of the vehicle [56].

It is profitable to heed that the IEEE 802.11bd task force has proposed several PHY improvements.
These involve further rigorous demands on selectivity, sensitivity, and out of band emissions,
and the introduction of adaptive repetitions. Other improvements concern the error correction,
channel tracking, modulation, data subcarrier, MIMO, range extension, and adaptive retransmissions,
to mention a few [63]. All investments delivered in the last years in marshaling IEEE 802.11p will also
be ready for IEEE 802.11bd. Additionally, IEEE 802.11bd advances might be of benefit to the legacy
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IEEE 802.11p and profit from the previously deployed stations. The final version of IEEE 802.11bd
should be available on December 2021.

7. Conclusions

This paper has presented an overview of the IEEE 802.11p, with distinct attention to ITS,
investigating the MAC and PHY layers following the introduction of prefatory notes regarding
DSRC. The IEEE 802.11p standard aims to concede a reliable and low-latency communication
through the transmission of underlying safety messages among vehicles and roadside infrastructures.
This kind of networking could be a crucial step in diminishing road accidents through the exchange
of traffic-relevant knowledge in the local environment; for instance, about 500 m around the vehicle,
within a few milliseconds. It is helpful to perceive that the idea of platooning, with networked trucks
driving in synchronized convoys, could be based on this technology. Moreover, by way of enhancing
road safety and traffic flow, this application on the large scale of the IEEE 802.11p standard could also
lessen fuel consumption and carbon dioxide emissions.

The area-wide inception of standardized IEEE 802.11p, which has already been comprehensively
examined, could also afford a reliable system for administrators of traffic infrastructure, such as traffic
lights, and fleets; i.e., emergency services and construction site vehicles. That way, knowledge of traffic
flow, accidents, roadworks, and other relevant circumstances and events can be presumably made
accessible in the local area.

Finally, it is essential to record that the CAR 2 CAR Communication Consortium (C2C-CC) and
the C-Roads Platform approved a memorandum of understanding for facilitating a narrow agreement
among the automotive industry, road governments, and road administrators for planning the
deployment of first joining vehicle-to-everything (V2X) services based on IEEE 802.11p. C2C-CC strives
on wireless V2V communication applications based on the IEEE 802.11p standard and directs all
bids on building standards to guarantee the interoperability of collaborative systems, traversing
all vehicle classes across borders and brands. On the contrary, the C-Roads Platform is a shared
ambition of the European member states and road directors that are at the stage of the disposing of
cooperative intelligent transport systems (C-ITS) for examination and future construction. Preliminary
establishments will be arranged over road borders, guaranteeing the interoperability through the
collaboration within the C-Roads Platform. Essential factors will be the shared growth of technological
specifications that will afford the foundation for all prefatory deployments, and the common cross-site
experimentation to deliver interoperability of the arrayed C-ITS services.
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