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Abstract: This paper focuses on the diagnostic checking of vector ARMA (VARMA)
models with multivariate GARCH errors. For a fitted VARMA-GARCH model with
Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation
matrices of the cross-product vector of standardized residuals. This is different from the
traditional approach that employs only the squared series of standardized residuals. We
then study two portmanteau statistics, called Q1(M) and Q2(M), for model checking.
A residual-based bootstrap method is provided and demonstrated as an effective way
to approximate the diagnostic checking statistics. Simulations are used to compare the
performance of the proposed statistics with other methods available in the literature. In
addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA
model. Empirical sizes and powers of the proposed statistics are investigated and the
results suggest a procedure of using jointly Q1(M) and Q2(M) in diagnostic checking. The
bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance
of the proposed portmanteau statistics. The results show that it is important to consider the
cross-product series of standardized residuals and GARCH effects in model checking.

Keywords: Vector autoregressive moving-average process; multivariate GARCH model;
asymptotic distribution; portmanteau statistic; model checking; heavy tail; multivariate time
series; bootstrap
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1. Introduction

Model checking, or diagnostic checking, is an important step in statistical modeling, especially in
the iterative model-building process of Box and Jenkins [1]. Like other statistical analysis, standardized
residuals are often used to check the adequacy of a fitted time series model. Basically, one examines
the standardized residual plots for outliers and violations of randomness and performs statistical tests to
detect serial dependence in the residual series. In the univariate case, residuals of the fitted model are
used to obtain the portmanteau test for autoregressive moving-average (ARMA) processes. See Box and
Pierce [2] and Ljung and Box [3] for the commonly used Ljung–Box Q(m) statistic. The test has been
extended to multivariate autoregressive processes by Chitturi [4] and multivariate ARMA processes by
Hosking [5] and Li and McLeod [6].

Most of the previous studies in time-series model checking assume that the innovations are
independent and identically distributed (iid) random variables. This assumption is known to be
questionable for the data in economics and finance, especially after the introduction of the generalized
autoregressive conditional heteroscedastic (GARCH) models of Engle [7] and Bollerslev [8]. In fact,
conditional heteroscedasticity exists not only in time series of asset returns and foreign exchange rates,
but also in series of traffic volume of a big city or on the internet. For univariate time series with
conditional heteroscedasticity, Diebold examines the impact of GARCH effects on the Bartlett standard
errors and the Ljung–Box statistic, and proposes a robust Ljung–Box statistic [9,10]. Ling and Li
derive the asymptotic properties of maximum likelihood estimators and the Q(m) statistic for univariate
fractionally integrated ARMA-GARCH models [11]. Ling and Li use the sum of squared series of
standardized residuals to define a multivariate Q(m) statistic and derive its asymptotic distribution when
the time series has ARCH errors [12]. Tse examined the residual-based diagnostics for univariate and
multivariate conditional heteroscedasticity models [13].

In this paper, we study the portmanteau statistics for the cross-product vector of the standardized
residuals of a vector ARMA model with multivariate GARCH errors. Specifically, we employ the
process vech(ε̂tε̂t

′) in model checking, where ε̂t is the standardized residuals of a fitted vector ARMA-
GARCH model and vech denotes the half-stacking operator of a symmetric matrix. The innovations
of the GARCH errors follow either a multivariate Gaussian or a multivariate Student-t distribution.
Under the commonly used assumption of multivariate GARCH processes, the cross-product vector of
the standardized residuals should be serially independent. The proposed portmanteau statistics are aimed
at verifying this independence condition. They are more general than the traditional multivariate Q(m)

statistics because the latter statistics only employ the squared series ε̂2
t of the standardized residuals. For

instance, Ling and Li use ε̂′tε̂t =
∑k

i=1 ε̂
2
it to detect conditional heteroscedasticity [12]. The improved

performance of the proposed test statistics over the traditional ones is demonstrated by simulation and a
real example. Another contribution of the paper is to consider the limiting distribution of the proposed
test statistics when the innovations follow a multivariate Student-t distribution. This is highly relevant
as most financial time series exhibit certain heavy-tail phenomenon. Furthermore, considering the
difficulty in computing the proposed test statistics in real application, we provide a bootstrap approach
based on the re-sampled standardized residuals to approximate the (asymptotic) distributions of the
sample cross-covariance matrices of the standardized residuals. It is demonstrated by simulated data
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and the real example that the bootstrap method gives an effective way to obtain the proposed model
checking statistics.

The paper is organized as follows. In Section 2, we define the model considered in the paper
and state the assumptions used. In Section 3, we consider the maximum likelihood estimation of a
vector ARMA-GARCH model with Gaussian innovations and derive the asymptotic distributions of
the sample cross-covariance matrices of the standardized residuals and the proposed test statistics.
We investigate estimation and model checking for a vector ARMA-GARCH model with multivariate
Student-t innovations in Section 4. In Section 5, we introduce the residual-based bootstrap method and
justify its validity. We use simulation studies in Section 6 to study the performance of the proposed
test statistics in finite samples. An empirical example is analyzed in Section 7 and Section 8 concludes.
Finally, complicated proofs are in the Appendix.

2. The Model

Let Yt = (y1t, . . . , ykt)
′ be a k-dimensional time series. In this paper, we assume that Yt follows

a stationary and invertible vector autoregressive moving-average, VARMA(p, q), model with shock
at = (a1t, . . . , akt)

′ being a multivariate GARCH(r, s) process with innovation εt = (ε1t, . . . , εkt)
′.

Specifically, we have

Yt =

p∑
i=1

ΦiYt−i + at +

q∑
j=1

Θjat−j, at = Σ
1/2
t εt, (1)

Σt = A0 +
r∑
i=1

Aiat−ia
′
t−iA

′
i +

s∑
i=1

BiΣt−iB
′
i, t = 0, 1, . . . (2)

where p, q, r and s are non-negative integers, {εt} are independent and identically distributed random
vectors with mean zero and identity covariance matrix. Let Fj denote the information available at time
j, i.e., Fj = σ{εj, εj−1, · · · } then we have at satisfies E(at|Ft−1) = 0 and cov(at|Ft−1) = Σt, with Σ

1/2
t

being the positive-definite square-root matrix of the conditional covariance matrix Σt, and εt follows
either a multivariate Gaussian or Student-t distribution. Define ϕ = vec(Φ1, ...,Φp,Θ1, ...,Θq), δ =

vec(A0, A1, . . . , Ar, B1, . . . , Bs), and λ = (ϕ′, δ′)′. Denote the true parameter vector by λ0 = (ϕ′0, δ
′
0)′.

Here we assume that E(Yt) = 0 for simplicity. The multivariate GARCH model in Equation (2) is a
special case of the BEKK model of Engle and Kroner [14]. We use it instead of the general BEKK
model purely for simplicity. For more details about multivariate time series models, see Tsay [15] and
Lütkepohl [16].

Let Ht = vec(Σt) be the column-stacking vector of the matrix Σt and denote the Kronecker product
of matrices A and B by A⊗B. The volatility model in Equation (2) can be written as

Ht = vec(A0) +
r∑
i=1

(Ai ⊗ Ai)vec(at−ia′t−i) +
s∑
i=1

(Bi ⊗Bi)Ht−i. (3)

For the model considered, we make the following assumptions:
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Assumption 1. (i).The parameter space Λ is a compact subset of R(1+p+q+r+s)k2 . (ii). The true
parameter λ0 = (φ′0, δ

′
0)′ is an interior point of the compact set Λ. (iii). λ0 is identifiably unique with

respect to the log-likelihood function.

Assumption 2. Let Φ(L) = I −
∑p

i=1 ΦiL
i be the matrix polynomial of the autoregressive part of

the model, where L is the lag operator such that LYt = Yt−1. All zeros of the polynomial |Φ(L)| are
outside the unit circle, i.e., they are greater than 1 in modules.

Assumption 3. Let Θ(L) = I +
∑q

i=1 ΘiL
i be the matrix polynomial of the moving-average part of

the model. All zeros of the polynomial |Θ(L)| are outside the unit circle.

Assumption 4. Φ(L) and Θ(L) are left coprime and the matrices Φp and Θq satisfy the condition
that Rank[Φp,Θq] = dim(Yt).

Assumption 5. A0 is a k × k positive definite matrix.

Assumption 6. Ai andBj are arbitrary k×k matrices such that ρ(
∑r

i=1Ai⊗Ai+
∑s

j=1Bj⊗Bj) < 1,
where ρ(A) denotes the modulus of the matrix A, i.e., the largest eigenvalue of A in modulus.

Assumption 7. Ik2 −
∑r

i=1(Ai ⊗ Ai)L
i and

∑s
j=1(Bj ⊗ Bj)L

j are left coprime and satisfy the
conditions that Rank[Ar, Bs] = dim(Yt).

Assumption 8. Let N = k(k + 1)/2. All eigenvalues of the matrix
∑∞

i=1(Ψi ⊗Ψi)(Gk − IN2) have
modulus smaller than one, where Ψi are N ×N matrices defined recursively by:

Ψ0 = IN ,

Ψi = −Lk(Bi ⊗Bi)Dk +
i∑

j=1

Lk(Aj ⊗ Aj +Bj ⊗Bj)DkΨi−j, i = 1, 2, ... (4)

Gk = 2(Lk⊗D+
k )+(Ik⊗Kkk⊗Ik)(Dk⊗Dk)+IN2 , andD+

k = (D′kDk)
−1D′k, where Lk, Dk, andKk1k2

are the elimination, duplication, and commutation matrices, respectively. Specifically, the dimensions of
Lk, Dk and Kk1k2 are N ×k2, k2×N and k1k2×k1k2, respectively. These matrices are useful in dealing
with the vec operator, and they satisfy

vech(Σt) = Lkvec(Σt), vec(Σt) = Dkvech(Σt), vec(A′) = Kk1k2vec(A),

where A is a k1 × k2 matrix.
Assumption 1 is standard. Assumptions 2 and 3 ensure that the VARMA model is stationary and

invertible. Assumption 4, which is referred to as the block identifiability condition, is sufficient for the
VARMA model to be identifiable. Under Assumption 5 and using properties of the BEKK representation
of Engle and Kroner [14], we are guaranteed to have positive definite covariance matrices Σt, and
A0 can be written by its Cholesky decomposition A0 = CC ′. Furthermore, it can be shown that,
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under Assumption 6, at is strictly stationary and ergodic with E ‖ at ‖2< ∞. Similar as
Assumption 4, Assumption 7 is sufficient for the identifiability of the GARCH process. Based on
Theorem 2 of Hafner [17], Assumption 8 is a sufficient and necessary condition for E ‖ at ‖4<∞.

3. Diagnostic Checking for VARMA-GARCH Models with Gaussian Innovations

In this section, we assume that the innovations {εt} of the GARCH model follow a multivariate
Gaussian distribution with mean zero and cov(εt) = Ik, the k × k identity matrix.

3.1. Estimation

Suppose that Y1, ..., Yn are a realization of the vector ARMA-GARCH model in Equations (1)-(2).
Given F0, the approximate maximum likelihood estimate (MLE) λ̂n of λ maximizes the conditional
log-likelihood function,

Ln(λ) =
1

n

n∑
t=1

lt(λ), lt(λ) = −1

2
ln det(Σt)−

1

2
a′tΣ

−1
t at. (5)

where

at = Θ(L)−1Φ(L)Yt (6)

and Σt follows Equation (2).
To obtain λ̂n, we consider the first-order derivatives and the information matrix of the log likelihood

function. They can be calculated as follows:

∂lt
∂ϕ

=
1

2
(
∂Ht

∂ϕ′
)′vec(Σ−1

t ata
′
tΣ
−1
t − Σ−1

t )− (
∂at
∂ϕ′

)′Σ−1
t at, (7)

∂lt
∂δ

=
1

2
(
∂Ht

∂δ′
)′vec(Σ−1

t ata
′
tΣ
−1
t − Σ−1

t ), (8)

where

∂at
∂ϕ′

= Θ−1(L)[Xt−1 ⊗ Ik], Xt−1 = (Y ′t−1, ..., Y
′
t−p, a

′
t−1, ..., a

′
t−q),

∂Ht

∂ϕ′
=
(
Ik2 −

s∑
i=1

(Bi ⊗Bi)L
i
)−1

[
r∑
i=1

(Ai ⊗ Ai)Li((Ik ⊗ at + at ⊗ Ik)
∂at
∂ϕ′

)

]
,

∂Ht

∂δ′
=
(
Ik2 −

s∑
i=1

(Bi ⊗Bi)L
i
)−1

[Ik2 , H̃
(1)
t−1, ..., H̃

(1)
t−r, H̃

(2)
t−1, ..., H̃

(2)
t−s],

H̃
(1)
t−i = (Ik ⊗ Ai) · [Ik ⊗ (at−ia

′
t−ie1), ..., Ik ⊗ (at−ia

′
t−iek)] + (Ai ⊗ Ik) · ((at−ia′t−i)⊗ Ik),

H̃
(2)
t−i = (Ik ⊗ Ai) · [Ik ⊗ (Σt−ie1), ..., Ik ⊗ (Σt−iek)] + (Ai ⊗ Ik) · (Σt−i ⊗ Ik),

and ej is the j-th unit vector with 1 in the j-th element and 0 elsewhere.
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Differentiating Equations (7) and (8) conditional on Ft−1 and taking expectation, we have that at
λ = λ0,

E

[
∂2lt
∂ϕ∂ϕ′

|Ft−1

]
= −1

2
(
∂Ht

∂ϕ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂ϕ′
)− (

∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

), (9)

E

[
∂2lt
∂δ∂δ′

|Ft−1

]
= −1

2
(
∂Ht

∂δ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂δ′
), (10)

E

[
∂2lt
∂ϕ∂δ′

|Ft−1

]
= O. (11)

The following theorems provide the asymptotic properties of the information matrix and MLE λ̂n of
the model.

Theorem 3.1. Suppose {Yt} and {at} are generated by (1) and (2) with εt being multivariate Gaussian
with mean zero and identity covariance matrix. Assume that Assumptions 1–6 hold, then at λ = λ0,

− 1

n

n∑
t=1

[
∂2lt/(∂ϕ∂ϕ

′) ∂2lt/(∂δ∂ϕ
′)

∂2lt/(∂ϕ∂δ
′) ∂2lt/(∂δ∂δ

′)

]
→a.s.

[
Ωϕ O

O Ωδ

]
≡ Ω

as n → ∞, where →a.s. denotes convergence with probability 1, and Ωϕ and Ωδ are positive definite
matrices given by

Ωϕ = E[
1

2
(
∂Ht

∂ϕ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂ϕ′
) + (

∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

)],

Ωδ = E[
1

2
(
∂Ht

∂δ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂δ′
)].

Theorem 3.2. Under the assumptions of Theorem 3.1, the following results hold:
(a). There exists a MLE λ̂n satisfying the equation ∂Ln(λ)/∂λ = 0 and λ̂n →p λ0 as n→∞.
(b).
√
n(λ̂n − λ0) →L N(0,Ω−1

0 ) as n → ∞, where →L denotes convergence in distribution, Ω0 =

diag{Ωϕ0,Ωδ0}, and Ωϕ0 and Ωδ0 are values of Ωϕ and Ωδ at λ = λ0. Further, the information matrices
Ωϕ0 and Ωδ0 can be estimated consistently and separately by

Ωϕ =
1

n

n∑
t=1

[
1

2
(
∂Ht

∂ϕ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂ϕ′
) + (

∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

)

]
, (12)

Ωδ =
1

n

n∑
t=1

[
1

2
(
∂Ht

∂δ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂δ′
)

]
, (13)

where the terms are evaluated at λ = λ̂n.

The proofs of Theorems 3.1 and 3.2 are similar to those of Theorems 3.1 and 3.2 in Ling and Li [11]
and are omitted.

3.2. Asymptotic Distributions of Sample Matrices and Diagnostic Checking

In this subsection, we investigate the asymptotic distributions of sample autocovariance matrices
of the standardized residuals and propose two portmanteau statistics, namely Q1(M) and Q2(M),
for checking a fitted VARMA-GARCH model when the innovations are Gaussian, where M is a
pre-specified positive integer. We start with the Q1(M) statistic.
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For the innovation εt = Σ
−1/2
t at, define its lag-m sample autocorrelation matrix by ρm =

1
n

∑n
t=1 εtε

′
t−m, where we make use of the condition E(εt) = 0 and cov(εt) = Ik. Let vec(ρ) =

(vec′(ρ1), ..., vec′(ρM))′. We have the following lemma concerning the distribution of vec(ρ).

Lemma 3.1. If the time series Yt is generated by the VARMA-GARCH model in Equations (1)-(2)
with standard multivariate Gaussian innovations, then under Assumptions 1–6,

√
nvec(ρm)→L N(0, Ik2).

Proof. Since n · vec(ρm) =
∑n

t=m+1 vec(εtε
′
t−m) ≡

∑n
t=m+1 vec(Wtm), and noting that,

for m > 0, {Wtm,Ft−1} is a martingale difference, it can be shown by Central Limit
Theorem for martingale difference and the Cramer–Wold device that the asymptotic distribu-
tion of

√
nvec(ρm) is N(0, E[vec(Wtm)vec′(Wtm)]). The covariance matrix can be obtained

as E[vec(Wtm)vec′(Wtm)] = E{[(εt−mε′t−m) ⊗ (εtε
′
t)]} and E[εtε

′
t|Ft−1] = cov(εt) = Ik.

Therefore, E[vec(Wtm)vec′(Wtm)] = Ik2 . �

Let ât =
∑p

i=1 Φ̂iYt−i −
∑q

j=1 Θ̂jat−j be the residual of a fitted model, where Φ̂i and Θ̂j are MLE
of Φi and Θj , respectively. Also, let µ̂t and Σ̂t be the MLE of the mean vector of Yt and the conditional
covariance matrix of at. Denote by Σ̂

1/2
t the positive definite square-root matrix of Σ̂t. We estimate the

innovation εt by ε̂t = Σ̂
−1/2
t ât. The lag-m autocorrelation matrix of standardized residuals is defined as

ρ̂m = n−1
∑n

t=m+1(ε̂t − ε̃)(ε̂t−m − ε̃)′, where ε̃ = n−1
∑n

t=1 ε̂t.
To find the asymptotic distribution of

√
nvec(ρ̂m), we need Lemma 2 below that provides some

properties of E[∂vec(ρm)
∂λ′

].

Lemma 3.2. Under the assumptions of Lemma 3.1, we have that at λ = λ0,

E[
∂Ln
∂ϕ

vec′(ρm)] = −E[(
∂at
∂ϕ′

)′(ε′t−m ⊗ Σ
−1/2
t )], E[

∂Ln
∂δ

vec′(ρm)] = O,

and

E[(
∂Ln
∂λ′

)′vec′(ρm)] = −E[(
∂vec(ρm)

∂λ′
)′].

Define Υ′ = (Υ′1, ...,Υ
′
M), where Υm = [−E{(εt−m ⊗ Σ

−1/2
t )( ∂at

∂ϕ′
)}, O′]. Since λ̂n − λ0 =

(nΩ0)−1(∂l/∂λ) + op(n
−1/2), and by Lemma 2, the asymptotic covariance between n1/2(λ̂n − λ0) and

n1/2vec(ρ) is given by Ω−1
0 Υ′. Using a standard Taylor’s expansion, we have

vec(ρ̂) = vec(ρ) +
∂vec(ρ)

∂λ′
(λ̂− λ) + op(n

−1/2).

It is then straightforward to obtain the following theorem given the asymptotic distribution of vec(ρ̂).

Theorem 3.3. Suppose the time series Yt is generated by (1)-(2) with standard multivariate Gaussian
innovations. Then, under Assumptions 1–6,

√
nvec(ρ̂) is asymptotically normal with mean 0 and

covariance matrix
V1 = IM ⊗ Ik2 −ΥΩ−1

0 Υ′.

Note that when k = 1, Theorem 3 reduces to Theorem 4.1 of Ling and Li [11].
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For conditional heteroscedastic data, it is important to explore the asymptotic properties of
autocovariance matrices of the cross-product vector of standardized residuals. To this end, we
consider the Q2(M) statistic below. For the innovation εt and the standardized residual ε̂t, define the
mean-corrected matrix processes ct = εtε

′
t − Ik and ĉt = ε̂tε̂

′
t − c̃, where c̃ = 1

n

∑n
t=1 ε̂tε̂

′
t is the sample

covariance matrix of the standardized residuals. Next, define the lag-m autocovariance matrices of the
cross-product vectors of εt and ε̂t as follows:

r̃m =
1

n

n∑
t=m+1

vec(ct)vec
′(ct−m), ˆ̃rm =

1

n

n∑
t=m+1

vec(ĉt)vec
′(ĉt−m)

rm =
1

n

n∑
t=m+1

vech(ct)vech
′(ct−m), r̂m =

1

n

n∑
t=m+1

vech(ĉt)vech
′(ĉt−m).

Let vec(r) = (vec′(r1), ..., vec′(rM))′, then we have the following lemma.

Lemma 3.3. If the time series Yt is generated by the VARMA-GARCH model (1)–(2) with standard
multivariate Gaussian innovation εt. Then, under Assumptions 1–6,

√
nvec(r̃m)→L N [0, (Ik2 +Kk,k)⊗ (Ik2 +Kk,k)].

Proof. From the definition, n · vec(r̃m) =
∑n

t=m+1 vec(Utm), where Utm = vec(ct)vec
′(ct−m).

For m > 0, it can be shown, similar to Lemma 1, that the asymptotic distribution of
√
nvec(r̃m)

is N(0, E[vec(Utm)vec′(Utm)]). The covariance matrix can be calculated via E[vec(Utm)vec′(Utm)]

= E{[vec(ct−m) ⊗ vec(ct)][vec
′(ct−m) ⊗ vec′(ct)]} = E{[vec(ct−m)vec′(ct−m)] ⊗ [vec(ct)vec

′(ct)]},
and E[vec(ct) ⊗ vec′(ct)|Ft−1] = cov[vec(εtε

′
t)] = Ik2 + Kk,k. Therefore, E[vec(Utm)vec′(Utm)] =

(Ik2 +Kk,k)⊗ (Ik2 +Kk,k). �

Using vec(rm) = (D+
k ⊗ D+

k )vec(r̃m) and D+
k Kk,k = D+

k , we obtain the following corollary for
√
nvec(rm).

Corollary 3.1. If the time series Yt is generated by the VARMA-GARCH model (1)–(2) with the
standard multivariate Gaussian innovation. Then, under Assumptions 1–6,

√
nvec(rm)→L N [0, 4(D+

k D
+′

k )⊗ (D+
k D

+′

k )].

To find the asymptotic distribution of
√
nvec(r̂m), we also need the following lemma for

E[(∂Ln
∂λ′

)′vec′(rm)] and E[∂vec(rm)
∂λ′

].

Lemma 3.4. Under the assumptions of Lemma 3.3, we have that at λ = λ0,

E

[
∂Ln
∂λ

vec′(rm)

]
=

1

n

n∑
t=m+1

E

{(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )[vech′(ct−m)⊗D+′

k ]

}
≡ X′m, (14)

and

E

[
(
∂Ln
∂λ′

)′vec′(rm)

]
= −E

[
(
∂vec(rm)

∂λ′
)′
]
.
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Similar as Theorem 3.3, the following theorem provides the asymptotic distribution of vec(r̂m).

Theorem 3.4. Suppose the time series Yt is generated by (1)-(2) with the standard multivariate
Gaussian innovation εt. Then, under Assumptions 1–6,

√
nvech(r̂) is asymptotically normal with mean

0 and covariance matrix

V2 = 4IM ⊗ (D+
k D

+′

k )⊗ (D+
k D

+′

k )−XΩ−1
0 X′,

where X′ = (X′1, ...,X
′
M) with Xm being defined in (14).

Again when k = 1, Theorem 3.4 is a generalization of Theorem 4.2 of Ling and Li [11].
By Theorems 3.3 and 3.4, we have

Q1(M) = T · vec′(ρ̂) · V̂ −1
1 · vec(ρ̂) ∼ χ2(Mk2) (15)

Q2(M) = T · vec′(r̂) · V̂ −1
2 · vec(r̂) ∼ χ2(M [

k(k + 1)

2
]2) (16)

where V̂1 = IM ⊗ Ik2 − Υ̂Ω̂−1
0 Υ̂′, V̂2 = 4IM ⊗ (D+

k D
+′

k )⊗ (D+
k D

+′

k )− X̂Ω̂−1
0 X̂′, Ω̂0 = diag(Ω̂ϕ, Ω̂δ).

Υ̂ = (Υ̂′1, ..., Υ̂
′
M)′, where Υ̂m = 1

n

∑n
t=m+1(ε̂t−m⊗Σ

−1/2
t (∂at/∂λ

′)) is estimated at λ = λ̂n. The same
applies to X̂ = (X̂′1, ..., X̂

′
M)′, where

X̂m =
1

n

n∑
t=m+1

(vec(ĉt−m)⊗ Ik2)(Ik ⊗ Σ
−1/2
t ata

′
t + Σ

−1/2
t ata

′
t ⊗ Ik)

∂vec(Σ
−1/2
t )

∂λ′
.

The statistics Q1(M) and Q2(M) can be used jointly to test the simultaneous significance of ρ̂i and r̂i,
i = 1, 2, ...,M . In addition, the statistic Q2(1) = T

4
· vec(r̂) · [(D+

k D
+′

k ) ⊗ (D+
k D

+′

k )]−1 · vec′(r̂) ∼
χ2(k(k+1)

2
) can be used to test whether a fitted VARMA model has GARCH innovations.

4. Diagnostic Checking for VARMA-GARCH Models with Multivariate Student-t Innovations

The heavy-tail phenomenon is commonly seen in financial data. To properly describe this
phenomenon, multivariate Student-t distributions are often employed in volatility modeling of multiple
asset returns. It is, then, desirable to investigate model checking of a fitted vector ARMA-GARCH
model with (standardized) multivariate Student-t innovations. Specifically, in this section, we assume
that the probability density function of εt is

f(εt) =
Γ((ν + k)/2)

[π(ν − 2)]k/2Γ(ν/2)
[1 +

εtε
′
t

ν − 2
]−(ν+k)/2, (17)

where ν is a positive number denoting the degrees of freedom. Note that E(εt) = 0 and cov(εt) = Ik. We
further assume that ν > 4 so that components of the Student-t distribution have a finite fourth moment.

The standardized multivariate Student-t distribution can also be written as

εt =

√
(v − 2)ζt

ξt
ut,

where ut is uniformly distributed on the unit sphere surface in Rk, ζt is a chi-square random variable
with k degrees of freedom, ξt is a gamma variate with mean ν and variance 2ν, and ut, ζt and ξt are
mutually independent, see Fiorentini et al. [19] for more details. We use this expression in some of the
derivations below.
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4.1. Estimation

We begin with estimation. Let Y1, . . . , Yn be a realization of the VARMA-GARCH model (1)-(2)
with innovations following the standardized multivariate Student-t distribution of (17). Similarly as the
case of Gaussian innovations, we denote the parameter vector of the model by θ = (ϕ′, δ′, η)′ = (λ′, η)′,
where η = 1

ν
. Ignoring the constant, the log-likelihood function of the data is

Ln(θ) =
1

n

n∑
t=1

lt(θ), lt(θ) = c(η) + dt(λ) + gt(λ, η) (18)

where

c(η) = ln[Γ(
kη + 1

2η
)]− ln[Γ(

1

2η
)]− k

2
ln(

1− 2η

η
),

dt(λ) = −1

2
ln(det(Σt(λ))),

gt(λ, η) = −(
kη + 1

2η
) ln[1 +

η

1− 2η
(ε′tεt)].

The first-order derivatives and the information matrix are calculated as

∂dt(λ)

∂λ
= −1

2
vec′(Σ−1

t )
∂Ht

∂λ′
,

∂dt
∂η

= 0,

∂gt(λ, η)

∂ϕ
=

kη + 1

2(1− 2η + η(ε′tεt))
[2a′tΣ

−1
t (

∂at
∂ϕ′

) + vec′(Σ−1
t ata

′
tΣ
−1
t )

∂Ht

∂ϕ′
]

∂gt(λ, η)

∂δ
=

kη + 1

2(1− 2η + η(ε′tεt))
[vec′(Σ−1

t ata
′
tΣ
−1
t )

∂Ht

∂δ′
]

∂gt(λ, η)

∂η
= − kη + 1

2η(1− 2η)

ε′tεt
1− 2η + η(ε′tεt)

+
1

2η
ln[1 +

η

1− 2η
(ε′tεt)]

∂c(η)

∂η
=

k

2η(1− 2η)
− 1

2η2
[Ξ(

kη + 1

2η
)− Ξ(

1

2η
)],

∂c(η)

∂λ
= 0,

where Ξ(x) = ∂ ln Γ(x)/∂x is the Gauss-ψ function, or di-gamma function. Then we can find the
information matrix by

E

[
∂2dt
∂λ∂λ′

]
= − k + ν

2(k + ν + 2)
E[(

∂Ht

∂λ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂λ′
)],

E

[
∂2gt
∂ϕ∂ϕ′

]
= − ν(k + ν)

(ν − 2)(k + ν + 2)
E[(

∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

)]

+
1

2(k + ν + 2)
E{[(∂Ht

∂ϕ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂ϕ′
)]},

E

[
∂2gt
∂δ∂δ′

]
=

1

2(k + ν + 2)
E{[(∂Ht

∂δ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂δ′
)]},

E

[
∂2gt
∂η∂λ′

]
=

(k + 2)ν2

(ν − 2)(k + ν)(k + ν + 2)
E[vec′(Σ−1

t )(
∂Ht

∂λ′
)],

E

[
∂2

∂η∂η′
(gt + c(η))

]
= −ν

4

4
[Ξ′(

ν

2
)− Ξ′(

k + ν

2
)] +

kν4[ν2 + k(ν − 4)− 8]

2(ν − 2)2(k + ν)(k + ν + 2)
.

The following theorems, corresponding to Theorems 3.1 and 3.2, provide the asymptotic properties
of the information matrix and MLE θ̂n for a GARCH Student-t model.
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Theorem 4.1. Suppose the k-dimensional time series {Yt} and {at} are generated by (1)–(2) with
innovations εt following the distribution in (17). Assume Assumptions 1–6 hold, then at λ = λ0

− 1

n

n∑
t=1

 ∂2lt/(∂ϕ∂ϕ
′) ∂2lt/(∂δ∂ϕ

′) ∂2lt/(∂η∂ϕ
′)

∂2lt/(∂ϕ∂δ
′) ∂2lt/(∂δ∂δ

′) ∂2lt/(∂η∂δ
′)

∂2lt/(∂ϕ∂η) ∂2lt/(∂δ∂η) ∂2lt/(∂η∂η)

→a.s.

 Ωϕϕ O Ωϕη

O Ωδδ Ωδη

Ω′ϕη Ω′δη Ωηη

 ≡ Ω∗

as n→∞ and Ω∗ is positive definite, where

Ωϕϕ =
k + ν

2(k + ν + 2)
E[(

∂Ht

∂ϕ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂ϕ′
)] +

ν(k + ν)

(ν − 2)(k + ν + 2)
E[(

∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

)]

− 1

2(k + ν + 2)
E{[(∂Ht

∂ϕ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂ϕ′
)]},

Ωϕη = − (k + 2)ν2

(ν − 2)(k + ν)(k + ν + 2)
E[vec′(Σ−1

t )(
∂Ht

∂ϕ′
)],

Ωδη = − (k + 2)ν2

(ν − 2)(k + ν)(k + ν + 2)
E[vec′(Σ−1

t )(
∂Ht

∂δ′
)],

Ωδδ =
k + ν

2(k + ν + 2)
E[(

∂Ht

∂δ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂δ′
)]

− 1

2(k + ν + 2)
E{[(∂Ht

∂δ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂δ′
)]},

Ωηη =
ν4

4
[Ξ′(

ν

2
)− Ξ′(

k + ν

2
)]− kν4[ν2 + k(ν − 4)− 8]

2(ν − 2)2(k + ν)(k + ν + 2)
.

Theorem 4.2. Under the assumptions of Theorem 4.1, the following results hold:
(a). There exists a MLE θ̂n satisfying the equation ∂Ln(θ)/∂θ = 0 and θ̂n →p θ0 as n→∞.
(b).
√
n(θ̂n − θ0)→L N(0,Ω−1

0∗ ) as n→∞, where

Ω0∗ =

 Ωϕϕ0 O Ωϕη0

O Ωδδ0 Ωδη0

Ω′ϕη0 Ω′δη0 Ωηη0

 ,
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and Ωϕϕ0,Ωϕη0,Ωδδ0,Ωδη0 and Ωηη0 are values of Ωϕϕ,Ωϕη,Ωδδ,Ωδη and Ωηη at θ = θ0. Further, the
information matrices Ωϕϕ0,Ωϕη0,Ωδδ0,Ωδη0 and Ωηη0 can be estimated consistently by

Ωϕϕ0 =
k + ν

2(m+ ν + 2)

n∑
t=1

[(
∂Ht

∂ϕ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂ϕ′
)] +

ν(k + ν)

(ν − 2)(k + ν + 2)

n∑
t=1

[(
∂at
∂ϕ′

)′Σ−1
t (

∂at
∂ϕ′

)]

− 1

2(k + ν + 2)

n∑
t=1

{[(∂Ht

∂ϕ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂ϕ′
)]}

Ωϕη0 = − (k + 2)ν2

(ν − 2)(k + ν)(k + ν + 2)

n∑
t=1

[vec′(Σ−1
t )(

∂Ht

∂ϕ′
)],

Ωδη0 = − (k + 2)ν2

(ν − 2)(k + ν)(k + ν + 2)

n∑
t=1

[vec′(Σ−1
t )(

∂Ht

∂δ′
)],

Ωδδ0 =
k + ν

2(k + ν + 2)

n∑
t=1

[(
∂Ht

∂δ′
)′(Σ−1

t ⊗ Σ−1
t )(

∂Ht

∂δ′
)]

− 1

2(k + ν + 2)

n∑
t=1

{[(∂Ht

∂δ′
)′vec(Σ−1

t )][vec′(Σ−1
t )(

∂Ht

∂δ′
)]},

Ωηη0 =
ν4

4
[Ξ′(

ν

2
)− Ξ′(

k + ν

2
)]− kν4[ν2 + k(ν − 4)− 8]

2(ν − 2)2(k + ν)(k + ν + 2)
.

4.2. Diagnostic Checking

Turn to model checking for a fitted VARMA-GARCH model with Student-t innovations. We derive
in this subsection the asymptotic distributions of autocovariance matrices of constructed processes of
the standardized residuals and the portmanteau statistics. The derivations are similar to those in the
Gaussian case, and ρ and r are defined in the same way as those of subsection 3.2. First, we study the
asymptotic distribution of ρ̂ and obtain the corresponding portmanteau statistic. It can be shown that
Lemma 3.1 continues to hold when the innovations are Student-t. Also, using calculation similar to that
of Lemma 3.2, we obtain the following lemma concerning E[∂Ln

∂λ
vec′(ρ)] and E[∂vec(ρ)

∂λ′
].

Lemma 4.1. Under the assumptions of Lemma 3.5, we have that at θ = θ0,

E

[
∂Ln
∂ϕ

vec′(ρm)

]
=

−ν
ν − 2

E

[
(
∂at
∂ϕ′

)′(ε′t−m ⊗ Σ
′−1/2
t )

]
,

E

[
(
∂l

∂δ′
)′vec′(ρm)

]
= E

[
∂l

∂η
vec′(ρm)

]
= O,

E

[
(
∂l

∂θ′
)′vec′(ρm)

]
=

−ν
ν − 2

E

[
(
∂vec(ρm)

∂θ′
)′
]
.

Furthermore, define Υ′∗ = (Υ′1∗, ...,Υ
′
M∗), Υk∗ = [−E[(εt−m ⊗ Σ

−1/2
t )( ∂at

∂ϕ′
)], O′]. Since

E[∂vec(ρm)/∂θ′] = −Υm∗, we can derive the distribution of ρ̂.

Theorem 4.3. Suppose the time series Yt is generated under the assumptions of Theorem 4.1, then
√
nvec(ρ̂) is asymptotically normal with mean 0 and covariance matrix

V1∗ = IM ⊗ Ik2 −
ν + 2

ν − 2
Υ∗Ω

−1
0∗Υ′∗.
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The asymptotic distribution of lag-m autocovariance matrix of the product vector of squared
standardized residuals is derived in the following lemma.

Lemma 4.2. Under the assumptions of Theorem 4.1, we have

√
nvec(r̃m)→L N(0,W ⊗W ),

where W = ν−2
ν−4

(Ik2 +Kk,k)− 2
ν−4

vec(Ik)vec
′(Ik).

Proof. The proof of Lemma 4.2 is similar to that of Lemma 3.3. Here we have

var(vec(εtε
′
t)) = E[vec(

ν − 2

ξt
ζtutu

′
t − Ik)vec′(

ν − 2

ξt
ζtutu

′
t − Ik)]

= (ν − 2)2E[(
ζt
ξt

)2]E[vec(utu
′
t)vec

′(utu
′
t)]− vec(Ik)vec′(Ik)

=
k(k + 2)(ν − 2)

ν − 4

1

k(k + 2)
[Ik2 +Kk,k + vec(Ik)vec

′(Ik)]− vec(Ik)vec′(Ik)

=
ν − 2

ν − 4
(Ik2 +Kk,k)−

2

ν − 4
vec(Ik)vec

′(Ik). �.

Notice that as ν →∞, var(vec(εtε′t))→ Ik2 +Kk,k, which is the covariance matrix for the Gaussian
case of Section 3. It is straightforward to find the distribution of

√
nvec(rm).

Corollary 4.1. If the time series Yt is generated by the VARMA-GARCH model (1)–(2) with
standardized multivariate Student-t innovation, then under Assumptions 1–6,

√
nvec(rm)→L N(0,∆⊗∆),

where ∆ = ( 2
ν−4

)2((ν − 2)(D+
k D

+′

k )− vech(Ik)vech
′(Ik)).

Next, similar to Lemma 3.4, we study the relation between E[(∂Ln
∂θ′

)′vec′(rm)] and E[∂vec(rm)
∂θ′

].

Lemma 4.3. Under the assumptions of Lemma 3.5, we have that at θ = θ0,

E

[
(
∂Ln
∂λ′

)′vec′(rm)

]
=

1

n

n∑
t=m+1

E

{(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )[vech′(ct−m)⊗D+′

k ]

}

+
1

n

1

ν − 2

n∑
t=m+1

E{

(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )

· [vech′(ct−m)⊗ (vec(Ik)vech
′(Ik))]}

≡ X̃′m∗ + Z̃
′
m∗.

Next, define Xm∗ = [X̃m∗, O], X′∗ = (X′1∗, . . . ,X
′
M∗), Zm∗ = [Z̃m∗, O], Z′∗ = (Z′1∗, . . . ,Z

′
M∗).
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Proof. From the calculation of ∂Ln
∂λ

, we have

E[
∂Ln
∂λ

vec′(rm)] =
1

n

n∑
t=m+1

E
kη + 1

2(1− 2η + η(ε′tεt))
(
∂Ht

∂λ′
)′(Σ

−1/2
t ⊗ Σ

−1/2
t )

· vec(ct)(vech′(ct−m)⊗ vech′(ct))]

=
1

n

n∑
t=m+1

E

[(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )

]

· [vech′(ct−m)⊗ kη + 1

2(1− 2η + η(ε′tεt))
(vec(ct)vech

′(ct))]

=
1

n

n∑
t=m+1

E{

(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )

· [vech′(ct−m)⊗ (D+′

k +
1

ν − 2
vec(Ik)vech

′(Ik))]} = X̃′m∗ + Z̃′m∗. �

We can also find that E[∂vec(rm)/∂θ] = −Xm∗ and obtain the following portmanteau statistic for
diagnostic checking.

Theorem 4.4. Suppose the time series Yt is generated under the assumptions of Theorem 4.1, then
√
nvec(r̂) is asymptotically normal with mean 0 and covariance matrix

V2∗ = (
2

ν − 4
)2 · IM ⊗ (Ψ⊗Ψ)− (X∗Ω

−1
0∗X′∗ − Z∗Ω

−1
0∗ Z′∗),

where Ψ = (ν − 2)(D+
k D

+′

k )− vech(Ik)vech
′(Ik).

By Theorems 4.3 and 4.4, we know that

Q1(M) = n · vec′(ρ̂)V̂ −1
1∗ vec(ρ̂) ∼ χ2(Mk2), (19)

and

Q2(M) = n · vec′(r̂)V̂ −1
2∗ vec(r̂) ∼ χ2(M [

k(k + 1)

2
]2) (20)

where V̂1∗ = IM ⊗ Ik2 − ν+2
ν−2

Υ̂∗Ω̂
−1
0∗ Υ̂′∗, V̂2∗ = ( 2

ν̂−4
)2 · IM ⊗ (Ψ⊗Ψ)− (X̂∗Ω̂

−1
0∗ X̂′∗ − Ẑ∗Ω̂

−1
0∗ Ẑ′∗),

Ω̂0∗ =

 Ω̂ϕϕ0 O Ω̂ϕη0

O Ω̂δδ0 Ω̂δη0

Ω̂′ϕη0 Ω̂′δη0 Ω̂ηη0

 ,
where Υ̂∗ = (Υ̂′1∗, . . . , Υ̂

′
M∗)

′, Υ̂m∗ = 1
n

∑n
t=m+1(εt−m ⊗ Σ

−1/2
t (∂at/∂λ

′), O) is estimated at
λ = λ̂n. X̂∗ = (X̂′1∗, . . . , X̂

′
M∗)

′, X̂m∗ = 1
n

∑n
t=m+1(vech(ct−m) ⊗ D+′

k )[(Ik ⊗ Σ
−1/2
t ata

′
t +

Σ
−1/2
t ata

′
t ⊗ Ik)

∂vec(Σ
−1/2
t )

∂λ′
, O]′, Ẑ∗ = (Ẑ′1∗, . . . , Ẑ

′
M∗)

′, Ẑm∗ = 1
n

∑n
t=m+1

1
ν̂−2

[vech(ct−m) ⊗

(vec(Ik)vech
′(Ik))][(Ik ⊗ Σ

−1/2
t ata

′
t + Σ

−1/2
t ata

′
t ⊗ Ik)

∂vec(Σ
−1/2
t )

∂λ′
, O]′ are also estimated at λ = λ̂n.
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5. Residual-based Bootstrap Approximation for Model Checking Statistics

As discussed in previous sections, the model checking statistics Q1(M) and Q2(M) depend on the
estimation of covariance matrices V1 and V2, which are obtained by the first and second order derivatives
of log-likelihood function, while it is complicated to implement the procedure in real application.
Alternatively, in this section we approximate the test statistics under both the null and alternative
hypothesis by bootstrap. To be specific, we consider constructing pseudo time series based on i.i.d.
random draws from the fitted standardized residuals with a discrete distribution. For simplicity, our
bootstrap procedure and asymptotic properties are based on the case of Gaussian innovations in this
section, and the approach could be easily extended for the Student-t error GARCH model.

5.1. Residual-based Bootstrap Procedure

By resampling the standardized residuals of the fitted model, we use the residual-based bootstrap to
approximate the (asymptotic) distributions of sample standardized residual autocorrelation matrix and
standardized residual cross-product autocovariance matrix, i.e., vec(ρ̂) and vec(r̂), and thus find the
(empirical) p-values of the model checking statistics Q1(M) and Q2(M). Particularly, the innovations
εt are mimicked by i.i.d. random draws with replacement from the estimated errors ε̂t. Define Σε̂ as the
sample covariance matrix of ε̂t, i.e., Σε̂ ≡ n−1

∑n
t=1(ε̂t − ε̃)(ε̂t − ε̃)′, where ε̃ is the sample mean of ε̂t,

as defined in subsection 3.2. The fitted standardized residuals are normalized by ε̌t = Σ
−1/2
ε̂ (ε̂t − ε̃).

To generate each bootstrap pseudo-series, the residual sample ε∗t is i.i.d. random draw from the
normalized version {ε̌t}. To construct the bootstrap sample {Y ∗t }nt=1, we replace the unknown parameter
λ with its estimator λ̂n. The procedure allows the bootstrap residual data {ε∗t}nt=1−d to satisfy the
model hypothesized under the null, irrespective of whether {εt}nt=1−d follow the model under the null
hypothesis. Hence the bootstrap statistics possess the same asymptotic distribution under the maintain
hypothesis, i.e., H0 ∪ Ha. As the following steps, we introduce the residual-based bootstrap algorithm
to approximate the test statistics.

Step 1. Define d = max(p, q, r, s), and let (ε∗1−d, ..., ε
∗
0) be some starting values. For the checked

VARMA(p, q)-GARCH(r, s) model, generate Y ∗t by

Y ∗t =

p∑
i=1

Φ̂iY
∗
t−i + a∗t +

q∑
i=1

Θ̂ia
∗
t−i, a∗t = Σ

∗1/2
t ε∗t (21)

Σ∗t = Â0 +
r∑
i=1

Âia
∗
t−ia

∗′
t−iÂ

′
i +

s∑
i=1

B̂iΣ
∗
t−iB̂

′
i, t = 0, 1, . . . , n (22)

where ε∗t are i.i.d. random draw from {ε̌t}.
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Step 2. Based on the bootstrap pseudo-series {Y ∗t }nt=1, let λ̂∗n be the MLE of the parameters of the
model under the null hypothesis, and denote by ε̂∗t the corresponding estimated standardized residuals.
The bootstrap analogues of ρ̂m and r̂m are obtained by

ρ̂∗m = n−1

n∑
t=m+1

(ε̂∗t − ε̃∗)(ε̂∗t−m − ε̃∗)′

r̂∗m = n−1

n∑
t=m+1

vech(ĉ∗t − c̃∗)vech(ĉ∗t−m − c̃∗)′, m = 1, ...,M

where ε̃∗ = n−1
∑n

t=1 ε̂
∗
t , ĉ

∗
t = ε̂∗t ε̂

∗′
t , c̃∗ = n−1

∑n
t=1 ĉ

∗
t , and M is the pre-specified largest

lag tested for zero autocorrelations in standardized residual and its cross-product vector. Define
vec(ρ̂∗) = (vec′(ρ̂∗1), ..., vec′(ρ̂∗M))′ and vec(r̂∗) = (vec′(r̂∗1), ..., vec′(r̂∗M))′.

Step 3. Repeat Step 1 and Step 2 for B times. Denote the vec(ρ̂∗) and vec(r̂∗) obtained in the bth

iteration by vec(ρ̂∗(b)) and vec(r̂∗(b)), where b = 1, 2, . . . , B.

Step 4. Approximate V1 by V̂ ∗1 , the covariance matrix of {
√
nvec(ρ̂∗(b))}Bb=1. Calculate B bootstrap

model checking statistics Q
∗(b)
1 (M) by {Q∗(b)1 (M) = n · vec(ρ̂∗(b))′V̂ ∗−1

1 vec(ρ̂∗(b))}Bb=1. Similar
procedures are followed to obtain the covariance matrix of {

√
nvec(r̂∗(b))}Bb=1, denoted by V̂ ∗2 , and

{Q∗(b)2 (M)}Bb=1.

Step 5. Let Q1(M) = n · vec(ρ̂)′V̂ ∗−1
1 vec(ρ̂), Q2(M) = n · vec(r̂)′V̂ ∗−1

2 vec(r̂). The model is not
adequate if

Q1(M) > q1∗
α , or Q2(M) > q2∗

α

where q1∗
α and q2∗

α are the (1 − α)th-quantiles of the distributions of {Q∗(b)1 (M)}Bb=1 and
{Q∗(b)2 (M)}Bb=1, respectively.

5.2. Properties and Validity of the Residual-based Bootstrap Process

In this subsection, we introduce some basic properties of the residual-based bootstrap procedure and
justify its validity. As a first step, we consider transforming the VARMA(p, q)-GARCH(r, s) BEKK
model to a truncated version of VAR(∞)-ARCH(∞) model. Define η = max(r, s).
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For i > r or j > s, let Ai = Bj = Ok×k, and denote Rt = vec(ata
′
t), R̃t =

[R′t, O1×(2η−1)k2 ]
′, Ã0 = [O1×k2 , vec(A0)′, O1×(2(η−1)k2)]

′, Ji,η = [Ok2×(i−1)k2 , Ik2 , Ok2×(2η−i)k2 ], Gt =

[R′t, H
′
t, R

′
t−1, H

′
t−1, ..., R

′
t−η+1, H

′
t−η+1]′, where Ht = vec(Σt).

Ã =



0 0 . . . 0 0 0 0

A1 ⊗ A1 B1 ⊗B1 . . . Aη−1 ⊗ Aη−1 Bη−1 ⊗Bη−1 Aη ⊗ Aη Bη ⊗Bη

1 0 . . . 0 0 0 0

0 1 . . . 0 0 0 0
...

... . . . ...
...

...
...

0 0 . . . 1 0 0 0

0 0 . . . 0 1 0 0


(23)

Consider the recursive relationship Gt = Ã0 + ÃGt−1 + R̃t =
∑∞

j=0 Ã
jÃ0 +

∑∞
j=0 Ã

jR̃t−j , and notice
that the processes {εt} and {Σt} are unobserved for t ≤ 0 in practice, we have the following lemma
concerning the transformation of VARMA(p, q)-GARCH(r, s) BEKK model.

Lemma 5.1. Given F0 and under Assumptions 3–7, model (1)-(3) has the following form
of transformation

at = Yt +
t−1∑
i=1

ΠiYt−i, at = Σ
1/2
t εt, (24)

Ht = J2,η

[ ∞∑
j=0

ÃjÃ0 +
∞∑
j=0

ÃjR̃t−j
]

= J2,η(
∞∑
j=0

ÃjÃ0) +
t−1∑
j=0

[J2,ηÃ
jJ ′1,ηRt−j]

= J2,η(
∞∑
j=0

ÃjÃ0) +
t−1∑
j=1

[J2,ηÃ
jJ ′1,ηRt−j] ≡ C0 +

t−1∑
j=1

CjRt−j. (25)

Based on the above transformation, we provide the bootstrap counterparts and the corresponding
log-likelihood function.

a∗t = Y ∗t +
t−1∑
i=1

ΠiY
∗
t−i, a∗t = Σ

∗1/2
t ε∗t , (26)

H∗t = C0 +
t−1∑
j=1

CjR
∗
t−j, (27)

L∗n(λ) =
1

n

n∑
t=1

l∗t (λ), l∗t (λ) = −1

2
ln det(Σ∗t )−

1

2
a∗
′

t Σ∗−1
t a∗t . (28)

Lemma 5.2. Under Assumptions 1–8, for all λ ∈ Λ,

E∗| 1
n

n∑
i=1

[ln det(Σ∗t )− ln det(Σt)]| = op(1), (29)

E∗| 1
n

n∑
i=1

[a∗
′

t Σ∗−1
t a∗t − a′tΣ−1

t at]| = op(1), (30)
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where E∗(X) denotes the bootstrap expectation of the random variable X , i.e., E∗(X) =

E(X|ε̂1, · · · , ε̂n) and P ∗(X ≤ x) = P (X ≤ x|ε̂1, · · · , ε̂n).

Lemma 5.3. Under Assumptions 1–8,

E∗
(

sup
λ1,λ2∈Λ

1

|λ1 − λ2|
| ln detΣ∗t (λ1)− ln detΣ∗t (λ2)|

)
= Kt (31)

E∗
(

sup
λ1,λ2∈Λ

1

|λ1 − λ2|
|a∗′t (λ1)Σ∗−1

t (λ1)a∗t (λ1)− at(λ2)′Σ−1
t (λ2)at(λ2)|

)
= Kt (32)

where Kt is a sequence of Op(1) random variables and E∗(·) is defined similarly as in Lemma 5.2.

Based on Lemmas 5.2 and 5.3, we have the following propositions, which establishes the asymptotic
properties of the MLE λ̂∗n of the bootstrap procedure (21)− (22).

Proposition 5.1. Under Assumptions 1–8 and under H0∪Ha, λ̂∗n− λ̂n = op∗(1), where op∗(1) means
that for all ε > 0, P{‖ λ̂∗n − λ̂n ‖> ε|Dn} →p 0 with Dn = {ε̌t}n1−d.

Proof. To show the proposition, we need first show that

E∗ sup
λ∈Λ
|L∗n(λ)− Ln(λ)| = op(1). (33)

It follows from Lemma 5.2 that E∗|L∗n(λ) − Ln(λ)| = op(1). Since Λ is a compact set, we have the
equicontinuity condition for L∗n(λ)− Ln(λ) by Lemma 5.3, which implies

E∗ sup
λ1,λ2∈Λ

( 1

|λ1 − λ2|

[
| ln detΣ∗t (λ1)− ln detΣ∗t (λ2)|

+|a∗′t (λ1)Σ∗−1
t (λ1)a∗t (λ1)− at(λ2)′Σ−1

t (λ2)at(λ2)|
])

= Kt

Thus, (33) holds. Therefore by standard arguments we conclude that λ̂∗n − λ̂n = op∗(1). �.

Proposition 5.2. Under Assumptions 1–8 and under H0 ∪ Ha, as n → ∞,
√
n(λ̂∗n − λ̂n) →L∗

N(0,Ω−1
0 ) in probability, that is for each point x ∈ Rdim(λ), P{

√
n(λ̂∗n − λ̂n) < x|Dn} →p

Φdim(λ)(x,Ω
−1
0 ), where Φdim(λ)(·,Ω−1

0 ) denotes the CDF of the dim(λ)-variate Gaussian distribution
N(0,Ω−1

0 ).

Proof. To show the proposition, we shall show that Ω∗−1(λ) − Ω−1(λ) = op∗(1), where Ω∗(λ) =

diag{Ω∗φ(λ),Ω∗δ(λ)},

Ω∗φ(λ) = E∗[
1

2
(
∂H∗t
∂ϕ′

)′(Σ∗−1
t ⊗ Σ∗−1

t )(
∂H∗t
∂ϕ′

) + (
∂at
∂ϕ′

)′Σ∗−1
t (

∂at
∂ϕ′

)],

Ω∗δ(λ) = E∗[
1

2
(
∂H∗t
∂δ′

)′(Σ∗−1
t ⊗ Σ∗−1

t )(
∂H∗t
∂δ′

)].

Proceeding as the proof of Proposition 5.1, we obtained that Ω∗(λ) − Ω(λ) = op∗(1) uniformly in a
neighborhood of λ̂n, sayN (λ̂n), which implies that Ω∗(λ) is a positive definite matrix for all λ ∈ N (λ).



Econometrics 2013, 1 19

Hence by Slutsky’s theorem, we have Ω∗−1(λ)− Ω−1(λ) = op∗(1), which completes the proof. �.

For the fitted standardized residual series {ε̂∗t} obtained by the bootstrap time series, it follows by a
Taylor’s expansion that

vec(ρ̂∗) = vec(ρ) +
∂vec(ρ)

∂λ′
(λ̂∗ − λ) + op∗(n

−1/2)

vec(r̂∗) = vec(r) +
∂vec(r)

∂λ′
(λ̂∗ − λ) + op∗(n

−1/2)

Then we have the following results for the fitted residuals of the bootstrap processes.

Proposition 5.3. Under Assumptions 1–8 and under H0 ∪Ha, as n→∞,

√
n(vec(ρ̂∗))→L∗ N(0, V1);

√
n(vec(r̂∗))→L∗ N(0, V2)

in probability.

Proof. Denote the covariance matrix (in the bootstrap sense) of
√
nvec(ρ̂∗) and

√
nvec(r̂∗) as V ∗1 and

V ∗2 , respectively. Then we have

V ∗1 = n−1E∗
[∂vec(ρ∗)

∂λ
Ω∗−1

0

∂L∗n
∂λ

(∂L∗n
∂λ

)′
Ω∗−1

0

(∂vec(ρ∗)
∂λ

)′]
V ∗2 = n−1E∗

[∂vec(r∗)
∂λ

Ω∗−1
0

∂L∗n
∂λ

(∂L∗n
∂λ

)′
Ω∗−1

0

(∂vec(r∗)
∂λ

)′]
Using similar method in Proposition 5.1 and the result of Proposition 5.2, we could show that
V ∗1 − V1 = op∗(1) and V ∗2 − V2 = op∗(1) uniformly in a neighborhood of λ̂n. Therefore, the results of
the proposition hold. �.

Based on Proposition 5.3, we have the following theorem concerning the asymptotic distributions of
the bootstrap model checking statistics.

Theorem 5.1. Under Assumptions 1–8 and under H0 ∪Ha, as n→∞,

n(vec(ρ̂∗))′V ∗−1
1 (vec(ρ̂∗))→L∗ χ2(Mk2);

n(vec(r̂∗))′V ∗−1
2 (vec(r̂∗))→L∗ χ2(M [

k(k + 1)

2
]2)

in probability.

The results of Theorem 5.1 allow us to implement the bootstrap procedure for model checking. In
particular, define q1

n,1−α, q2
n,1−α and q∗1n,1−α, q∗2n,1−α to satisfy

P{n(vec(ρ̂))′V −1
1 (vec(ρ̂)) > q1

n,1−α} = α; P{n(vec(r̂))′V −1
2 (vec(r̂)) > q2

n,1−α} = α,

P ∗{n(vec(ρ̂∗))′V ∗−1
1 (vec(ρ̂∗)) > q∗1n,1−α} = α; P ∗{n(vec(r̂∗))′V ∗−1

2 (vec(r̂∗)) > q∗2n,1−α} = α
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Then it follows that qin,1−α → χ2
1−α(Mk2) as n → ∞, whereas q∗in,1−α →P χ2

1−α(Mk2), i = 1, 2.
In real application, we run the bootstrap algorithm for a large number of B times to estimate V ∗1 and
V ∗2 . Particularly,

V̂ ∗1 =
1

B

B∑
b=1

[vec(ρ̂∗(b) − ρ̄∗)][vec′(ρ̂∗(b) − ρ̄∗)],

V̂ ∗2 =
1

B

B∑
b=1

[vec(r̂∗(b) − r̄∗)][vec′(r̂∗(b) − r̄∗)]

where ρ̄∗ = 1
B

∑B
b=1 ρ̂

∗(b), r̄∗ = 1
B

∑B
b=1 r̂

∗(b). Furthermore, define Q∗(b)1 (M) = n(vec(ρ̂∗(b)))′V̂ ∗−1
1

·(vec(ρ̂∗(b))), Q∗(b)2 (M) = n(vec(r̂∗(b)))′V̂ ∗−1
2 (vec(r̂∗(b))), then qi∗1−α are approximated by the values

q∗i,B1−α (i = 1, 2), which satisfy

1

B

B∑
b=1

1(
Q∗1(b)(M)>q∗1,B1−α

) = α,
1

B

B∑
b=1

1(
Q∗2(b)(M)>q∗2,B1−α

) = α,

where 1(·) denotes the indicator function.

6. Simulation Study

In this section, we conduct some simulation studies with four objectives. First, we demonstrate
the effect of conditional heteroscedasticity on the distributions of autocorrelations of standardized
residuals and their cross-product series. Second, we study the empirical size and power of the proposed
portmanteau statistics. Thirdly, we compare the performance of the proposed statistics with those of Ling
and Li [12] to illustrate the contributions of using the cross-product vector of standardized residuals in
model checking. Finally, we examine the effect of our bootstrap approximation method by constructing
the distribution of the statistics via bootstrap under both the null and alternative hypotheses. In our
simulations, we use bivariate time series as examples.

To study the effect of GARCH shocks on the distributions of autocorrelations of standardized residuals
and their squared series, we employ a simple bivariate time series Yt = at, where at follows either a pure
2-dimensional Gaussian white noise or a BEKK(1,1) model with Gaussian innovations and parameters
given below:

A0 = I, A1 =

[
0.05 −0.1

0.1 0.05

]
, B1 =

[
0.9 −0.3

0.3 0.9

]
. (34)

For the pure white noise series, we estimate the sample covariance matrix of Yt to obtain the standardized
residuals. For the GARCH series, we fit a BEKK(1,1) model to obtain the standardized residuals.
Figure 1 shows the empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the
standardized residuals and their cross-product series. The plots on the top panel are for the case of pure
Gaussian noise whereas those in the bottom panel are for the case of GARCH shocks. Also, the plots
in the left panel are for the standardized residuals and those in the right panel are for the cross-product
series of the standardized residuals. The results are based on 1000 time series and the sample sizes
used are 500, 1000, and 3000. In each figure, the black, blue, and red curves are for sample size 500,
1000, and 3000, respectively. These plots show clearly that (a) the conditional heteroscedasticity has
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substantial impact on the sample distribution of residual serial correlations, (b) the sample size also
affects significantly the residual serial correlations, and (c) the conditional heteroscedasticity seems to
affect the autocorrelations of the standardized residuals more than their squared series.

To investigate the effect of excess kurtosis on the residual serial correlations, we employ
a GARCH(1,1) model. The GARCH shocks follow a BEKK(1,1) model with parameters in
Equation (34), but the innovations εt are multivariate Student-t with degrees of freedom 7, 15, 50,
respectively. Again, we consider the empirical densities of the (1,1) element of the lag-1 autocorrelation
matrix of the standardized residuals and their cross-product series. Figure 2 shows the results based on
1000 time series, each has 3000 observations. From the plots, we observe that (a) the tail-thickness has
marked impact on the sample distributions of the serial correlations of standardized residuals and their
cross-product series and (b), as expected, when the degrees of freedom ν increases the densities approach
those in Figure 1 for the Gaussian innovations with 3000 observations.

Next, we study the empirical size and power of the proposed test statistics Q1(M) and
Q2(M). Three VAR(p)-GARCH(r, s) models are used in the simulation. Denote the parameters
of a model by vec(Φ1, · · · ,Φp)-vec(A0, A1, · · · , Ar, B1, · · · , Bs). The first model employed is a
VAR(1)-GARCH(1,1) model with parameters (.2, .3, −.6, 1.1)-(1, 0, 0, 1, .5, 0, 0, .5, .5, 0, 0, .5).
The second one is a VAR(1)-GARCH(3,1) model with parameters (.2, .3, −.6, 1.1, −.3, 0, 0, −.3)-(1,
0, 0, 1, .2, 0, 0, .2, .2, .2, 0, .2, .2, 0, .1, .2, .85, 0, 0, .85). The third model is VAR(2)-GARCH(3,1)
with parameters (.2, .3, −.6, 1.1, −.3, 0, 0, −.3)-(1, 0, 0, 1, .5, 0, 0, .5, .5, .2, 0, .5, .4, 0, .1, .4, .2, 0,
0, .2). For each VAR-GARCH model, we consider Gaussian and Student-t innovations. The degrees of
freedom for the multivariate Student-t innovations are 6, 7, and 7, respectively, for Model 1, 2, and 3.
We choose these models to show various degrees of conditional heteroscedasticity and tail thickness.

The sample sizes used are 500 and 1000. For each (model, sample size, innovation) combination,
we generate 1000 realizations. For each realization {Yt|t = 1, . . . , n}, we fit a VAR(1)-GARCH(1,1)
to obtain the standardized residuals, assuming that the distributional type of the innovations is known.
Using the standardized residuals and their cross-product series, we compute the proposed portmanteau
test statistics Q1(M) and Q2(M).

For Model 1, the fitted model is properly specified so that we can obtain the empirical distributions of
the proposed test statistics. We then use the asymptotic 5% critical values to tabulate the empirical sizes
of the two test statistics. For Models 2 and 3, the fitted model is mis-specified and we use the results to
study the power of the proposed test statistics. Note that asymptotic 5% critical values are used in the
power study. The simulation results are given in Table 1. For simplicity, we only report the results for
M = 1.

Furthermore, to demonstrate the importance of using the cross-product vector of the standardized
residuals, not simply their squared series, we consider another data generating model. Specifically,
Model 4 is

at = Σ
1/2
t εt, εt ∼ N(0, I2) or εt ∼ t(0, I2, 7),

σ11,t = 0.01 + 0.04a2
1,t−1 + 0.04σ11,t−1,

σ22,t = 0.01 + 0.04a2
2,t−1 + 0.04σ22,t−1,

σ12,t = 0.04a1,t−1a2,t−1 + 0.04σ12,t−1 + 0.49a1,t−2a2,t−2, (35)
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where ai,t is the i-th element of at and σij,t denotes the (i, j) element of the covariance matrix Σt. In
this particular case, the standardized residuals follow a GARCH(1,1) model whereas the cross-product
process {a1,ta2,t} has a lag-2 autocorrelation. Thus, the goodness of fit test of Ling and Li [12] is unlikely
to reject a fitted GARCH(1,1) model. We generate data from Model 4, fit a GARCH(1,1) model to the
data, and compare the power between the proposed Q2(M) portmanteau statistic and the corresponding
test of Ling and Li [12]. The sample sizes used are 500 and 1000, and the results are also given in
Table 1.

From Table 1, we make the following observations. First, the empirical sizes of the proposed test
statistics Q1(M) and Q2(M) seem reasonable. Second, the proposed test statistics also have decent
power and, as expected, the power of the tests increases as the sample size increases. Third, the power of
Q1(M) is high for Model 3. This is understandable because the order of the VAR model is mis-specified.
Fourth, for Model 2, the power of Q2(M) is higher than that of Q1(M) because in this case only the
GARCH order is mis-specified. Finally, the results of Model 4 demonstrate clearly the contribution of
using the cross-product vector of the standardized residuals in model checking. For this particular model,
the test of Ling and Li [12] fails to detect the model inadequacy because the serial dependence of the
conditional heteroscedasticity is in the cross-product series a1ta2t. The proposedQ2(M) statistics, on the
other hand, has good power in detecting the model inadequacy. In real applications, the serial dependence
in the conditional heteroscedasticity is typically unknown and it pays to use the more general test statistic
Q2(M) proposed in the paper.

Finally, we examine the performance of the proposed residual-based bootstrap procedure by
comparing the distribution of test statistics obtained by bootstrap with their asymptotic distributions,
i.e., the chi-square distributions in Theorem 5.1. Based on 1000 simulated data under Models 1, 2, and 3
with Gaussian error, we fit a VAR(1)-GARCH(1,1) model and approximate the distributions of Q1(M)

and Q2(M) via 1000 residual-based bootstrap. Particularly, the results of M = 15 are reported in
Table 2. Although Models 2 and 3 are mis-specified, the (asymptotic) distributions of the test statistics
obtained by the re-sampled standardized residuals are approximately the same under both the null and
alternative hypotheses, as we discussed in Section 5.

Table 1. Empirical sizes and power of Q1(M) and Q2(M) statistics for some VAR-GARCH
models and empirical power of the proposed Q2(M) and that of Ling and Li [12] for
Model 4. The latter is denoted by LL. Both Gaussian and Student-t innovations are used.
The sample sizes used are 500 and 1000, and the results are based on 1000 realizations. Only
results of M = 1 are reported.

Model 1 (size) Model 2 (power) Model 3 (power) Model 4 (power)
εt n Q1(M) Q2(M) Q1(M) Q2(M) Q1(M) Q2(M) Q2(M) LL

Gaussian 500 0.030 0.061 0.143 0.336 0.983 0.517 0.528 0.067
1000 0.022 0.053 0.231 0.645 0.999 0.682 0.686 0.053

Student-t 500 0.041 0.068 0.210 0.331 0.987 0.443 0.459 0.062
1000 0.035 0.059 0.276 0.593 0.999 0.628 0.663 0.051
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Figure 1. Empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of
the standardized residuals and their squared series. The shocks at are either pure Gaussian
white noises or a BEKK(1,1) process with Gaussian innovations and parameters given in
Equation (34). The results are based on 1000 time series. The sample sizes are 500, 1000,
and 3000.
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n = 500
n = 1000
n = 3000

n = 500
n = 1000
n = 3000

n = 500
n = 1000
n = 3000

n = 500
n = 1000
n = 3000

Table 2. Mean, variance, and quantiles of portmanteau statistics Q∗1(M) and Q∗2(M)

obtained by the residual-based bootstrap approach for some VAR-GARCH Gaussian error
models, and that of the corresponding chi-square distributions. The sample size used is 1000,
and 1000 bootstrap samples are run for each model. Results of M = 15 are reported.

Model Mean Variance Quantile: 1% 5% 10% 90% 95% 99%
χ2
60 60 120 37.48 43.19 46.46 74.40 79.08 88.38
χ2
135 135 270 99.74 109.16 114.42 156.44 163.12 176.14

1 Q∗
1(M) 60.11 118.73 37.78 43.59 46.35 74.01 80.07 86.14

Q∗
2(M) 136.99 280.39 98.16 109.34 116.05 158.50 165.40 178.68

2 Q∗
1(M) 60.15 119.89 36.08 42.96 46.17 74.11 79.26 87.95

Q∗
2(M) 137.12 282.20 98.83 109.75 114.77 158.43 164.84 178.52

3 Q∗
1(M) 60.08 115.74 38.14 44.18 47.71 74.14 77.96 86.51

Q∗
2(M) 137.36 285.68 97.31 108.58 115.17 159.42 165.06 179.60

7. Application

In this section, we apply the proposed portmanteau tests to check the adequacy of a fitted
VARMA-GARCH model for the returns of two well-known stock indices. The data consist of 1756
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Figure 2. Empirical densities of the (1,1) element of the lag-1 autocorrelation matrix of the
standardized residuals and their squared series. The time series Yt is a GARCH(1,1) process
following an BEKK(1,1) model with multivariate Student-t innovations and parameters
given in Equation (34). The results are based on 1000 time series with sample size 3000.
The degrees of freedom are 7, 15, and 50.
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daily closing values of FTSE 100 Index and Deutsche Borse Ag German Stock Index (DAX) from
January 3, 2006 to December 31, 2012. We focus on the return series rt = (r1t, r2t)

′, where r1t is
the return on FTSE 100 index and r2t on DAX index. Some preliminary analysis indicates that there
exist some serial and cross-sectional correlations in the returns. Thus, a VAR(1) model is entertained.
Significant autocorrelations of the cross-product vector of residuals of the fitted VAR(1) model suggest
the existence of conditional heteroscedasticity in the returns. We then entertain three VAR-GARCH
models and compute the proposed portmanteau test statistics Q1(M) and Q2(M) with M = 15. These
test statistics are computed via two procedures. The first procedure uses the first and second order
derivatives of log-likelihood function whereas the second procedure uses the residual-based bootstrap
method. The model checking results are given in Table 3.

Table 3. Diagnostic tests for three models fitted to daily returns of FTSE 100 and DAX
indices. The sample period is from January 3, 2006 to December 31, 2012. For Models 2
and 3, the degrees of freedom for the Student-t distribution are 7.00 and 7.02, respectively.
Portmanteau statistics obtained by the first and second order derivatives of the log-likelihood
function and the residual-based bootstrap procedure are reported and denoted by Qi(15) and
Q̂∗i (15) (i = 1, 2), respectively. For each model, 1000 bootstrap samples are generated.

Model Log-likelihood Q1(15) Q2(15) Q̂∗1(15) Q̂∗2(15)

1 VAR(1)-GARCH(1,1) with Gaussian -5641.0 52.90 172.65 55.67 170.18
2 VAR(1)-ARCH(1) with Student-t -5658.3 48.94 235.14 46.65 237.90
3 VAR(1)-GARCH(1,1) with Student-t -5638.8 43.00 157.75 45.13 158.97
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For all the three entertained models, the portmanteau test statistics obtained by the bootstrap
method and derivatives of the log-likelihood function are reasonably close. They provide the same
diagnostic inference for the fitted models using the 5% critical values. Specifically, for the proposed
Q1(15) and Q2(15), the asymptotic χ2 distributions have degrees of freedom 60 and 135, respectively.
The corresponding 5% critical values are 79.08 and 163.12, respectively. Therefore, the proposed
portmanteau tests reject Models 1 and 2 of Table 3. For Model 3, the Q statistics of the two tests
are 43.00 and 157.75, respectively. Thus, Model 3 cannot be rejected by the proposed test statistics.
Parameters of the fitted VAR(1)-GARCH(1,1) model with Student-t innovations are given in Table 4.

Next, for comparison purpose, we also compute the test statistic of Ling and Li [12] for Model 2
of Table 3, i.e., the VAR(1)-ARCH(1) model with Student-t innovations. As mentioned before, those
authors employ the sum of squared series of the standardized residuals, ε̂′tε̂t to obtain their Q2(M)

statistics. In this particular case, Q2(15) = 19.45 with p-value 0.194. Therefore, based on the test
statistics of Ling and Li [12], one could not reject Model 2 of Table 3 for the daily return series
of FTSE 100 and DAX indices. This is in contrast with the proposed Q2(M) statistics that rejects
Model 2. From the parameter estimates of Model 3, shown in Table 4, there exist some significant
coefficients in the higher-order volatility coefficient matrices. The estimation result, thus, provides some
support for rejecting Model 2 of Table 3.

Table 4. Estimated coefficients of the VAR(1) model with GARCH(1,1) Student-t
innovations for FTSE 100 and DAX return bivariate time series data from January 3rd, 2006
to December 31st, 2012.

Parameters Estimates Std. errors
Φ1(1, 1) 0.0306 0.0016
Φ1(2, 1) 0.0014 0.0027
Φ1(1, 2) 0.0358 0.0025
Φ1(2, 2) -0.0233 0.0038
C(1, 1) 1.2495 0.0000
C(2, 1) -0.0280 0.0057
C(2, 2) 1.1952 0.0000
A11(1, 1) -0.0128 0.0026
A11(2, 1) -0.0076 0.0105
A11(1, 2) 0.0419 0.0101
A11(2, 2) 0.0531 0.0526
B11(1, 1) 0.9584 0.0319
B11(2, 1) -0.0106 0.0103
B11(1, 2) 0.0165 0.0116
B11(2, 2) 0.9606 0.0340
ν 7.0154 1.3909

In summary, the simple example considered in this application demonstrates the importance of
using the cross-product vector of standardized residuals in checking a fitted VARMA-GARCH model.
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Overlooking the cross-dependence in the standardized residuals may lead to erroneous conclusion.
Moreover, the residual-based bootstrap method approximates the portmanteau statistics well, and
provides a more straightforward approach to perform model checking in a real application.

8. Conclusion

In conclusion, we have derived the asymptotic distributions of standardized residual autocorrelation
and autocovariance functions of squared and cross product of standardized residuals for vector ARMA
model with multivariate GARCH innovations. Moreover, we propose two portmanteau statistics for a
joint procedure to diagnose VARMA-GARCH models. Both cases of multivariate GARCH Gaussian
and Student-t innovations are explored. To make the model checking tests easily implemented in
real application, we also provide a residual-based bootstrap approach. Simulation is used to show
the difference in the residual autocorrelations and autocovariances between VARMA model with and
without GARCH effect. Empirical sizes and powers calculated based on three models suggest that our
portmanteau statistics are useful in model checking. A larger power of our test is shown by simulated
data compared with previous model checking test, in detecting conditional heteroscedastic data with
strong autocorrelation in cross product between elements in the GARCH part. Simulation results also
show that the test statistics obtained by bootstrap approximate the theoretical limiting distributions well.
By estimation via both the first and second order derivatives of Log-likelihood function and the bootstrap
procedure, an empirical example is analyzed to illustrate the importance of considering GARCH effect
and heavy tail property for multivariate index or stock return data, and also other financial dataset. In
future research, we expect our result be implemented to find other forms of the portmanteau statistic, and
different methods of bootstrap for VARMA-GARCH models.
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Appendix

Proof of Lemma 3.2. From the calculation of ∂Ln/∂λ and iterated expectation, we have

E[
∂Ln
∂ϕ

vec′(ρm)] =
1

n

n∑
t=1

n∑
s=m+1

E[
1

2
(
∂Ht

∂ϕ′
)′vec(Σ−1

t ata
′
tΣ
−1
t − Σ−1

t )(ε′s−m ⊗ ε′s)

− (
∂at
∂ϕ′

)′Σ−1
t at(ε

′
s−m ⊗ ε′s)]

= − 1

n

n∑
t=1

E

[
(
∂at
∂ϕ′

)′Σ−1
t at(ε

′
t−m ⊗ ε′t)

]
= − 1

n

n∑
t=1

E

[
(
∂at
∂ϕ′

)′Σ
−1/2
t εt(ε

′
t−m ⊗ ε′t)

]
= − 1

n

n∑
t=1

E

[
(
∂at
∂ϕ′

)′(1⊗ Σ
−1/2
t εt)(ε

′
t−m ⊗ ε′t)

]
= − 1

n

n∑
t=1

E

[
(
∂at
∂ϕ′

)′(ε′t−m ⊗ Σ
−1/2
t )

]
.

E[
∂Ln
∂δ

vec′(ρm)] =
1

n

n∑
t=1

n∑
s=m+1

E[
1

2
(
∂Ht

∂δ′
)′vec(Σ−1

t ata
′
tΣ
−1
t − Σ−1

t )(ε′s−m ⊗ ε′s)] = O.

Next, we compute ∂vec(ρm)/∂λ′ as
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Consequently, the results of Lemma 3.2 hold. �.
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Proof of Lemma 3.4. For simplicity, let Σ∗t = Σ−1
t ata

′
tΣ
−1
t − Σ−1

t . From the calculation of ∂Ln
∂λ

,
we have

E[
∂Ln
∂ϕ

vec′(rm)] =
1

n

n∑
t=1

n∑
s=m+1

E[
1

2
(
∂Ht

∂ϕ′
)′vec(Σ∗t )(vech

′(cs−m)⊗ vech′(cs))

− (
∂at
∂ϕ′

)′Σ−1
t at(vech

′(cs−m)⊗ vech′(cs))]

=
1

n

n∑
t=1

E[
1

2
(
∂Ht

∂ϕ′
)′vec(Σ∗t )(vech

′(ct−m)⊗ vech′(ct))].

E[
∂Ln
∂δ

vec′(rm)] =
1

n

n∑
t=1

n∑
s=m+1

E[
1

2
(
∂Ht

∂δ′
)′vec(Σ∗t )(vech

′(cs−m)⊗ vech′(cs))]

=
1

n

n∑
t=1

E[
1

2
(
∂Ht

∂δ′
)′vec(Σ∗t )(vech

′(ct−m)⊗ vech′(ct))].

Then

E[
∂Ln
∂λ

vec′(rm)] =
1

n

n∑
t=m+1

E[
1

2
(
∂Ht

∂λ′
)′vec(Σ∗t )(vech

′(ct−m)⊗ vech′(ct))]

=
1

n

n∑
t=m+1

E[
1

2
(
∂Ht

∂λ′
)′(Σ

−1/2
t ⊗ Σ

−1/2
t )vec(ct)(vech

′(ct−m)⊗ (vech′(ct)))]

=
1

n

n∑
t=m+1

E
1

2
[

(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )vech′(ct−m)⊗ (vec(ct)vec

′(ct)D
+′

k )]

=
1

n

n∑
t=m+1

E{

(
∂vec(Σ

1/2
t )

∂λ′

)′
(Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )[vech′(ct−m)⊗D+′

k ]}

= X′m.

Next, we compute ∂vec(rm)/∂λ′:

∂vec(rm)

∂λ′
=

1

n

n∑
t=m+1

∂[vec(vech(ct)vech
′(ct−m))]

∂λ′

=
1

n

n∑
t=m+1

[(Ik2 ⊗ vech(ct))
∂vech(ct−m)

∂λ′
+ (vech(ct−m)⊗ Ik2)

∂vech(ct)

∂λ′
]

.
=

1

n

n∑
t=m+1

(vech(ct−m)⊗ Ik2)
∂vech(ct)

∂λ′

=
1

n

n∑
t=m+1

(vech(ct−m)⊗ Ik2)D+
k

∂vec(ct)

∂λ′

=
1

n

n∑
t=m+1

(vech(ct−m)⊗D+
k )[(Ik ⊗ Σ

−1/2
t ata

′
t)
∂vec(Σ

−1/2
t )

∂λ′

+ (Σ
−1/2
t ⊗ Σ

−1/2
t )

∂ata
′
t

∂λ′
+ (Σ

−1/2
t ata

′
t ⊗ Ik)

∂vec(Σ
−1/2
t )

∂λ′
].



Econometrics 2013, 1 30

Since
∂vec(Σ

−1/2
t )

∂λ′
= −[Σ

−1/2
t ⊗ Σ

−1/2
t ]

∂vec(Σ
1/2
t )

∂λ′
,

it follows that

E[
∂vec(rm)

∂λ′
] = − 1

n

n∑
t=m+1

E

{
[vech(ct−m)⊗D+

k ](Σ
−1/2
t ⊗ Ik + Ik ⊗ Σ

−1/2
t )

(
∂vec(Σ

1/2
t )

∂λ′

)}
,

which is −Xm defined in (14). Therefore, the results of Lemma 3.4 hold. �.

Proof of Lemma 5.2. To show the above lemma, we first express Ht as a function of entire past of
the cross product of innovations εt.
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Proof of Lemma 5.3. We begin with (31). By the mean value theorem,
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where C is a constant and λ̄ is an intermediate point between λ1 and λ2. By the first-order derivatives,
we have
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By Assumptions 2 and 3, the following expansion holds
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left side of (31) is Kt. Following the similar arguments, we could show that (32) holds. �.
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