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Abstract: This paper develops model selection and averaging methods for moment
restriction models. We first propose a focused information criterion based on the generalized
empirical likelihood estimator. We address the issue of selecting an optimal model,
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minimizes the asymptotic mean squared error. A simulation study suggests that our
averaging estimator can be a useful alternative to existing post-selection estimators.
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1. Introduction

This paper develops model selection and averaging methods for moment restriction models. We
first propose a focused information criterion (FIC) based on the generalized empirical likelihood (GEL)
estimator [1,2], which nests the empirical likelihood (EL) [3,4] and exponential tilting (ET) [5,6]
estimators as special cases. Motivated by Claeskens and Hjort [7], we address the issue of selecting
an optimal model for estimating a specific parameter of interest, rather than identifying a correct model
or selecting a model with good global fit. Then, as an extension of FIC, this study presents a GEL-based
frequentist model averaging (FMA) estimator that is designed to minimize the mean squared error (MSE)
of the estimator.

Traditional model selection methods, such as the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC), select a single model regardless of the specific goal of inference [8,9]. AIC



Econometrics 2013, 1 142

selects a model that is close to the true data generating process (DGP) in terms of Kullback-Leibler
discrepancy, while BIC selects the model with the highest posterior probability. However, a model
with good global fit is not necessarily a good model for estimating a specific parameter. For instance,
Hansen [10] considers the problem of deciding the order of autoregressive models. His simulation study
demonstrates that the AIC-selected model does not necessarily produce a good estimate of the impulse
response. This result reveals that the best model generally differs for different intended uses of the
model.

In their seminal work, Claeskens and Hjort [7] established an FIC that is designed to select the optimal
model depending on its intended use. Their goal is to select the model that attains the minimum MSE
of the maximum likelihood estimator for the parameter of interest, which they call the focus parameter.
The FIC is constructed from an asymptotic estimate of the MSE.

Since then, an FIC has been derived for several models. Claeskens, Croux and Kerckhoven [11]
proposed an FIC for logistic regressions. Hjort and Claeskens [12] proposed an FIC for the Cox hazard
regression model. Zhang and Liang [13] developed an FIC for the generalized additive partial linear
model. Models studied in those papers are likelihood-based. However, econometric models are often
specified via moment restrictions rather than parametric density functions. This paper indicates that the
idea of Claeskens and Hjort [7] is applicable to moment restriction models. Our FIC is constructed using
an asymptotic estimate of the MSE of the GEL estimator.

Model selection for moment restriction models is still underdeveloped. Andrews and Lu [14]
proposed selection criteria based on the J-statistic of the generalized method of moments (GMM)
estimator [15]. Hong, Preston and Shum [16] extended the results of Andrews and Lu to the GEL
estimation. Sueishi [17] developed information criteria similar to the AIC. The goal of Andrews and Lu
[14] and Hong, Preston and Shum [16] was to identify the correct model, whereas Sueishi [17] selects
the best approximating model in terms of Cressie-Read discrepancy. Although these criteria are useful
in many applications, they do not address the issue of selecting the model that best serves its intended
purpose.

Model averaging is an alternative to model selection. Inference after model selection is typically
conducted as if the selected model is the true DGP. However, this ignores uncertainty introduced
by model selection. Rather than conditioning on the single selected model, the averaging technique
uses all candidate models to incorporate model selection uncertainty. Although Bayesian methods are
predominant in the literature [18], there is also a growing FMA literature for likelihood-based models
[19–21]. See also Yang [22], Leung and Barron [23] and Goldenshluger [24] for related issues.

In the FMA literature, it is often of particular interest to obtain an optimal averaging estimator in terms
of a certain loss [25–28]. This study investigates a GEL-based averaging method that minimizes the
asymptotic mean squared error in a framework similar to that of Hjort and Claeskens [21]. A simulation
study indicates that our averaging estimator outperforms existing post-model-selection estimators.

Although this study investigates GEL-based methods, in general, its results are readily applied to
the two-step GMM estimator, because our results rely only on first-order asymptotic theory. However,
the two-step GMM estimator often suffers from a large bias that cannot be captured by first-order
asymptotics, even if the model is correctly specified. Because the FIC addresses a trade-off between
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misspecification bias and estimation variance, the GEL estimator will be more suitable for our
framework.

Now, we review related works. DiTraglia [29] proposes an instrument selection criterion for GMM
that is based on the concept of FIC. Our approach resembles DiTraglia’s, but his interest is instrument
selection, whereas ours is model selection. DiTraglia intentionally uses an invalid large set of instruments
to improve efficiency; we intentionally use a wrong small model to improve efficiency. Liu [30] proposes
an averaging estimator for the linear regression model by using a local asymptotic framework. Although
Liu considers exogenous regressors, we allow endogenous regressors. Martins and Gabriel [31] consider
GMM-based model averaging estimators under a framework different from ours.

The remainder of the paper is organized as follows. Section 2 describes our local misspecification
framework. Section 3 derives the FIC. Section 4 discusses the FMA estimator. Section 5 provides a
simple example for which our methods are applicable. Section 6 presents the result of Monte Carlo
study. Section 7 concludes.

2. Local Misspecification Framework

We first introduce our setup. The basic construct follows Claeskens and Hjort [7]. There is a smallest
and a largest model in our set of candidate models. The smallest, which we call the reduced model, has
a p dimensional unknown parameter vector, ✓ = (✓

1

, . . . , ✓p)
0. The largest, or the full model, has an

additional q dimensional unknown parameter vector, � = (�
1

, . . . , �q)
0. The full model is assumed to be

correctly specified and nests the reduced model; i.e., the reduced model corresponds to the special case
of the full model in which � = �

0

= (�
0,1, . . . , �0,q)

0 for some known �
0

. Typically, �
0

is a vector of
zeros: �

0

= (0, . . . , 0)0. An example is given in Section 5.
There are up to 2

q submodels, all of which have ✓ as the common parameter vector. A submodel
treats some elements of � as unknown parameters and is indexed by a subset, S, of {1, . . . , q}. The
model, S, contains parameters, �j , such that j 2 S. Thus, the reduced and full models correspond to
S = � and S = {1, . . . , q}, respectively. We use “red” and “full” to denote the reduced and full models,
respectively.

The focus parameter, µ, which is the parameter of interest, is a function of ✓ and �: µ = µ(✓, �).
It could be merely an element of ✓. Prior knowledge or economic theories suggest that ✓ should be
estimated, but we are unsure which elements of � should be treated as unknown parameters. Estimating
a larger model usually implies a lesser modeling bias and a larger estimation variance. However, if the
reduced model is globally misspecified in the sense that the violation of the moment restriction does not
disappear even in the limit, then the misspecification bias asymptotically dominates the variance of the
GEL estimator. Thus, we cannot make a reasonable comparison of bias and variance in the asymptotic
framework.

A local misspecification framework is introduced to take into account the bias-variance trade-off. Let
y
1

, . . . , yn be i.i.d.random vectors from an unknown density, fn(y), which depends on the sample size,
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n.1The functional form of fn(y) is not specified. The full model is defined via the following moment
restriction:

En

⇥

m(yi, ✓0, �0 + �/
p
n)
⇤ ⌘

Z

m(y, ✓
0

, �
0

+ �/
p
n)fn(y)dy = 0, (1)

where m : Rdy ⇥ ⇥ ⇥ � ! Rl is a known vector-valued function up to the parameters. For each n, the
true parameter values of ✓ and � are ✓

0

and �
0

+ �/
p
n, respectively. Note that �

0

is known, but ✓
0

and �
are unknown. We assume that l > p+ q; i.e., the model is over-identified.

The moment function of the reduced model is m(y, ✓, �
0

). The reduced model is misspecified in the
sense that there is no value ✓⇤ 2 ⇥, such as En[m(yi, ✓

⇤, �
0

)] = 0, for any fixed n. However, if the
moment function is differentiable with respect to �, then (1) implies that the reduced model satisfies:

kEn [m(yi, ✓0, �0)]k =

�

�

�

�

En



@m(yi, ✓0, �̄)

@�0

�

�
�p

n

�

�

�

�

= O(1/
p
n)

for some vector, �̄ between �
0

and �
0

+ �/
p
n. Thus, even though the moment restriction is invalid at

(✓
0

, �
0

), the violation disappears in the limit. A similar relationship also holds for the other submodels.
As the next section reveals, under this framework, the squared bias and variance of the GEL estimator
are both of the order, O(1/n). Hence, the trade-off between bias and variance can be considered. If � is
sufficiently small, it might be better to set � = �

0

rather than estimate �.
In general, the dimension of the moment function can differ among submodels. For instance, consider

a linear instrumental variable model. The model (structural form) can be estimated as long as the number
of instruments exceeds or equals the number of unknown parameters. Thus, it is possible to use only
a subset of instruments to estimate a submodel. For ease of exposition, however, we consider only the
case where the dimension of the moment function is fixed for all submodels.

3. Focused Information Criterion

To construct an FIC, we first derive the asymptotic distribution of the GEL estimator under the local
misspecification framework. Newey [32] and Hall [33] obtained a similar result in the case of GMM
estimation to analyze the local power properties of specification tests.

A model, S, contains p + qS unknown parameters. The moment function of the model is denoted as
m(y, ✓, �S) = m(y, ✓, �S, �

0,SC ), where SC is the complementary set of S. The values of �j are set to be
their null values �

0,j for j 2 SC .
Let ⇢(v) be a concave function on its domain, V , which is an open interval containing zero. We

normalize ⇢(v), so that ⇢
1

(0) = ⇢
2

(0) = �1, where ⇢j(v) = dj⇢(v)/dvj . The GEL estimator of (✓, �S)
is obtained by solving the saddle-point problem:

(

ˆ✓S, �̂S) = arg min

✓2⇥,�S2�S

max

⌧2T
1

n

n
X

i=1

⇢ (⌧ 0m(yi, ✓, �S)) ,

where �S ⇢ RqS is the parameter space of �S and T ⇢ Rl is the set of feasible values of ⌧ . The EL and
ET estimators are special cases with ⇢(v) = log(1� v) and ⇢(v) = � exp(v), respectively. Although ˆ✓S

1Although y1, . . . , yn is a triangular array, we suppress the additional subscript, n, on y for notational simplicity.
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has p elements for any S, we adopt the subscript, S, to emphasize that the value of the estimator depends
on S.

Let mi = m(yi, ✓0, �0), m✓i =
@m(yi,✓,�)

@✓0

�

�

�

✓=✓0,�=�0
, and m�i =

@m(yi,✓,�)
@�0

�

�

�

✓=✓0,�=�0
. Furthermore, let

m�Si =
@m(yi,✓,�)

@�0
S

�

�

�

✓=✓0,�=�0
. We define:

JS =

 

J
00

J
01,S

J
10,S J

11,S

!

=

 

E[m✓i]
0E[mim

0
i]
�1E[m✓i] E[m✓i ]

0E[mim
0
i]
�1E[m�Si]

E[m�Si]
0E[mim

0
i]
�1E[m✓i] E[m�Si]

0E[mim
0
i]
�1E[m�Si]

!

,

where E denotes the expectation with respect to f(y) ⌘ limn!1 fn(y). It is assumed that f(y) satisfies:

E[mi] =

Z

m(y, ✓
0

, �
0

)f(y)dy = 0.

For the full model, we denote:

J
full

=

 

J
00

J
01

J
10

J
11

!

.

Then, we can write J
01,S = J

01

⇡0
S and J

11,S = ⇡SJ11⇡
0
S , where ⇡S is the projection matrix of size, qS⇥q,

that maps � to the subvector, �S: ⇡S� = �S .
Let ˆQn(✓, �, ⌧) = n�1

Pn
i=1

⇢(⌧ 0m(yi, ✓, �)) and Qn(✓, �, ⌧) = En[⇢(⌧
0m(yi, ✓, �))]. Furthermore,

let Q(✓, �, ⌧) = E[⇢(⌧ 0m(yi, ✓, �))]. To obtain the asymptotic distribution of the GEL estimator, we
impose the following conditions:

Assumption 3.1
1. ⇥ ⇢ Rp

, � ⇢ Rq
, and T ⇢ Rl

are compact.

2. m(y, ✓, �) is continuous in ✓ 2 ⇥ and � 2 � for almost every y.

3. sup✓2⇥,�2�,⌧2T
�

�

�

ˆQn(✓, �, ⌧)�Qn(✓, �, ⌧)
�

�

�

p! 0 under the sequence of fn(y).

4. |Qn(✓, �, ⌧)�Q(✓, �, ⌧)| ! 0 as n ! 1 for all ✓ 2 ⇥, � 2 �, and ⌧ 2 T .

5. E[m(yi, ✓, �)m(yi, ✓, �)
0
] is nonsingular for all ✓ 2 ⇥ and � 2 �.

6. (✓
0

, �
0

) is the unique solution to E[m(yi, ✓, �)] = 0 and (✓
0

, �
0

) 2 int(⇥⇥ �).

7. ⇢(v) is twice continuously differentiable in a neighborhood of zero.

8. E[m✓i] and E[m�i] are of full rank.

9. supn En[kmik2+↵
] < 1 for some ↵ > 0.

10. m(y, ✓, �) is continuously differentiable in ✓ and � in a neighborhood, N , of (✓
0

, �
0

).

11. sup✓,�2N
�

�

�

n�1

Pn
i=1

@m(yi,✓,�)
@✓0 � En

h

@m(yi,✓,�)
@✓0

i

�

�

�

p! 0 and

sup✓,�2N
�

�

�

n�1

Pn
i=1

@m(yi,✓,�)
@�0 � En

h

@m(yi,✓,�)
@�0

i

�

�

�

p! 0 under the sequence of fn(y).

12. kEn[m✓i]� E[m✓i]k ! 0 and kEn[m�i]� E[m�i]k ! 0 as n ! 1.
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13. kEn[mim
0
i]� E[mim

0
i]k ! 0 as n ! 1.

Conditions are rather high-level and strong. Some conditions can be replaced with primitive and
weaker conditions [34].

We obtain the following lemma.

Lemma 3.1 Suppose Assumption 3.1 holds. Then, under the sequence of fn(y), we have:

p
n

 

ˆ✓S � ✓
0

�̂S � �
0,S

!

d! N

 

J�1

S

 

J
01

⇡SJ11

!

�, J�1

S

!

.

The proof is given in the Appendix.
If the model, S, is correctly specified, then the limiting distribution of the GEL estimator is N(0, J�1

S ).
Therefore, as usual, local misspecification affects only the mean of the limiting distribution.

Next, we get the asymptotic distribution of the GEL estimator for the focus parameter. Additional
notations are introduced. Let Q = (J

11

� J
10

J�1

00

J
01

)

�1 and QS = (⇡SQ
�1⇡0

S)
�1; i.e., Q and QS are

the lower right block matrices of J�1

full

and J�1

S , respectively. Let GS = ⇡0
SQS⇡SQ

�1. We assume that
µ(✓, �) is differentiable with respect to ✓ and �. Let:

w = J
10

J�1

00

@µ

@✓
� @µ

@�
and ⌧ 2

0

=

✓

@µ

@✓

◆0
J�1

00

@µ

@✓
,

where the partial derivatives are evaluated at (✓
0

, �
0

). The true focus parameter is denoted as
µtrue = µ(✓

0

, �
0

+ �/
p
n). Moreover, the GEL estimator of µ for the model, S, is denoted as

µ̂S = µ(ˆ✓S, �̂S, �
0,SC ). Lemma 3.1 and the delta method imply the following theorem:

Theorem 3.1 Suppose Assumption 3.1 holds. Then, under the sequence of fn(y), we have:

Dn ⌘ p
n(�̂

full

� �
0

)

d! D ⇠ N(�, Q)

and:

p
n (µ̂S � µ

true

)

d! ⇤S ⌘ ⇤

0

+ w0
(� �GSD),

where ⇤

0

⇠ N(0, ⌧ 2
0

) is independent of D.

The proof is almost the same as that of Lemma 3.3 in Hjort and Claeskens [21], so it is omitted.
Because G

full

= I and G
red

= 0, as the special cases of the theorem, we have:

p
n (µ̂

full

� µ
true

)

d! N(0, ⌧ 2
0

+ w0Qw),
p
n (µ̂

red

� µ
true

)

d! N(w0�, ⌧ 2
0

).

Therefore, in terms of the asymptotic MSE, the reduced model is better than the full model if (w0�)2 <

w0Qw, which is the case when the deviation of the reduced model from the true DGP is small.
More generally, Theorem 3.1 implies that the MSE of the limiting distribution of µ̂S is:

mse(S, �) = ⌧ 2
0

+ w0⇡0
SQS⇡Sw + w0

(I �GS)��
0
(I �GS)

0w. (2)
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The idea behind FIC is to estimate (2) for each model and select the model that attains the minimum
estimated MSE.

All components in (2) except � can be estimated easily by using their sample analogs. However,
a consistent estimator for � is unavailable, because Dn converges in distribution to a normal random
variable. This difficulty is inevitable, as long as we utilize the local misspecification framework. Because
the mean of DD0 is ��0+Q, following Claeskens and Hjort [7], we use DnD

0
n� ˆQ to estimate ��0. Then,

the sample counterpart of (2) is:

dmse(S) = ⌧̂ 2
0

+ ŵ0⇡S ˆQS⇡Sŵ + ŵ0
(I � ˆGS)(DnD

0
n � ˆQ)(I �GS)

0ŵ

= ŵ0
(I � ˆGS)DnD

0
n(I � ˆGS)

0ŵ + 2ŵ0⇡0
S
ˆQS⇡Sŵ + ⌧̂ 2

0

� ŵ0
ˆQŵ,

which is an asymptotically unbiased estimator for (2). Because the last two terms do not depend on the
model, we can ignore them for the purpose of model selection. Let ˆ full = ŵ0Dn and ˆ S = ŵ0

ˆGSDn.
Then, our FIC for the model, S, is:

FICS = ŵ0
(I � ˆGS)DnD

0
n(I � ˆGS)

0ŵ + 2ŵ0⇡0
S
ˆQS⇡Sŵ

= (

ˆ full � ˆ S)
2

+ 2ŵ0
S
ˆQSŵS, (3)

where ŵS = ⇡Sŵ. The bigger the model is, the smaller the first term and the larger the second term
in (3). Since w depends on µ, FIC can be used to select an appropriate submodel, depending on the
parameter of interest.

Although we consider only the case where µ is a scalar, our FIC is also applicable to a vector-valued
focus parameter by viewing each element of the vector as a different scalar-valued focus parameter.
Different models might be used to estimate different elements of the vector.

We conclude this section with a remark on the estimation of ��0. Because we estimate ��0 by DnD
0
n�

ˆQ, the estimate can be negative definite in finite sample. That means that the squared bias term can be
negative. To avoid such cases, as suggested by Claeskens and Hjort [35], we can also use the following
bias-corrected FIC:

FIC

⇤
S =

(

FICS if Nn(S) does not take place
ŵ0
(I + ˆGS)

ˆQŵ if Nn(S) takes place,

where Nn(S) is the event of negligible bias:
n

ŵ0
(I � ˆGS)

ˆ�full

o

2

< ŵ0
⇣

ˆQ� ⇡0
S
ˆQS⇡S

⌘

ŵ.

See Section 6.4 of Claeskens and Hjort [35] for details.

4. Model Averaging

This section extends the result of Section 3 to the averaging problem. In the FMA literature, it is often
of particular interest to obtain an optimal averaging estimator in terms of a certain loss. We consider a
possibility of obtaining the best averaging weights that minimize the MSE in the local misspecification
framework. A similar analysis is presented in Liu [30] in the case of linear regression.
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Let A be the set of all candidate models. We consider an averaging estimator for the focus parameter
of the form:

µ̂ =

X

S2A
c(S)µ̂S,

where the weights, c(S), add up to unity. Note that a post-selection estimator of µ can also be written in
this form. Let S

FIC

be the FIC-selected model. Then the post-selection estimator using FIC is:

µ̂
FIC

=

X

S2A
1(S = S

FIC

)µ̂S,

where 1(·) is the indicator function. Thus, the post-selection estimator is a special case of the averaging
estimator.

If the weights are not random, then it is straightforward from Theorem 3.1 that:
p
n (µ̂� µ

true

)

d! ⇤ ⌘
X

S2A
c(S)⇤S

d
= ⇤

0

+ w0
(� � ˆ�(D)),

where ˆ�(D) =

P

S2A c(S)GSD. Therefore, the asymptotic mean and variance of the averaging estimator
are given by:

E[⇤] =

X

S2A
c(S)w0

(I �GS)�,

Var[⇤] = ⌧ 2
0

+

X

S,S02A
c(S)c(S 0

)w0
(GSQG0

S0)w.

Thus, there is a set of weights that minimizes the asymptotic MSE of µ̂.
Suppose there are M candidate models: S

1

, . . . , SM . Let C = (c(S
1

), . . . , c(SM))

0 be a vector of
averaging weights, which is in the unit simplex in RM :

H =

(

C 2 [0, 1]M :

M
X

i=1

c(Si) = 1

)

.

Ignoring ⌧ 2
0

, which does not depend on the model, the optimal weight vector, C⇤, that minimizes the
asymptotic MSE is:

C⇤
= argmin

C2H
C 0AC,

where A is an M ⇥M matrix, whose (i, j) element is given by:

A
[ij] = w0

(I �GSi)��
0
(I �GSj)

0w + w0
(GSiQG0

Sj
)w.

If we replace A with its appropriate estimate, ˆA, we obtain a feasible estimator:

ˆC = argmin

C2H
C 0

ˆAC. (4)

For instance, if we estimate ��0 by DnD
0
n � ˆQ, then:

ˆA
[ij] = ŵ0

(I � ˆGSi)(DnD
0
n � ˆQ)(I � ˆGSj)

0ŵ + ŵ0
(

ˆGSi
ˆQ ˆG0

Sj
)ŵ.
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Although there is no closed-form solution for (4), it can be solved numerically by a usual quadratic
programing algorithm.

Unfortunately, ˆC cannot be a consistent estimator for C⇤, because there is no consistent estimator for
A. Suppose that C 0

ˆAC
d! C 0

˜AC for a random matrix, ˜A, and for all C 2 H. Then, we have:

ˆC
d! ˜C ⌘ argmin

C2H
C 0

˜AC.

Thus, ˆC is random, even in the limit.
Let ĉ(Si) and c̃(Si) be the i-th element of ˆC and ˜C, respectively. Furthermore, let µ̂

opt

=

PM
i=1

ĉ(Si)µ̂Si denote the averaging estimator using ˆC. Because ĉ(Si) and µ̂Si are both determined
through Dn, ĉ(Si) and

p
n(µ̂Si � µ

true

) converge jointly to c̃(Si) and ⇤Si . Therefore, the limiting
distribution of µ̂

opt

is given by:

p
n (µ̂

opt

� µ
true

)

d!
M
X

i=1

c̃(Si)⇤Si

d
= ⇤

0

+ w0
 

� �
M
X

i=1

c̃(Si)GSiD

!

. (5)

Because weights are random, the limiting distribution is no longer normal. Thus, (5) is not readily
applicable for inference. However, as suggested by Hjort and Claeskens [21], (5) implies that:

1

̂

"

p
n (µ̂

opt

� µ
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)� ŵ0
 

Dn �
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ĉ(Si)
ˆGSiDn

!#

d! N(0, 1),

where ̂ is a consistent estimator for (⌧ 2
0

+ w0Qw)1/2. This result can be used to construct a confidence
interval for µ

true

.

5. Example

This section gives a simple example to which our methods are applicable. One of the most popular
models described by moment restrictions is the linear instrumental variable model. The full model we
consider here is:

yi = x0
i✓ + z0

1i� + ui,

E[ziui] = 0,

where xi and z
1i are p⇥1 and q⇥1 vectors of explanatory variables. Some elements of xi are potentially

correlated with ui. The vector of instruments, zi, is l ⇥ 1, which may contain elements of xi and z
1i.

Economic theory suggests that xi should be included in the model, but we are unsure which components
of z

1i should be included. Thus, the reduced model corresponds to the case that � = �
0

= (0, . . . , 0)0.
In this model, Jfull is given by:

J
full

=

 

J
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J
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J
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J
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!
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i ]
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.

Let ûi be the residual from the full model: ûi = yi � x0
i
ˆ✓
full

� z0
1i�̂full. Then, for instance, J

00

can be
estimated by:

ˆJ
00

=
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n
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i=1
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0
i
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n
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0
iû
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!�1
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zix
0
i. (6)
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Other components of J
full

can be estimated in a similar manner. It also is possible to replace the empirical
probability, n�1, with the GEL-induced probability.

If the focus parameter is the k-th element of ✓, then we have:

ŵ =

ˆJ
10

ˆJ�1

00

ek,

where ek is the k-th unit vector, which have one in the k-th element and zero, elsewhere. On the other
hand, if the focus parameter is µ(✓, �) = x0✓ + z0

1

� for a fixed covariate value (x0, z0
1

)

0, then:

ŵ =

ˆJ
10

ˆJ�1

00

x� z
1

.

To obtain a good estimate of x0✓+z0
1

� for a range of covariate values, rather than a single covariate value,
we can utilize the idea of Claeskens and Hjort [36], who address minimizing an averaged risk over the
range of covariates, rather than the pointwise risk.

6. Monte Carlo Study

We now investigate the performance of post-selection and averaging estimators by a simple Monte
Carlo study. Our EL-based methods are compared with EL-based selection methods of Hong, Preston
and Shum [16]. The following post-selection and averaging estimators are considered: (i) AIC-like
model selection (ii) BIC-like model selection, (iii) FIC model selection and (iv) an averaging estimator,
whose weights are given by (4). AIC- and BIC-like criteria are proposed by Hong, Preston and Shum
[16] and are given by:

AICS = 2

n
X

i=1

log(1� ⌧̂ 0Sm(yi, ˆ✓S, �̂S))� 2(l � p� qS),

BICS = 2

n
X

i=1

log(1� ⌧̂ 0Sm(yi, ˆ✓S, �̂S))� (l � p� qS) log n.

We use (6) to estimate J .
We consider the linear instrumental variable model. The DGP is specified by the following equations:

yi = ✓
0

+ ✓
1

xi + ✓
2

z
1i +

4
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�knzk+1,i + ui,

xi = 0.3z
6i + 0.2z

7i + 0.5ui,

where (✓
0

, ✓
1

, ✓
2

)

0
= (1, 1, 1)0 and (�

1n, �2n, �3n, �4n)
0
= �/

p
n for some vector � = (�

1

, �
2

, �
3

, �
4

)

0.
Exogenous variables, z

1i, . . . , z7i, are normally distributed with mean zero and variance one, and the
correlation between zki and zli is 0.5|k�l| for k 6= l. The vector of instruments is fixed to be zi =

(1, z
1i, . . . , z7i)

0. The error term, ui, is independent of z
1i, . . . , z7i and is generated from a standard

normal distribution. Thus, the moment restriction for the full model is:

En
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Table 1. Estimation results; DGP, data generating process; AIC, Akaike information
criterion; BIC, Bayesian information criterion; FIC, focused information criterion.

DGP
(1) (2) (3) (4)

Full Bias -0.104 -0.109 - 0.089 - 0.076
Std 0.544 0.533 0.509 0.489

RMSE 0.554 0.544 0.516 0.495
Reduced Bis -0.279 -0.057 -0.148 -0.048

Std 0.780 0.473 0.955 0.448
RMSE 0.828 0.477 0.965 0.450

AIC Bias -0.113 -0.099 -0.101 -0.079
Std 0.559 0.557 0.497 0.509

RMSE 0.570 0.566 0.507 0.515
BIC Bias -0.136 -0.088 -0.104 -0.073

Std 0.689 0.552 0.499 0.502
RMSE 0.702 0.559 0.510 0.507

FIC Bias -0.139 -0.095 -0.112 -0.076
Std 0.530 0.509 0.464 0.452

RMSE 0.548 0.517 0.477 0.458
Averaging Bias -0.139 -0.092 -0.107 -0.074

Std 0.511 0.476 0.455 0.444
RMSE 0.529 0.484 0.468 0.450

The focus parameter is µ = ✓
1

. In many applications, it is often the case that the only parameter
of interest in the linear model is the coefficient of the endogenous regressor. Exogenous regressors are
included simply to avoid omitted variable bias. Thus, if the bias is small, it may be better to exclude
some regressors to reduce the variance. In this simulation, we include the constant term, xi, and z

1i in
all candidate models, but some elements of (z

2i, z3i, z4i, z5i)
0 may be excluded. That is, some elements

of (�
1n, �2n, �3n, �4n)

0 are set to zero. Therefore, there are 2

4

= 16 submodels in total.
To evaluate the performance of the post-selection and averaging estimators, we calculate the bias,

standard deviation and root MSE (RMSE) of each estimator over 1,000 repetitions. For reference, we
also report the results of the full and reduced models. The sample size is n = 50.2 We consider four
DGPs: (1) � = (1, 1, 1, 1)0, (2) � = (

1

8

, 1
8

, 1
8

, 1
8

)

0, (3) � = (1, 3
4

, 1
2

, 1
4

)

0 and (4) � = (

1

4

, 3

16

, 1
8

, 1

16

)

0. The
DGPs (1) and (3) are favorable for the full model, while (2) and (4) are favorable for the reduced model.
The results are summarized in Table 1.

Table 1 indicates that there are certain cases where we should avoid using the full model, even if it is
the correct model. Performance of the full model is poorer than the FIC-selected model for all GDPs.

2Simulations were also conducted for different sample sizes. The results are not reported here, because the difference
among candidate models is so small for large n that RMSEs are the almost identical for all models.
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As the theory suggests, the efficiency gain of FIC over the full model is large when � is small. The
averaging estimator outperforms all post-selection estimators. It is even better than FIC. As is consistent
with findings in the literature, averaging is a useful method to reduce the risk of the estimator.

7. Conclusions

This paper studied GEL-based model selection and averaging methods that are designed to obtain
an efficient estimator for the parameter of interest. We modified the local misspecification framework
of Claeskens and Hjort [7], so that an FIC can be obtained for moment restriction models. Then, we
proposed the averaging estimator by extending the idea of FIC.

In the simulation study, we considered the model selection/averaging problem for the linear
instrumental variable model. Although some methods have been advocated for selecting/averaging
instruments in the literature, there are few studies on the model selection/averaging problem. The
result of the simulation suggests that our averaging can be a useful alternative to existing post-selection
estimators.

Acknowledgments

The author thanks Ryo Okui for his comments and suggestions. The author also thanks three referees,
seminar participants at the University of Tokyo and participants of a summer workshop on economic
theory at Otaru University of Commerce for their comments. The author acknowledges financial support
from the Japan Society for the Promotion of Science under KAKENHI 23730215.

References

1. Smith, R.J. Alternative Semi-Parametric Likelihood Approaches to Generalised Method of
Moments Estimation. Econ. J. 1997, 107, 503–519.

2. Newey, W.K.; Smith, R.J. Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators. Econometrica 2004, 72, 219–255.

3. Owen, A.B. Empirical Likelihood Ratio Confidence Intervals for a Single Functional. Biometrika

1988, 75, 237–249.
4. Qin, J.; Lawless, J. Empirical Likelihood and General Estimating Equations. Ann. Stat. 1994,

22, 300–325.
5. Kitamura, Y.; Stutzer, M. An Information-Theoretic Alternative to Generalized Method of

Moments Estimation. Econometrica 1997, 65, 861–874.
6. Imbens, G.W.; Spady, R.H.; Johnson, P. Information Theoretic Approaches to Inference in

Moment Condition Models. Econometrica 1998, 66, 333–357.
7. Claeskens, G.; Hjort, N.L. The Focused Information Criterion. J. Am. Stat. Assoc. 2003,

98, 900–916.
8. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. Second

International Symposium on Information Theory; Petroc, B.; Csake, F., Eds., 1973, pp. 267–281.
Akademiai Kiado.

9. Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464.



Econometrics 2013, 1 153

10. Hansen, B.E. Challenges for Econometric Model Selection. Economet. Theor. 2005, 21, 60–68.
11. Claeskens, G.; Croux, C.; Kerckhoven, J.V. Variable Selection for Logistic Regression Using a

Prediction-Focused Information Criterion. Biometrics 2006, 62, 972–979.
12. Hjort, N.L.; Claeskens, G. Focused Information Criteria and Model Averaging for the Cox

Hazard Regression Model. J. Am. Stat. Assoc. 2006, 101, 1449–1464.
13. Zhang, X.; Liang, H. Focused Information Criterion and Model Averaging for Generalized

Additive Partial Linear Models. Ann. Stat. 2011, 39, 174–200.
14. Andrews, D.W.; Lu, B. Consistent Model and Moment Selection Procedures for GMM

Estimation with Application to Dynamic Panel Data Models. J. Econometrics 2001,
101, 123–164.

15. Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators.
Econometrica 1982, 50, 1029–1054.

16. Hong, H.; Preston, B.; Shum, M. Generalized Empirical Likelihood-Based Model Selection
Criteria for Moment Condition Models. Economet. Theor. 2003, 19, 923–943.

17. Sueishi, N. Information Criteria for Moment Restriction Models. Unpublished Manuscript,
Kyoto University, 2013

18. Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian Model Averaging: A Tutorial.
Stat. Sci. 1999, 14, 382–417.

19. Buckland, S.T.; Burnham, K.P.; Augustin, N.H. Model Selection: An Integral Part of Inference.
Biometrics 1997, 53, 603–618.

20. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach; Springer, 2002.
21. Hjort, N.L.; Claeskens, G. Frequentist Model Average Estimators. J. Am. Stat. Assoc. 2003,

98, 879–899.
22. Yang, Y. Adaptive Regression by Mixing. J. Am. Stat. Assoc. 2001, 96, 574–588.
23. Leung, G.; Barron, A.R. Information Theory and Mixing Least-Squares Regressions. IEEE T.

Inform. Theory 2006, 52, 3396–3410.
24. Goldenshluger, A. A Universal Procedure for Aggregating Estimators. Ann. Stat. 2009, 37, 542–

568.
25. Hansen, B.E. Least Squares Model Averaging. Econometrica 2007, 75, 1175–1189.
26. Wan, A.T.K.; Zhang, X.; Zou, G. Least Squares Model Averaging by Mallows Criterion. J.

Econometrics 2010, 156, 277–283.
27. Hansen, B.E.; Racine, J.S. Jackknife Model Averaging. J. Econometrics 2012, 167, 38–46.
28. Liu, Q.; Okui, R. Heteroskedasticity-Robust Cp Model Averaging. Economet. J. 2013.

Forthcoming.
29. DiTraglia, F.J. Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging

for GMM. Unpublished Manuscript, University of Pennsylvania, 2012
30. Liu, C.A. A Plug-In Averaging Estimator for Regressions with Heteroskedastic Errors.

Unpublised Manuscript, National University of Singapore, 2012
31. Martins, L.F.; Gabriel, V.J. Linear Instrumental Variables Model Averaging Estimation. Comput.

Stat. Data An. 2013. Forthcoming.



Econometrics 2013, 1 154

32. Newey, W.K. Generalized Method of Moments Specification Testing. J. Econometrics 1985,
29, 229–256.

33. Hall, A.R. Hypothesis Testing in Models Estimated by Generalized Method of Moments. In
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A. Appendix

This appendix provides a proof for Lemma 3.1. In this appendix, symbols, p! and d!, denote
convergence in probability and in distribution with respect to the local sequence, fn(y).

Let mi(✓, �S, �SC ) = m(yi, ✓, �S, �SC ) and mi(✓, �S) = m(yi, ✓, �S, �
0,SC ). We define:

⌧(✓, �S, �SC ) = argmax

⌧2T
E [⇢ (⌧ 0mi(✓, �S, �SC )] .

Condition 5 implies that ⌧(✓, �S, �SC ) is continuous with respect to (✓, �S, �SC ). Moreover:
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= ⇢(0). Then, Condition 6 and the saddle-point
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where Pn is the probability under fn(y). Conditions 1–4 also imply ⌧̂S(✓0, �0,S)
p! ⌧(✓

0

, �
0,S) = 0.

Therefore, we obtain:
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Combining (7) and (8), we have ˆ✓S
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0,S . Moreover, we have:
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Next, we derive the asymptotic distribution. The first-order conditions for (ˆ✓0S, �̂0S, ⌧̂ 0S)0 are:
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Let win = ⌘0(mi � En[mi]), where ⌘ is any l ⇥ 1 vector, such that ⌘0⌘ = 1. Then, we have:
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by Condition 9. Thus, by the Lindeberg-Feller Theorem and Condition 13:
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Therefore, by the Cramer-Wold device, we obtain:
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n
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X
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mi
d! N (�E[m�i]�, E[mim

0
i]) ,

which implies the desired result.
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